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Abstract

In this paper we survey the primary research, both theoretical and applied, in the field of Robust

Optimization (RO). Our focus will be on the computational attractiveness of RO approaches, as

well as the modeling power and broad applicability of the methodology. In addition to surveying

the most prominent theoretical results of RO over the past decade, we will also present some recent

results linking RO to adaptable models for multi-stage decision-making problems. Finally, we will

highlight successful applications of RO across a wide spectrum of domains, including, but not limited

to, finance, statistics, learning, and engineering.
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1 Introduction

Optimization affected by parameter uncertainty has long been a focus of the mathematical programming

community. Indeed, it has long been known (and recently demonstrated in compelling fashion in

[15]) that solutions to optimization problems can exhibit remarkable sensitivity to perturbations in the

parameters of the problem, thus often rendering a computed solution highly infeasible, suboptimal, or

both (in short, potentially worthless).

Stochastic Optimization starts by assuming the uncertainty has a probabilistic description. This

approach has a long and active history dating at least as far back as Dantzig’s original paper [44]. We

refer the interested reader to several textbooks ([64, 31, 87, 66]) and the many references therein for a

more comprehensive picture of Stochastic Optimization.

This paper considers Robust Optimization (RO), a more recent approach to optimization under

uncertainty, in which the uncertainty model is not stochastic, but rather deterministic and set-based.

Instead of seeking to immunize the solution in some probabilistic sense to stochastic uncertainty, here

the decision-maker constructs a solution that is optimal for any realization of the uncertainty in a given

set. The motivation for this approach is twofold. First, the model of set-based uncertainty is interesting

in its own right, and in many applications is the most appropriate notion of parameter uncertainty.

Next, computational tractability is also a primary motivation and goal. It is this latter objective that

has largely influenced the theoretical trajectory of Robust Optimization, and, more recently, has been

responsible for its burgeoning success in a broad variety of application areas.

In the early 1970s, Soyster [92] was one of the first researchers to investigate explicit approaches

to Robust Optimization. This short note focused on robust linear optimization in the case where the

column vectors of the constraint matrix were constrained to belong to ellipsoidal uncertainty sets; Falk

[50] followed this a few years later with more work on “inexact linear programs.” The optimization

community, however, was relatively quiet on the issue of robustness until the work of Ben-Tal and

Nemirovski (e.g., [13, 14, 15]) and El Ghaoui et al. [56, 58] in the late 1990s. This work, coupled

with advances in computing technology and the development of fast, interior point methods for convex

optimization, particularly for semidefinite optimization (e.g., Boyd and Vandenberghe, [34]) sparked a

massive flurry of interest in the field of Robust Optimization.

Central issues we seek to address in this paper include:

1. Tractability of Robust Optimization models: In particular, given a class of nominal problems (e.g.,

LP, SOCP, SDP, etc.) and a structured uncertainty set (polyhedral, ellipsoidal, etc.), what is the
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complexity class of the corresponding robust problem?

2. Conservativeness and probability guarantees: How much flexibility does the designer have in

selecting the uncertainty sets? What guidance does he have for this selection? And what do these

uncertainty sets tell us about probabilistic feasibility guarantees under various distributions for

the uncertain parameters?

3. Flexibility, applicability, and modeling power: What uncertainty sets are appropriate for a given

application? How fragile are the tractability results? For what applications is this general method-

ology suitable?

As a preview of what is to come, we give (abdridged) answers to the three issues raised above.

1. Tractability: In general, the robust version of a tractable optimization problem may not itself

be tractable. In this paper we outline tractability results, which depend on the structure of the

nominal problem as well as the class of uncertainty set. Many well-known classes of optimization

problems, including LP, QCQP, SOCP, SDP, and some discrete problems as well, have a RO

formulation that is tractable.

2. Conservativeness and probability guarantees: RO constructs solutions that are deterministically

immune to realizations of the uncertain parameters in certain sets. This approach may be the only

reasonable alternative when the parameter uncertainty is not stochastic, or if no distributional

information is available. But even if there is an underlying distribution, the tractability benefits

of the Robust Optimization paradigm may make it more attractive than alternative approaches

from Stochastic Optimization. In this case, we might ask for probabilistic guarantees for the

robust solution that can be computed a priori, as a function of the structure and size of the

uncertainty set. In the sequel, we show that there are several convenient, efficient, and well-

motivated parameterizations of different classes of uncertainty sets, that provide a notion of a

budget of uncertainty. This allows the designer a level of flexibility in choosing the tradeoff

between robustness and performance, and also allows the ability to choose the corresponding level

of probabilistic protection.

3. Flexibility and modeling power: In Section 2, we survey a wide array of optimization classes, and

also uncertainty sets, and consider the properties of the robust versions. In the final section of

this paper, we illustrate the broad modeling power of Robust Optimization by presenting a broad

variety of applications.
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The overall aim of this paper is to outline the development and main aspects of Robust Optimization,

with an emphasis on its power, flexibility, and structure. We will also highlight some exciting and

important open directions of current research, as well as the broad applicability of RO. Section 2

focuses on the structure and tractability of the main results, describing when, where, and how Robust

Optimization is applicable. Section 3 describes important new directions in Robust Optimization, in

particular multi-stage adaptable Robust Optimization, which is much less developed, and rich with open

questions. In Section 4, we detail a wide spectrum of application areas to illustrate the broad impact

that Robust Optimization has had in the early part of its development. Finally, Section 5 concludes

the paper with a brief discussion of some critical, open directions.

2 Structure and tractability results

In this section, we outline several of the structural properties, and detail some tractability results of

Robust Optimization. We also show how the notion of a budget of uncertainty enters into several differ-

ent uncertainty set formulations, and we present some a priori probabilistic feasibility and optimality

guarantees for solutions to Robust Optimization problems.

2.1 Robust Optimization

An optimization problem with uncertainty in the parameters can be rather generically stated as

minimize f0(x, u0)

subject to fi(x, ui) ≤ 0, i = 1, . . . , m, (2.1)

where x ∈ Rn is a vector of decision variables, f0 : Rn × Rk → R is an objective (cost) function,

fi : Rn × Rk → R are m constraint functions, and ui ∈ Rk are disturbance vectors or parameter

uncertainties.

The general Robust Optimization formulation is:

minimize f0(x)

subject to fi(x, ui) ≤ 0, ∀ ui ∈ Ui, i = 1, . . . , m. (2.2)

Here x ∈ Rn is a vector of decision variables, f0, fi are as before, ui ∈ Rk are disturbance vectors

or parameter uncertainties, and Ui ⊆ Rk are uncertainty sets, which, for our purposes, will always be

closed. The goal of (2.2) is to compute minimum cost solutions x∗ among all those solutions which are
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feasible for all realizations of the disturbances ui within Ui. Thus, if some of the Ui are continuous sets,

(2.2), as stated, has an infinite number of constraints. Intuitively, this problem offers some measure of

feasibility protection for optimization problems containing parameters which are not known exactly.

It is worthwhile to notice the following, straightforward facts about the problem statement of (2.2):

• The fact that the objective function is unaffected by parameter uncertainty is without loss of

generality; indeed, if there is parameter uncertainty in the objective, we may always introduce an

auxiliary variable, call it t, and minimize t subject to the additional constraint max
u0∈U0

f0(x, u0) ≤ t.

• It is also without loss of generality to assume that the uncertainty set U has the form U =

U1× . . .×Um. Indeed, if we have a single uncertainty set U for which we require (u1, . . . , um) ∈ U ,

then the constraint-wise feasibility requirement implies an equivalent problem is (2.2) with the Ui

taken as the projection of U along the corresponding dimensions (see Ben-Tal and Nemirovski,

[14] for more on this).

• Constraints without uncertainty are also captured in this framework by assuming the correspond-

ing Ui to be singletons.

• Problem (2.2) also contains the instances when the decision or disturbance vectors are contained

in more general vector spaces than Rn or Rk (e.g., Sn in the case of semidefinite optimization)

with the definitions modified accordingly.

We emphasize that Robust Optimization is distinctly different than the field of sensitivity analysis,

which is typically applied as a post-optimization tool for quantifying the change in cost for small

perturbations in the underlying problem data. Here, our goal is to compute solutions with a priori

ensured feasibility when the problem parameters vary within the prescribed uncertainty set. We refer

the reader to some of the standard optimization literature (e.g., Bertsimas and Tsitsiklis, [29], Boyd

and Vandenberghe, [35]) and works on perturbation theory (e.g., Freund, [53], Renegar, [88]) for more

on sensitivity analysis.

It is not at all clear when (2.2) is efficiently solvable. One might imagine that the addition of robust-

ness to a general optimization problem comes at the expense of significantly increased computational

complexity. Although this is indeed generally true, there are many robust problems which may be

handled in a tractable manner, and much of the literature since the modern resurgence has focused

on specifying classes of functions fi, coupled with the types of uncertainty sets Ui, that yield tractable
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problems. If we define the robust feasible set to be

X(U) = {x | fi(x, ui) ≤ 0 ∀ ui ∈ Ui, i = 1, . . . ,m} , (2.3)

then for the most part, tractability is tantamount to X(U) being convex in x, with an efficiently

computable membership test. More precisely, in the next section we show that this is related to the

structure of a particular subproblem. We now present an abridged taxonomy of some of the main results

related to this issue.

2.2 An Example: Robust Inventory Control

Before delving into more technical details of the robust optimization formulation, we give an example

to inventory control with demand uncertainty (see Adida and Perakis [1], Bertsimas and Thiele [28],

Ben-Tal et al. [10], and references therein) in order to motivate developments in the sequel. We revisit

this example in more detail in Section 4. The essence of the problem is to make ordering, stocking, and

storage decisions in order to meet demand, so that the cost is minimized. Cost is incurred from the

actual purchases including fixed costs of placing an order, but also from holding and shortage costs.

The basic stock evolution equation is given by:

xk+1 = xk + uk − wk, k = 0, . . . , T − 1,

where uk is the stock ordered at the beginning of the kth period, and wk is the demand during that

same period. Assuming that we incur a holding cost (extra stock) hx, and shortage cost −px, this can

be written as y = max{hx,−px}, and thus we can then write the optimal T -stage inventory control

problem as:

min :
T−1∑

k=0

(cuk + Kvk + yk)

s.t. : yk ≥ h

(
x0 +

k∑

i=0

(ui − wi)

)
, k = 0, . . . , T − 1,

yk ≥ −p

(
x0 +

k∑

i=0

(ui − wi)

)
, k = 0, . . . , T − 1,

0 ≤ uk ≤ Mvk, vk ∈ {0, 1}, k = 0, . . . , T − 1.

Here, vk denotes the decision to purchase or not during period k, and is only required if there is a fixed

cost for ordering. M is the upper bound on the order size.
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Figure 1: These figures show the relative performance of dynamic and robust optimization for three distributions of the

demand: Gamma, Lognormal, and Gaussian. The figure on the left shows the case where the distribution of the demand

uncertainty is known exactly; the figure on the right assumes that only the first two moments are known exactly.

This development assumes that wk, the demand at period k, is deterministically known. Dynamic

programming approaches for dealing with uncertainty of wk are known, but they suffer from two draw-

backs: first, the distribution of the uncertainty is assumed known, and second, their tractability is fragile

in that they depend on the particular distribution of the demand-uncertainty, and the structure of the

problem. In particular, extending them from the single-station case presented here, to the network case,

appears to be intractable. The ideas presented in this paper propose modeling the demand-uncertainty

deterministically, choosing uncertainty sets rather than distributions. The graphs in Figure 1 show the

simulated relative perfomance of the dynamic programming solution to the robust optimization solution,

when the assumed and actual distributions of the demands are identical, and then under the much more

realistic assumption that they are known only up to their first two moments. In the former case, the

performance is essentially identical; in the latter case, we see that as the standard deviation increases,

the robust optimization policy outperforms dynamic programming by 10-13%. For full details on the

simulations, see [28].

There are several immediate questions. In the case of no fixed costs, the deterministic problem is a

linear optimization problem. What is the complexity, and structure of the resulting robust problem, for

different models of deterministic uncertainty, i.e., for different classes of uncertainty set U? Fixed costs

result in a mixed integer optimization problem. When can robust optimization techniques address this

class of problems?
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Varying the size of the uncertainty sets, U , in which the demand varies has the intuitive meaning

of adjusting a “budget of uncertainty,” as discussed above in Section 2.1. We show below that there

are different ways to formulate such a budget of uncertainty. For example, we might assume that the

demand vector varies in some ellipsoidal set about the expected value. This would be consistent with

Gaussian assumptions on the uncertainty. On the other hand, we could consider a cardinality-based

notion of budget of uncertainty, representing the case that demand predictions are wrong at most k out

of T periods. We consider both of these interpretations and formulations below.

2.3 Robust linear optimization

The robust counterpart of a linear optimization problem is written, without loss of generality, as

minimize c>x

subject to Ax ≤ b, ∀ a1 ∈ U1, . . . ,am ∈ Um, (2.4)

where ai represents the ith row of the uncertain matrix A, and takes values in the uncertainty set

Ui ⊆ Rn. Then, a>i x ≤ bi, ∀ai ∈ Ui, if and only if

max
{ai∈Ui}

a>i x ≤ bi, ∀ i. (2.5)

We refer to this as the subproblem which must be solved; its structure determines the complexity of

solving the Robust Optimization problem.

Ellipsoidal Uncertainty: Ben-Tal and Nemirovski [14], as well as El Ghaoui et al. [56, 58], con-

sider ellipsoidal uncertainty sets, in part motivated by the normal distribution. Controlling the size of

these ellipsoidal sets, as in the theorem below, has the interpretation of a budget of uncertainty that the

decision-maker selects in order to easily trade off robustness and performance. Ben-Tal and Nemirovski

[14] show the following:

Theorem 1. (Ben-Tal and Nemirovski, [14]) Let U be “ellipsoidal,” i.e.,

U = U(Π,Q) = {Π(u) | ‖Qu‖ ≤ ρ} ,

where u → Π(u) is an affine embedding of RL into Rm×n and Q ∈ RM×L. Then Problem (2.4) is

equivalent to a second-order cone program (SOCP). Explicitly, if we have the uncertain optimization

minimize c>x

subject to aix ≤ 0, ∀ai ∈ Ui, ∀i = 1, . . . , m,
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where the uncertainty set is given as:

U = {(a1, . . . , am) : ai = a0
i + ∆iui, i = 1, . . . ,m, ||u||2 ≤ ρ},

(a0
i denotes the nominal value) then the robust counterpart is:

mininize c>x

subject to a0
i x ≤ bi − ρ||∆ix||2, ∀i = 1, . . . , m.

The intuition is as follows: for the case of ellipsoidal uncertainty, the subproblem (2.5) is an opti-

mization over a quadratic constraint. The dual, therefore, involves quadratic functions, which leads to

the resulting SOCP.

Polyhedral Uncertainty: Polyhedral uncertainty can be viewed as a special case of ellipsoidal uncer-

tainty [14]. In fact, when U is polyhedral, the subproblem becomes linear, and the robust counterpart

is equivalent to a linear optimization problem. To illustrate this, consider the problem:

min : c>x

s.t. : max{Diai≤di} a>i x ≤ bi, i = 1, . . . , m.

The dual of the subproblem (recall that x is not a variable of optimization in the inner max) becomes:


 max : a>i x

s.t. : Diai ≤ di


 ←→




min : p>i di

s.t. : p>i Di = x

pi ≥ 0.




and therefore the robust linear optimization now becomes:

min : c>x

s.t. : p>i di ≤ bi, i = 1, . . . , m

p>i Di = x, i = 1, . . . , m

pi ≥ 0, i = 1, . . . , m.

Thus the size of such problems grows polynomially in the size of the nominal problem and the dimen-

sions of the uncertainty set.

Cardinality Constrained Uncertainty: Bertsimas and Sim ([26]) use this duality with a family

of polyhedral sets that encode a budget of uncertainty in terms of cardinality constraints, as opposed

9



to size of an ellipsoid. That is, the uncertainty sets they consider control the number of parameters

of the problem that are allowed to vary from their nominal values. Just as with the ellipsoidal sizing,

this cardinality-constraint budget of uncertainty controls the trade-off between the optimality of the

solution, and its robustness to parameter perturbation. In [23], the authors show that these cardinality

constrained uncertainty sets can be expressed as norm-bounded uncertainty sets.

The cardinality constrained uncertainty sets are as follows. Given an uncertain matrix, A = (aij),

suppose that in row i, the entries aij for j ∈ Ji ⊆ {1, . . . , n} are subject to uncertainty. Furthermore,

each component aij is assumed to vary in some interval about its nominal value, [aij − âij , aij + âij ].

Rather than protect against the case when every parameter can deviate, as in the original model of

Soyster ([92]), we allow at most Γi coefficients to deviate. Thus in this sense, the positive number

Γi denotes the budget of uncertainty for the ith constraint.1 Given values Γ1, . . . ,Γm, the robust

formulation becomes:

min : c>x

s.t. :
∑

j aijxj + max{Si⊆Ji : |Si|=Γi}
∑

j∈Si
âijyj ≤ bi 1 ≤ i ≤ m

−yj ≤ xj ≤ yj 1 ≤ j ≤ n

l ≤ x ≤ u

y ≥ 0.

(2.6)

Taking the dual of the inner maximization problem, one can show that the above is equivalent to the

following linear formulation, and therefore is tractable (and moreover is a linear optimization problem):

max : c>x

s.t. :
∑

j aijxj + ziΓi +
∑

j pij ≤ bi ∀ i

zi + pij ≥ âijyj ∀ i, j

−yj ≤ xj ≤ yj ∀ j

l ≤ x ≤ u

p ≥ 0

y ≥ 0.

Norm Uncertainty: Bertsimas et al. [23] show that robust linear optimization problems with uncer-

tainty sets described by more general norms lead to convex problems with constraints related to the

dual norm. Here we use the notation vec(A) to denote the vector formed by concatenating all of the

rows of the matrix A.
1For the full details see [26].
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Theorem 2. (Bertsimas et al., [23]) With the uncertainty set

U = {A | ‖M(vec(A)− vec(Ā))‖ ≤ ∆},

where M is an invertible matrix, Ā is any constant matrix, and ‖ · ‖ is any norm, Problem (2.4) is

equivalent to the problem

minimize c>x

subject to Ā
>
i x + ∆‖(M>)−1xi‖∗ ≤ bi, i = 1, . . . , m,

where xi ∈ R(m·n)×1 is a vector that contains x ∈ Rn in entries (i − 1) · n + 1 through i · n and 0

everywhere else, and ‖ · ‖∗ is the corresponding dual norm of ‖ · ‖.

Thus the norm-based model shown in Theorem 2 yields an equivalent problem with corresponding

dual norm constraints. In particular, the l1 and l∞ norms result in linear optimization problems, and

the l2 norm results in a second-order cone problem.

In short, for many choices of the uncertainty set, robust linear optimization problems are tractable.

2.4 Robust quadratic optimization

For fi(x, ui) of the form

‖Aix‖2 + b>i x + ci ≤ 0,

i.e., (convex) quadratically constrained quadratic programs (QCQP), where ui = (Ai, bi, ci), the ro-

bust counterpart is a semidefinite optimization problem if U is a single ellipsoid, and NP-hard if U is

polyhedral (Ben-Tal and Nemirovski, [13, 14]).

For robust SOCPs, the fi(x,ui) are of the form

‖Aix + bi‖ ≤ c>i x + di.

If (Ai, bi) and (ci, di) each belong to a set described by a single ellipsoid, then the robust counterpart

is a semidefinite optimization problem; if (Ai, bi, ci, di) varies within a shared ellipsoidal set, however,

the robust problem is NP-hard (Ben-Tal et al., [18], Bertsimas and Sim, [27]).

We illustrate here only how to obtain the explicit reformulation of a robust quadratic constraint,

subject to simple ellipsoidal uncertainty.2 We follow Ben-Tal, Nemirovski and Roos ([18]). Consider
2Here, simple ellipsoidal uncertainty means the uncertainty set is a single ellipsoid, as opposed to an intersection of

several ellipsoids.
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the quadratic constraint

x>A>Ax ≤ 2b>x + c, ∀(A, b, c) ∈ U , (2.7)

where the uncertainty set U is an ellipsoid about a nominal point (A0, b0, c0):

U 4
=

{
(A, b, c) := (A0, b0, c0) +

L∑

l=1

ul(Al, bl, cl) : ||u||2 ≤ 1

}
.

As in the previous section, a vector x is feasible for the robust constraint (2.7) if and only if it is feasible

for the constraint: 
 max : x>A>Ax− 2b>x− c

s.t. : (A, b, c) ∈ U


 ≤ 0.

This is the maximization of a convex quadratic objective (when the variable is the matrix A, x>A>Ax

is quadratic and convex in A since xx> is always semidefinite) subject to a single quadratic constraint.

It is well-known that while this problem is not convex (we are maximizing a convex quadratic) it

nonetheless enjoys a hidden convexity property (for an early reference, see Brickman [36]) that allows it

to be reformulated as a (convex) semidefinite optimization problem. Related to this and also well-known,

is the so-called S-lemma (or S-procedure) in control (e.g., Boyd et al. [32]):

Lemma 1 (S-lemma). Let F and G be quadratic in x ∈ Rn:

F (x) = x>Px + 2p>1 x + p0,

G(x) = x>Qx + 2q>1 x + q0,

where P ,Q are symmetric matrices. Suppose further that there exists some x0 such that G(x0) > 0.

Then

F (x) ≥ 0 ∀x ∈ {x : G(x) ≥ 0},

if and only if there exists a scalar τ ≥ 0 such that

G(x)− τF (x) ≥ 0, ∀x ∈ Rn.

Note that the condition that there exist some x0 such that G(x0) > 0, is exactly a Slater-type

condition, and this guarantees that strong duality holds.

In our context, this lemma essentially gives the boundary between what we can solve exactly, and

where solving the subproblem becomes difficult. Indeed, if the uncertainty set is an intersection of

ellipsoids, then exact solution of the subproblem is NP-hard.3 In Section 3 we consider extensions of
3Nevertheless, there are some approximation results available: [18].
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the robust framework to multistage optimization. We see there that the solution of the subproblem

is precisely the tractability bottleneck, and the S-lemma marks the landscape of what can be solved

exactly.

As an immediate corollary of the S-lemma, we then obtain a solution to our original problem of

feasibility for the robustified quadratic constraint. It amounts to the feasibility of an SDP. Therefore

subject to mild regularity conditions (e.g., Slater’s condition) strong duality holds, and by using the

dual to the SDP, we have an exact, convex reformulation of the subproblem in the RO problem.

Corollary 1. Given a vector x, it is feasible to the robust constraint (2.7) if and only if there exists a

scalar τ ∈ R such that the following matrix inequality holds:



c0 + 2x>b0 − τ 1
2c1 + x>b1 · · · cL + x>bL (A0x)>

1
2c1 + x>b1 τ (A1x)>

...
. . .

...
1
2cL + x>bL τ (ALx)>

A0x A1x · · · ALx I




º 0.

2.5 Robust Semidefinite Optimization

With ellipsoidal uncertainty sets, robust counterparts of semidefinite optimization problems are NP-

hard (Ben-Tal and Nemirovski, [13], Ben-Tal et al. [8]). Similar negative results hold even in the

case of polyhedral uncertainty sets (Nemirovski, [79]). Computing approximate solutions, i.e., solutions

that are robust feasible but not robust optimal to robust semidefinite optimization problems has, as

a consequence, received considerable attention (e.g., [58], [17, 16], and [27]). These methods provide

bounds by developing inner approximations of the feasible set. The goodness of the approximation is

based on a measure of how close the inner approximation to the feasible set is to the true feasible set.

Precisely, the measure for this is:

ρ(AR : R) = inf {ρ ≥ 1 | X(AR) ⊇ X(U(ρ))} ,

where X(AR) is the feasible set of the approximate robust problem and X(U(ρ)) is the feasible set of

the original robust SDP with the uncertainty set “inflated” by a factor of ρ. Ben-Tal and Nemirovski

develop an inner approximation ([17]) such that ρ(AR : R) ≤ π
√

µ/2, where µ is the maximum rank of

the matrices describing U .
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2.6 Robust geometric programming

A geometric program (GP) is a convex optimization problem of the form

minimize c>y

subject to g(Aiy + bi) ≤ 0, i = 1, . . . ,m,

Gy + h = 0,

where g : Rk → R is the log-sum-exp function,

g(x) = log

(
k∑

i=1

exi

)
,

and the matrices and vectors Ai, G, bi, and h are of appropriate dimension. For many engineering,

design, and statistical applications of GP, see Boyd and Vandenberghe [35]. Hsiung et al. [61] study a

robust version of GP with constraints

g(Ãi(u)v + b̃i(u)) ≤ 0 ∀ u ∈ U ,

where (Ãi(u), b̃i(u)) are affinely dependent on the uncertainty u, and U is an ellipsoid or a polyhe-

dron. The complexity of this problem is unknown; the approach in [61] is to use a piecewise linear

approximation to get upper and lower bounds to the robust GP.

2.7 Robust discrete optimization

Kouvelis and Yu [68] study robust models for some discrete optimization problems, and show that the

robust counterparts to a number of polynomially solvable combinatorial problems are NP-hard. For

instance, the problem of minimizing the maximum shortest path on a graph with only two scenarios for

the cost vector can be shown to be an NP-hard problem [68].

Bertsimas and Sim [25], however, present a model for cost uncertainty in which each coefficient cj

is allowed to vary within the interval [c̄j , c̄j + dj ], with no more than Γ ≥ 0 coefficients allowed to vary.

They then apply this model to a number of combinatorial problems, i.e., they attempt to solve

minimize c̄>x + max
{S | S⊆N, |S|≤Γ}

∑

j∈S

djxj

subject to x ∈ X,

where N = {1, . . . , n} and X is a fixed set. They show that under this model for uncertainty, the

robust version of a combinatorial problem may be solved by solving no more than n+1 instances of the
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underlying, nominal problem. They also show that this result extends to approximation algorithms for

combinatorial problems. For network flow problems, they show that the above model can be applied

and the robust solution can be computed by solving a logarithmic number of nominal, network flow

problems.

Atamtürk [3] shows that, under an appropriate uncertainty model for the cost vector in a mixed

0-1 integer program, there is a tight, linear programming formulation of the robust mixed 0-1 problem

with size polynomial in the size of a tight linear programming formulation for the nominal mixed 0-1

problem.

2.8 Robust convex optimization

The robust counterpart to a general conic convex optimization problem is typically nonconvex and in-

tractable ([13]). This is implied by the results described above, since conic problems include semidefinite

optimization. Nevertheless, there are some approximate formulations of the general conic convex robust

problem. We refer the interested reader to the recent work by Bertsimas and Sim [27].

2.9 Probability guarantees

In addition to tractability, a central question in the Robust Optimization literature has been proba-

bility guarantees on feasibility under particular distributional assumptions for the disturbance vectors.

Specifically, what does robust feasibility imply about probability of feasibility, i.e., what is the smallest

ε we can find such that

x ∈ X(U) ⇒ P (fi(x, ui) > 0) ≤ ε,

under (ideally mild) assumptions on a distribution for ui? In this section, we briefly survey some of the

results in this vein.

For linear optimization, Ben-Tal and Nemirovski [15] propose a robust model based on ellipsoids of

radius Ω. Under this model, if the uncertain coefficients have bounded, symmetric support, they show

that the corresponding robust feasible solutions are feasible with probability e−Ω2/2. In a similar spirit,

Bertsimas and Sim [26] propose an uncertainty set of the form

UΓ =



Ā +

∑

j∈J

zj âj

∣∣∣∣∣ ‖z‖∞ ≤ 1,
∑

j∈J

1(zj) ≤ Γ



 , (2.8)

for the coefficients a of an uncertain, linear constraint. Here, 1 : R → R denotes the indicator function

of y, i.e., 1(y) = 0 if and only if y = 0, Ā is a vector of “nominal” values, J ⊆ {1, . . . , n} is an index
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set of uncertain coefficients, and Γ ≤ |J | is an integer4 reflecting the number of coefficients which are

allowed to deviate from their nominal values. The dual formulation of this as a linear optimization is

discussed above. The following then holds.

Theorem 3. (Bertsimas and Sim [26]) Let x∗ satisfy the constraint

max
a∈UΓ

a>x∗ ≤ b,

where UΓ is as in (2.8). If the random vector ã has independent components with aj distributed sym-

metrically on [āj − âj , āj + âj ] if j ∈ J and aj = āj otherwise, then

P
(
ã>x∗ > b

)
≤ e

− Γ2

2|J| .

In the case of linear optimization with only partial moment information (specifically, known mean

and covariance), Bertsimas et al. [23] prove guarantees for the general norm uncertainty model used in

Theorem 2. For instance, when ‖ · ‖ is the Euclidean norm, and x∗ is feasible to the robust problem,

Theorem 2 can be shown [23] to imply the guarantee

P
(
ã>x∗ > b

)
≤ 1

1 + ∆2
,

where ∆ is the radius of the uncertainty set, and the mean and covariance are used for Ā and M ,

respectively.

For more general robust conic optimization problems, results on probability guarantees are more

elusive. Bertsimas and Sim are able to prove probability guarantees for their approximate robust

solutions in [27]. See also the work of Chen, Sim, and Sun, in [41], where more general deviation measures

are considered, leading to improved probability guarantees. Also of interest is the work of Paschalidis

and Kang on probability guarantees and uncertainty set selection when the entire distribution is available

[84].

2.10 Constructing uncertainty sets

In terms of how to construct uncertainty sets, much of the RO literature assumes an underlying struc-

ture a priori, then chooses from a parameterized family based on some notion of conservatism (e.g.,

probability guarantees in the previous section). This is proposed, e.g., in [23, 26, 27]. For instance,

one could use a norm-based uncertainty model as explained above. All that is left is to choose the
4The authors also consider Γ non-integer, but we omit this straightforward extension for notational convenience.
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parameter Ω, and this may be done to meet a probability guarantee suitable for the purposes of the

decision-maker.

Such an approach assumes a fixed, underlying structure for the uncertainty set. In contrast to this,

Bertsimas and Brown [20] connect uncertainty sets to risk preferences for the case of linear optimiza-

tion. In particular, they show that when the decision-maker can express risk preferences for satisfying

feasibility in terms of a coherent risk measure (Artzner et al., [2]), then an uncertainty set with an ex-

plicit construction naturally arises. A converse result naturally holds as well; that is, every uncertainty

set coincides with a particular coherent risk measure (Natarajan et al. [78] consider this problem of

risk preferences implied by uncertainty sets in detail). Thus, for the case of robust linear optimization,

uncertainty sets and risk measures have a one-to-one correspondence.

Ben-Tal, Bertsimas and Brown [6] extend this correspondence to more general risk measures called

convex risk measures (see, e.g., Föllmer and Schied, [52]) and find a more flexible notion of robust-

ness arises, in which one allows varying degrees of feasibility for different realizations of the uncertain

parameters.

3 Robust Adaptable Optimization

Thus far this paper has addressed optimization in the static, or one-shot case: the decision-maker con-

siders a single-stage optimization problem affected by uncertainty. In this formulation, all the decisions

are implemented simultaneously, and in particular, before any (part of the) uncertainty is realized. In

many problems, however, this single-shot assumption may be too restrictive and conservative. In this

section, we consider ways to remove it.

Consider the inventory control example from Section 2.2, but now suppose that we have a single

product, one warehouse, and I factories (see [10]).

Let d(t) be the demand for the product at time t. Assume that this is only approximately known,

and we have: d(t) ∈ [d∗t − θd∗t , d∗t + θd∗t ]. Varying θ, we can model different prediction accuracies for

the demand. Let v(t) be the amount of the product in the warehouse at time t. The decision variables

are u(i, t), the amount ordered at period t from factory i, and the cost is c(i, t). Finally, let U(i, t) be

the production cap on factory i at period t, and UT (i) the total production cap on factory i. Instead

of assuming, as we do in the static setting, that all ordering decisions must be made at the initial time

period, we assume they are made over time, and can thus depend on some subset of the past realizations

of the demand. Let D(t) denote the set of demand realizations available when the period t ordering
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2.5% Uncertainty 5% Uncertainty 10% Uncertainty

Static: 4.3% infeasible infeasible

Affine: 0.3% 0.6% 1.6%

Table 1: Results for the multi-period inventory control problem. We compare the static case with the affine adaptable

(see Section 3.3.1) and the utopic solutions.

decisions are made (so if D(t) = ∅, then we recover the static setup). Then, the inventory control

problem becomes:

min : F

s.t. :
T∑

t=1

I∑

i=1

ci(t)pi(t,D(t)) ≤ F

0 ≤ pi(t,D(t)) ≤ Pi(t), i = 1, . . . , I, t = 1, . . . , T
T∑

t=1

pi(t,D(t)) ≤ Q(i), i = 1, . . . , I

v(t + 1) = v(t) +
I∑

i=1

pi(t, D(t))− dt, t = 1, . . . , T

∀d(t) ∈ [d∗t − θd∗t , d
∗
t + θd∗t ], t = 1, . . . , T.

This optimization problem is well-defined only upon specification of the nature of the dependency of

pi(t,D(t)) on D(t). We discuss several ways to model this dependence. In particular, [10] considers affine

dependence on D(t), and they show that in this case, the inventory problem above can be reformulated

as a linear optimization. In particular, they compare their affine approach to two extremes: the static

problem, where all decisions are made at the initial time, and the utopic (perfect foresight) solution,

where the demand realization is assumed to be known non-causally. For a 24-period example with 3

factories, and sinusoidally varying demand (to model seasonal variations)

d∗t = 1000
(

1 +
1
2

sin
(

π(t− 1)
12

))
, t = 1, . . . , 24,

they find that the dynamic formulation with affine functions, is comparable to the utopic solution,

greatly improving upon the static solution. We report these results in Table 1 (for the full details, see

[10]).

Inventory control problems are just one example of multi-stage optimization. Portfolio management

problems with multiple investment rounds are another example ([11], and see more on this in Section 4).
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Other application examples include network design ([4, 80]), dynamic scheduling problems in air traffic

control ([39, 81, 83]) and traffic scheduling, and also problems from engineering, such as integrated

circuit design with two fabrication stages ([73, 72]).

In this section, we discuss several RO-based approaches to the multi-stage setting.

3.1 Motivation and Background

This section focuses primarily on the linear case. To make things concrete, consider a generic 3-stage

linear problem:

min : c>x1

s.t. : A1(u1, u2)x1 + A2(u1, u2)x2(u1) + A3(u1, u2)x3(u1, u2) ≤ b, ∀(u1, u2) ∈ U .
(3.9)

Note that we can assume only x1 appears in the cost function, without loss of generality. The sequence

of events, reflected in the functional dependencies written in, is as follows:

1a. Decision x1 is implemented.

1b. Uncertainty parameter u1 is realized.

2a. Decision x2 is implemented, after x1 has been implemented, and u1 realized and observed.

2b. Uncertainty parameter u2 is realized.

3. The final decision x3 is implemented, after x1 and x2 have been implemented, and u1 and u2

realized and observed.

In what follows, we refer to the static solution as the case where the xi are all chosen at time 1 before

any realizations of the uncertainty are revealed. The dynamic solution is the fully adaptable one, where

xi may have arbitrary functional dependence on past realizations of the uncertainty.

3.1.1 Folding Horizon

The most straightforward extension of the single-shot Robust Optimization formulation to that of

sequential decision-making, is the so-called folding horizon approach. In this formulation, the static

solution over all stages is computed, and the first-stage decision is implemented. At the next stage, the

process is repeated. In the control literature this is known as open-loop feedback. While this approach

is typically tractable, in many cases it may be far from optimal. In particular, because it is computed

19



without any adaptability, the first stage decision may be overly conservative. Intuitively speaking, this

algorithm does not explicitly build into the computation the fact that at the next stage the computation

will be repeated with potentially additional information about the uncertainty.

3.1.2 Stochastic Optimization

In Stochastic Optimization, the multi-stage formulation has long been a topic of research. The basic

problem of interest is the Stochastic Optimization problem with complete recourse (for the basic defi-

nitions and setup, see [31, 64, 87], and references therein). In this setup, the feasibility constraints of

a single-stage Stochastic Optimization problem are relaxed and moved into the objective function by

assuming that after the first-stage decisions are implemented and the uncertainty realized, the decision-

maker has some recourse to ensure that the constraints are satisfied. The canonical example is in

inventory control where in case of shortfall the decision-maker can buy inventory at a higher cost (pos-

sibly from a competitor) to meet demand. Then the problem becomes one of minimizing expected cost

of the two-stage problem. If there is no complete recourse (i.e., not every first-stage decision can be

completed to a feasible solution via second-stage actions) and furthermore the impact and cost of the

second-stage actions are uncertain at the first stage, the problem becomes considerably more difficult.

The feasibility constraint in particular is much more difficult to treat, since it cannot be entirely brought

into the objective function.

When the uncertainty is assumed to take values in a finite set of small cardinality, the two-stage

problem is tractable, and even for larger cardinality (but still finite) uncertainty sets (called scenarios),

large-scale linear programming techniques such as Bender’s decomposition can be employed to obtain

a tractable formulation (see, e.g., [29]). In the case of incomplete recourse where feasibility is not

guaranteed, robustness of the first-stage decision may require a very large number of scenarios in order

to capture enough of the structure of the uncertainty. In the next section, we discuss a robust adaptable

approach called Finite Adaptability that seeks to circumvent this issue.

Finally, even for small cardinality sets, the multi-stage complexity explodes in the number of stages

([89]). This is a central problem of multi-stage optimization, in both the robust and the stochastic

formulations.

3.1.3 Dynamic Programming

Sequential decision-making under uncertainty has traditionally been the domain of Dynamic Program-

ming ([19]). This has recently been extended to the robust Dynamic Programming and robust MDP
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setting, where the payoffs and the dynamics are not exactly known, in Iyengar [65] and Nilim and El

Ghaoui [82], and then also in Huan and Mannor [63]. Dynamic Programming yields tractable algorithms

precisely when the Dynamic Programming recursion does not suffer from the curse of dimensionality. As

the papers cited above make clear, this is a fragile property of any problem, and is particularly sensitive

to the structure of the uncertainty. Indeed, the work in [65, 82, 63, 45] assumes a special property of

the uncertainty set (“rectangularity”) that effectively means that the decision-maker gains nothing by

having future stage actions depend explicitly on past realizations of the uncertainty.

This section is devoted precisely to this problem: the dependence of future actions on past realiza-

tions of the uncertainty.

3.2 Tractability of Robust Adaptable Optimization

The uncertain multi-stage problem with deterministic set-based uncertainty, i.e., the robust multi-stage

formulation, was first considered in [10]. There, the authors show that the two-stage linear problem

with deterministic uncertainty is in general NP -hard. Consider the generic two-stage problem:

min : c>x1

s.t. : A1(u)x1 + A2(u)x2(u) ≤ b, ∀u ∈ U .
(3.10)

Here, x2(·) is an arbitrary function of u. We can rewrite this explicitly in terms of the feasible set for

the first stage decision:

min : c>x1

s.t. : x1 ∈ {x1 : ∀u ∈ U , ∃x2 s.t. A1(u)x1 + A2(u)x2 ≤ b} .
(3.11)

The feasible set is convex, but nevertheless the optimization problem is in general intractable. Consider

a simple example given in [10]:

min : x1

s.t. : x1 − u>x2(u) ≥ 0

x2(u) ≥ Bu

x2(u) ≤ Bu.

(3.12)

It is not hard to see that the feasible first-stage decisions are given by the set:

{x1 : x1 ≥ u>Bu, ∀u ∈ U}.

The set is, therefore, a ray in R1, but determining the left endpoint of this line requires computing a

maximization of a (possibly indefinite) quadratic u>Bu, over the set U . In general, this problem is

NP-hard (see, e.g., [54]).
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3.3 Theoretical Results

Despite the hardness result above, there has recently been considerable effort devoted to obtaining

different approximations and approaches to the multi-stage optimization problem.

3.3.1 Affine Adaptability

In [10], the authors formulate an approximation to the general robust multi-stage optimization problem,

which they call the Affinely Adjustable Robust Counterpart (AARC). Here, they explicitly parameterize

the future stage decisions as affine functions of the revealed uncertainty. For the two-stage problem

(3.10), the second stage variable, x2(u), is parameterized as:

x2(u) = Qu + q.

Now, the problem becomes:

min : c>x1

s.t. : A1(u)x1 + A2(u)[Qu + q] ≤ b, ∀u ∈ U .

This is a single-stage RO. The decision-variables are (x1, Q, q), and they are all to be decided before

the uncertain parameter, u ∈ U , is realized.

In the generic formulation of the two-stage problem (3.10), the functional dependence of x2(·) on

u is arbitrary. In the affine, the resulting problem is a linear optimization problem with uncertainty.

The parameters of the problem, however, now have a quadratic dependence on the uncertain parameter

u. Thus in general, the resulting robust linear optimization will not be tractable. Indeed, consider the

example (3.12). Here, the optimal second stage solution turns out to be affine in the uncertainty (and

thus the affine approximation is exact). Furthermore, the second stage solution is explicitly revealed in

the structure of the problem, namely, x2(u) = Bu (any other solution is not feasible).

Despite this negative result, there are some positive complexity results concerning the affine model.

In order to present these, let us explicitly denote the dependence of the optimization parameters, A1

and A2, as:

[A1, A2](u) = [A(0)
1 , A

(0)
2 ] +

L∑

l=1

ul[A
(l)
1 , A

(l)
2 ].

When we have A
(l)
2 = 0, for all l ≥ 1, the matrix multiplying the second stage variables is constant. This

setting is known as the case of fixed recourse. We can now write the second stage variables explicitly
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in terms of the columns of the matrix Q. Letting q(l) denote the lth column of Q, and q(0) = q the

constant vector, we have:

x2 = Qu + q0

= q(0) +
L∑

l=1

ulq
(l).

Letting χ = (x1, q
(0), q(1), . . . , q(L)) denote the full decision vector, we can write the ith constraint as

0 ≤ (A(0)
1 x1 + A

(0)
2 q(0) − b)i +

L∑

l=1

ul(A
(l)
1 x1 + A2q

(l))i

=
L∑

l=0

ai
l(χ),

where we have defined

ai
l
4
= ai

l(χ)
4
= (A(l)

1 x1 + A
(l)
2 q(l))i, ai

0
4
= (A(0)

1 x1 + A
(0)
2 q(0) − b)i.

Theorem 4 ([10]). Assume we have a two-stage linear optimization with fixed recourse, and with conic

uncertainty set:

U = {u : ∃ξ s.t. V 1u + V 2ξ ≥K d} ⊆ RL,

where K is a convex cone with dual K∗. If U has nonempty interior, then the AARC can be reformulated

as the following optimization problem:

min : c>x1

s.t. : V 1λ
i − ai(x1, q

(0), . . . , q(L)) = 0, i = 1, . . . , m

V 2λ
i = 0, i = 1, . . . ,m

d>λi + ai
0(x1, q

(0), . . . , q(L)) ≥ 0, i = 1, . . . ,m

λi ≥K∗ 0, i = 1, . . . , m.

If the cone K is the positive orthant, then the AARC given above is an LP.

The case of non-fixed recourse is more difficult because of the quadratic dependence on u. Note that

the example in (3.12) above involves an uncertainty-affected recourse matrix. In this non-fixed recourse

case, the robust constraints have a component that is quadratic in the uncertain parameters, ui. These

robust constraints then become:
[
A

(0)
1 +

∑
ulA

(1)
1

]
x1 +

[
A

(0)
2 +

∑
ulA

(1)
2

] [
q(0) +

∑
ulq

(l)
]
− b ≤ 0, ∀u ∈ U ,
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which can be rewritten to emphasize the quadratic dependence on u, as

[
A

(0)
1 x1 + A

(0)
2 q(0) − b

]
+

∑
ul

[
A

(l)
1 x1 + A

(0)
2 q(l) + A

(l)
2 q(0)

]
+

[∑
ukulA

(k)
2 q(l)

]
≤ 0, ∀u ∈ U .

Writing

χ
4
= (x1, q

(0), . . . , q(L)),

αi(χ)
4
= −[A(0)

1 x1 + A
(0)
2 q(0) − b]i

β
(l)
i (χ)

4
= − [A(l)

1 x1 + A
(0)
2 q(l) − b]i

2
, l = 1, . . . , L

Γ(l,k)
i (χ)

4
= − [A(k)

2 q(l) + A
(l)
2 q(k)]i

2
, l, k = 1, . . . , L,

the robust constraints can now be expressed as:

αi(χ) + 2u>βi(χ) + u>Γi(χ)u ≥ 0, ∀u ∈ U . (3.13)

Theorem 5 ([10]). Let our uncertainty set be given as the intersection of ellipsoids:

U 4
= {u : u>(ρ−2Sk)u ≤ 1, k = 1, . . . , K},

where ρ controls the size of the ellipsoids. Then the original AARC problem can be approximated by the

following semidefinite optimization problem:

min : c>x1

s.t. :


 Γi(χ) + ρ−2

∑K
k=1 λkSk βi(χ)

βi(χ)> αi(χ)−∑K
k=1 λ

(i)
k


 º 0, i = 1, . . . , m

λ(i) ≥ 0, i = 1, . . . , m

(3.14)

The constant ρ in the definition of the uncertainty set U can be regarded as a measure of the level

of the uncertainty. This allows us to give a bound on the tightness of the approximation. Define the

constant

γ
4
=

√√√√2 ln

(
6

K∑

k=1

Rank(Sk)

)
.

Then we have the following.

Theorem 6 ([10]). Let Xρ denote the feasible set of the AARC with noise level ρ. Let X approx
ρ denote the

feasible set of the SDP approximation to the AARC with uncertainty parameter ρ. Then, for γ defined

as above, we have the containment:

Xγρ ⊆ X approx
ρ ⊆ Xρ.
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This tightness result has been improved; see [46].

There have been a number of applications building upon affine adaptability, in a wide array of areas:

1. Integrated circuit design: In [73], the affine adjustable approach is used to model the yield-loss

optimization in chip design, where the first stage decisions are the pre-silicon design decisions, while

the second-stage decisions represent post-silicon tuning, made after the manufacturing variability

is realized and can then be measured.

2. Portfolio Management: In [37], a two-stage portfolio allocation problem is considered. While

the uncertainty model is data-driven, the basic framework for handling the multi-stage decision-

making is based on RO techniques.

3. Comprehensive Robust Optimization: In [7], the authors extend the robust static, as well as the

affine adaptability framework, to soften the hard constraints of the optimization, and hence to

reduce the conservativeness of robustness. At the same time, this controls the infeasibility of the

solution even when the uncertainty is realized outside a nominal compact set. This has many

applications, including portfolio management, and optimal control.

4. Network flows and Traffic Management: In [80], the authors consider the robust capacity expansion

of a network flow problem that faces uncertainty in the demand, and also the travel time along

the links. They use the adjustable framework of [10], and they show that for the structure of

uncertainty sets they consider, the resulting problem is tractable. In [76], the authors consider a

similar problem under transportation cost and demand uncertainty, extending the work in [80].

5. Chance constraints: In [42], the authors apply a modified model of affine adaptability to the

stochastic programming setting, and show how this can improve approximations of so-called chance

constraints. In [49], the authors formulate and propose an algorithm for the problem of two-

stage convex chance constraints when the underlying distribution has some uncertainty (i.e., an

ambiguous distribution).

Additional work in affine adaptability has been done in [42], where the authors consider modified linear

decision rules in the context of only partial distibutional knowledge, and within that framework derive

tractable approximations to the resulting robust problems.
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3.3.2 Discrete Variables

Consider now a multi-stage optimization where the future stage decisions are subject to integer con-

straints. The framework introduced above cannot address such a setup, since the second stage policies,

x2(u), are necessarily continuous functions of the uncertainty.

3.3.3 Finite Adaptability

The framework of Finite Adaptability, introduced in Bertsimas and Caramanis [22] and Caramanis

[39], is designed to deal exactly with this setup. There, the second-stage variables, x(u), are piecewise

constant functions of the uncertainty, with k pieces. Due to the inherent finiteness of the framework,

the resulting formulation can accommodate discrete variables. In addition, the level of adaptability can

be adjusted by changing the number of pieces in the piecewise constant second stage variables. (For

an example from circuit design where such second stage limited adaptability constraints are physically

motivated by design considerations, see [72]). Consider a two-stage problem of the form

min : c>x1 + d>x2(u)

s.t. : A1(u) + A2(u)x2(u) ≥ b, ∀u ∈ U
x1 ∈ X1, x2 ∈ X2,

(3.15)

where X2 may contain integrality constraints. In the finite adaptability framework, with k-piecewise

constant second stage variables, this becomes

Adaptk(U) = min
U=U1∪···∪Uk




min : c>x1 + max{d>x
(1)
2 , . . . , d>x

(k)
2 }

s.t. : A1(u)x1 + A2(u)x(1)
2 ≥ b, ∀u ∈ U1

...

A1(u)x1 + A2(u)x(k)
2 ≥ b, ∀u ∈ Uk

x1 ∈ X1,x
(j)
2 ∈ X2.




.

If the partition of the uncertainty set, U = U1 ∪ · · · ∪ Uk is fixed, then the resulting problem retains the

structure of the original nominal problem, and the number of second stage variables grows by a factor of

k. Furthermore, the static problem (i.e., with no adaptability) corresponds to the case k = 1, and hence

if this is feasible, then the k-adaptable problem is feasible for any k. This allows the decision-maker to

choose the appropriate level of adaptability. This flexibility may be particularly important for very large

scale problems, where the nominal formulation is already on the border of what is currently tractable.

We provide such an example, in an application of finite adaptability to Air Traffic Control below.
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The complexity of finite adaptability is in finding a good partition of the uncertainty. Indeed, in

general, computing the optimal partition even into two regions is NP-hard ([22],[39]). However, we

also have the following positive complexity result. It says that if any one of the three quantities:

(a) Dimension of the uncertainty; (b) Dimension of the decision-space; and (c) Number of uncertain

constraints, is small, then computing the optimal 2-piecewise constant second stage policy can be done

efficiently.

Theorem 7 ([22],[39]). Consider a two-stage problem of the form in (3.15). Suppose the uncertainty

set U is given as the convex hull N points. Let d = min(N, dimU), let n be the dimension of the second-

stage decision-variable, and m the number of uncertain constraints (the number of rows of A1 and A2.

Then the optimal hyperplane partition of U can be obtained in time exponential in min(d, n, m), and in

particular, if the dimension of the problem, or the dimension of the decision-variables, or the number

of uncertain constraints is small, then the 2-adaptable problem is tractable.

This result is particularly pertinent for the framework of finite adaptability. In particular, consider

the dimension of the uncertainty set. If U is truly high-dimensional, then a piecewise-constant second-

stage policy with only a few pieces, would most likely not be effective. The application to Air Traffic

Control ([39]) which we present below, gives an example where the dimension of the uncertainty is large,

but can be approximated by a low-dimensional set, thus rendering finite adaptability an appropriate

framework.

3.3.4 Network Design

In Atamturk and Zhang [4], the authors consider two-stage robust network flow and design, where the

demand vector is uncertain. This work deals with computing the optimal second stage adaptability, and

characterizing the first-stage feasible set of decisions. While this set is convex, solving the separation

problem, and hence optimizing over it, can be NP-hard, even for the two-stage network flow problem.

Given a directed graph G = (V,E), and a demand vector d ∈ RV , where the edges are partitioned

into first-stage and second-stage decisions, E = E1∪E2, we want to obtain an expression for the feasible

first-stage decisions. We define some notation first. Given a set of nodes, S ⊆ V , let δ+(S), δ−(S),

denote the set of arcs into and out of the set S, respectively. Then, denote the set of flows on the graph

satisfying the demand by

Pd
4
= {x ∈ RE

+ : x(δ+(i))− x(δ−(i)) ≥ di, ∀i ∈ V }.
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If the demand vector d is only known to lie in a given compact set U ⊆ RV , then the set of flows

satisfying every possible demand vector is given by the intersection P =
⋂

d∈U Pd. If the edge set E is

partitioned E = E1 ∪ E2 into first and second-stage flow variables, then the set of first-stage-feasible

vectors is:

P(E1)
4
=

⋂

d∈U
ProjE1

Pd,

where ProjE1
Pd

4
= {xE1 : (xE1 ,xE2) ∈ Pd}. Then we have:

Theorem 8 ([4]). A vector xE1 is an element of P(E1) iff xE1(δ
+(S)) − xE1(δ

−(S)) ≥ ζS, for all

subsets S ⊆ V such that δ+(S) ⊆ E1, where we have defined ζS
4
= max{d(S) : d ∈ U}.

The authors then show that for both the budget-restricted uncertainty model, U = {d :
∑

i∈V πidi ≤
π0, d̄−h ≤ d ≤ d̄+h}, and the cardinality-restricted uncertainty model, U = {d :

∑
i∈V d|di−d̄i|\hie ≤

Γ, d̄− h ≤ d ≤ d̄ + h}, the separation problem for the set P(E1) is NP-hard:

Theorem 9 ([4]). For both classes of uncertainty sets given above, the separation problem for P(E1) is

NP-hard for bipartite G(V, B).

These results extend also to the framework of two-stage network design problems, where the ca-

pacities of the edges are also part of the optimization. If the second stage network topology is totally

ordered, or an arborescence, then the separation problem becomes tractable.

3.3.5 Nonlinear Adaptability

There has also been some work on adaptability for nonlinear problems, in Takeda, Taguchi and Tütüncü

[93]. General single-stage robustness is typically intractable. Thus one cannot expect far-reaching

tractability results for the multi-stage case. Nevertheless, in this paper the authors offer sufficient

conditions on the uncertainty set and the structure of the problem, so that the resulting nonlinear multi-

stage robust problem is tractable. In [93], they consider several applications to portfolio management.

3.4 An Application of Robust Adaptable Optimization: Air Traffic Control

There are about 30,000 flights daily over the United States National Air Space (NAS). These flights

must be scheduled so that they do not exceed the takeoff or landing capacity of any airport, or the

capacity of any sector of the NAS while they are in-flight. Because airport and sector capacities are

impacted by the weather, they are uncertain. Currently, there is no centralized, optimization-based
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Figure 2: We have planes arriving at a single hub such as JFK in NYC. Dashed lines express uncertainty in the weather.

approach implemented to obtain a schedule that respects the capacity constraints while minimizing

delays. The primary challenges stem from the fact that (a) the problem is naturally large scale, with

over a million variables and constraints; (b) the variables are inherently discrete; (c) the problem is

naturally multi-stage: scheduling decisions are made sequentially, and the uncertainty is also revealed

throughout the day, as we have access to the current forecast at every point in time. Because of the

discrete variables, continuous adaptability cannot work. Also, because of the large-scale nature of the

problem, there is very little leeway to increase the size of the problem.

Finite Adaptability is an appropriate framework to address all three of the above challenges. We

give a small example (see [39] for more details and computations) to illustrate the application, showing

that finite adaptability can significantly decrease the impact of a storm on flight delay and cancellation.

Figure 2 depicts a major airport (e.g., JFK) that accepts heavy traffic from airports to the West and

the South. In this figure, the weather forecast predicts major local disruption due to an approaching

storm, affecting only the immediate vicinity of the airport; the timing of the impact, however, is

uncertain, and at question is which of the 50 (say) northbound and 50 eastbound flights to hold on the

ground, and which to hold in the air.

We assume the direct (undelayed) flight time is 2 hours. Each plane may be held either on the

ground, in the air, or both, for a total delay not exceeding 60 minutes. Therefore all 50 Northbound

and 50 Eastbound planes land by the end of the three hour window under consideration. The simplified

picture is presented in Figure 3. Rectangular nodes represent the airports, and the self-link ground

holding. The intermediate circular nodes represent a location one hour from JFK, in a geographical

region whose capacity is unaffected by the storm. The self-link here represents air holding. The final

hexagonal node represents the destination airport, JFK. Thus the links from the two circular nodes to

the final hexagonal node are the only capacitated links in this simple example.
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Figure 3: This figure gives the simplified version for the scenario we consider.

We discretize time into 10-minute intervals. We assume that the impact of the storm lasts 30 minutes,

although what the start of that period is, is unknown. Indeed, the uncertainty is in the timing of the

storm, and the order in which it will affect the capacity of the southward and westward approaches.

There is essentially a single continuous parameter here, controlling the timing of the storm, and whether

the most severe capacity impact hits the approach from the south before, after, or at the same time as

it hits the approach from the west. Because we are discretizing time into 10 minute intervals, there are

four possible realizations of the weather-impacted capacities in the second hour of our horizon. These

four scenarios are as follows. We give the capacity in terms of the number of planes per 10-minute

interval:

(1)


 West: 15 15 15 5 5 5

South: 5 5 5 15 15 15




(2)


 West: 15 15 5 5 5 15

South: 15 5 5 5 15 15




(3)


 West: 15 5 5 5 15 15

South: 15 15 5 5 5 15




(4)


 West: 5 5 5 15 15 15

South: 15 15 15 5 5 5




In the utopic set-up (not implementable) the decision-maker can foresee the future (of the storm) and

makes decisions accordingly. Thus we get a bound on performance. We also consider a nominal, no-

robustness scheme, where the decision-maker (näıvely) assumes the storm will behave exactly according

to the first scenario. We also consider adaptabiliy formulations: 1-adaptable (static robust) solution,

then the 2- and 4-adaptable solution.
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Delay Cost Ground Holding Air Holding

Utopic: 2,050 205 0

Static: 4,000 400 0

2-Adaptable: 3,300 170 80

4-Adaptable: 2,900 130 80

Table 2: Results for the cost of total delay, as well as the total ground-holding time, and air-holding time, for the utopic,

robust, 2-adaptable, and 4-adaptable schemes, for the Air Traffic Control example. The ground- and air-holding time

is given as the number of 10 minute segments incurred by each flight (so if a single flight is delayed by 40 minutes, it

contributes 4 to this count).

Realization 1 Realization 2 Realization 3 Realization 4

Nominal Cost: 2,050 2,950 3,950 4,750

Table 3: Results for the cost of total delay for each scenario, when the first-stage solution is chosen without robustness

considerations, assuming that the first realization is in fact the true realization.

The cost is computed from the total amount of ground holding and the total amount of air holding.

Each 10-minute interval that a single flight is delayed on the ground contributes 10 units to the cost.

Each 10-minute interval of air-delay contributes 20 units.

In Table 3, we give the cost of the nominal solution, depending on what the actual realization turns

out to be.

4 Applications of Robust Optimization

In this section, we survey the main applications modeled and approached by Robust Optimization

techniques.

4.1 Portfolio optimization

One of the central problems in finance is how to allocate monetary resources across risky assets. This

problem has received considerable attention from the Robust Optimization community and a wide array

of models for robustness have been explored in the literature. We now describe some of the noteworthy

approaches and results in more detail.
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4.1.1 Uncertainty models for return mean and covariance

The classical work of Markowitz ([74, 75]) served as the genesis for modern portfolio theory. The

canonical problem is to allocate wealth across n risky assets with mean returns µ ∈ Rn and return

covariance matrix Σ ∈ Sn
++ over a weight vector w ∈ Rn. Two versions of the problem arise; first, the

minimum variance problem, i.e.,

minimize w>Σw

subject to µ>w ≥ r (4.16)

w ∈ W;

or, alternatively, the maximum return problem, i.e.,

maximize µ>w

subject to w>Σw ≤ σ2 (4.17)

w ∈ W.

Here, r and σ are investor-specified constants, and W represents the set of acceptable weight vectors

(W typically contains the normalization constraint e>w = 1 and often has “no short-sales” constraints,

i.e., wi ≥ 0, i = 1, . . . , n, among others).

While this framework proposed by Markowitz revolutionized the financial world, particularly for the

resulting insights in trading off risk (variance) and return, a fundamental drawback from the practi-

tioner’s perspective is that µ and Σ are rarely known with complete precision. In turn, optimization

algorithms tend to exacerbate this problem by finding solutions that are “extreme” allocations and, in

turn, very sensitive to small perturbations in the parameter estimates.

Robust models for the mean and covariance information are a natural way to alleviate this difficulty,

and they have been explored by numerous researchers. Lobo and Boyd [70] propose box, ellipsoidal,

and other uncertainty sets for µ and Σ. For example, the box uncertainty sets have the form

M =
{

µ ∈ Rn
∣∣ µ

i
≤ µ ≤ µi, i = 1, . . . , n

}

S =
{
Σ ∈ Sn

+ | Σij ≤ Σij ≤ Σij , i = 1, . . . , n, j = 1, . . . , n
}

.

In turn, with these uncertainty structures, they provide a polynomial-time cutting plane algorithm for
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solving robust variants of Problems (4.16) and (4.17), e.g., the robust minimum variance problem

minimize sup
Σ∈S

w>Σw

subject to inf
µ∈M

µ>w ≥ r (4.18)

w ∈ W.

Costa and Paiva [43] propose uncertainty structures of the form

M = conv {µ1, . . . ,µk}

S = conv {Σ1, . . . ,Σk} ,

and formulate robust counterparts of (4.16) and (4.17) as optimization problems over linear matrix

inequalities.

Tütüncü and Koenig [94] focus on the case of box uncertainty sets for µ and Σ as well and show

that Problem (4.18) is equivalent to the robust risk-adjusted return problem

maximize inf
µ∈M, Σ∈S

{
µ>w − λw>Σw

}

w ∈ W, (4.19)

where λ ≥ 0 is an investor-specified risk factor. They are able to show that this is a saddle-point problem,

and they use an algorithm of Halldórsson and Tütüncü [60] to compute robust efficient frontiers for this

portfolio problem.

4.1.2 Distributional uncertainty models

Less has been said by the Robust Optimization community about distributional uncertainty for the

return vector in portfolio optimization, perhaps due to the popularity of the classical mean-variance

framework of Markowitz. Nonetheless, some work has been done in this regard. Some interesting

research on that front is that of El Ghaoui et al. [57], who examine the problem of worst-case value-at-

risk (VaR) over portfolios with risky returns belonging to a restricted class of probability distributions.

The ε-VaR for a portfolio w with risky returns r̃ obeying a distribution P is the optimal value of the

problem

minimize γ

subject to P
(
γ ≤ −r̃>w

)
≤ ε. (4.20)
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In turn, the authors in [57] approach the worst-case VaR problem, i.e.,

minimize VP(w)

subject to w ∈ W, (4.21)

where

VP(w) :=





minimize γ

subject to sup
P∈P

P
(
γ ≤ −r̃>w

) ≤ ε





. (4.22)

In particular, the authors first focus on the distributional family P with fixed mean µ and covariance

Σ Â 0. From a tight Chebyshev bound due to Bertsimas and Popescu [24], it was known that (4.21) is

equivalent to the SOCP

minimize γ

subject to κ(ε)‖Σ1/2w‖2 − µ>w ≤ γ,

where κ(ε) =
√

(1− ε)/ε; in [57], however, the authors also show equivalence of (4.21) to an SDP, and

this allows them to extend to the case of uncertainty in the moment information. Specifically, when

the supremum in (4.21) is taken over all distributions with mean and covariance known only to belong

within U , i.e., (µ,Σ) ∈ U , [57] shows the following:

1. When U = conv {(µ1,Σ1), . . . , (µl,Σl)}, then (4.21) is SOCP-representable.

2. When U is a set of component-wise box constraints on µ and Σ, then (4.21) is SDP-representable.

One interesting extension in [57] is restricting the distributional family to be sufficiently “close” to

some reference probability distribution P0. In particular, the authors show that the inclusion of an

entropy constraint
∫

log
dP
dP0

dP ≤ d

in (4.21) still leads to an SOCP-representable problem, with κ(ε) modified to a new value κ(ε, d) (for the

details, see [57]). Thus, imposing this smoothness condition on the distributional family only requires

modification of the risk factor.

Pinar and Tütüncü [86] study a distribution-free model for near-arbitrage opportunities, which they

term robust profit opportunities. The idea is as follows: a portfolio w on risky assets with (known)
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mean µ and covariance Σ is an arbitrage opportunity if (1) µ>w ≥ 0, (2) w>Σw = 0, and (3)

e>w < 0. The first condition implies an expected positive return, the second implies a guaranteed

return (zero variance), and the final condition states that the portfolio can be formed with a negative

initial investment (loan).

In an efficient market, pure arbitrage opportunities cannot exist; instead, the authors seek robust

profit opportunities at level θ, i.e., portfolios w such that

µ>w − θ
√

w>Σw ≥ 0,

e>x < 0. (4.23)

The rationale for the system (4.23) is the fact shown by Ben-Tal and Nemirovski [15] that the probability

that a bounded random variable is less than θ standard deviations below its mean is less than e−θ2/2.

Therefore, portfolios satisfying (4.23) return a positive amount with very high probability. The authors

in [86] then attempt to solve the maximium-θ robust profit opportunity problem:

sup
θ,w

θ

subject to µ>w − θ
√

w>Σw ≥ 0 (4.24)

e>w < 0.

They show the following about (4.24):

1. Despite the non-convexity of (4.24), it is equivalent to a convex quadratic program, and, when

Σ Â 0 and µ is not a multiple of e, they find a closed-form solution (θ∗, w∗).

2. When, in addition to the risky assets, there exists a risk-free asset with guaranteed return rf ,

maximum-θ robust profit opportunity portfolios are also maximum Sharpe ratio portfolios, where

the Sharpe ratio [90] of a portfolio w is

µ>w − rf√
w>Σw

. (4.25)

4.1.3 Robust factor models

A common practice in modeling market return dynamics is to use a so-called factor model of the form

r̃ = µ + V >f + ε, (4.26)

where r̃ ∈ Rn is the vector of uncertain returns, µ ∈ Rn is an expected return vector, f ∈ Rm is a

vector of factor returns driving the model (these are typically major stock indices or other fundamental
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economic indicators), V ∈ Rm×n is the factor loading matrix, and ε ∈ Rn is an uncertain vector of

residual returns.

Robust versions of (4.26) have been considered by a few authors. One interesting paper is that of

Goldfarb and Iyengar [59], who use the following uncertainty model for the parameters in (4.26):

• f ∈ N (0,F )

• ε ∈ N (0,D)

• D ∈ Sd =
{
D | D = diag(d), di ∈

[
di, di

]}

• V ∈ Sv = {V 0 + W | ‖W i‖g ≤ ρi, i = 1, . . . , m}

• µ ∈ Sm = {µ0 + ε | |ε|i ≤ γi, i = 1, . . . , n},

where W i = Wei and, for G Â 0, ‖w‖g =
√

w>Gw. The authors then consider various robust

problems using this model, including robust versions of the Markowitz problems (4.16) and (4.17),

robust Sharpe ratio problems, and robust value-at-risk problems, and show that all of these problems

with the uncertainty model above may be formulated as SOCPs. The authors also show how to compute

the uncertainty parameters G, ρi, γi, di, di, using historical return data and multivariate regression based

on a specific confidence level ω. Additionally, they show that a particular ellipsoidal uncertainty model

for the factor covariance matrix F can be included in the robust problems and the resulting problem

may still be formulated as an SOCP. They also discuss, again, how to use a statistical procedure for

computing the parameters of these ellipsoidal sets at a pre-specified confidence level.

El Ghaoui et al. [57] also consider the problem of robust factor models. Here, the authors show how

to compute upper bounds on the robust worst-case VaR problem via SDP for joint uncertainty models

in (µ, V ) (ellipsoidal and matrix norm-bounded uncertainty models are considered).

4.1.4 Multi-period robust models

The robust portfolio models discussed heretofore have been for single-stage problems, i.e., the investor

chooses a single portfolio w ∈ Rn and has no future decisions. Some efforts have been made on multi-

stage problems. Especially notable is the work of Ben-Tal et al. [11], who formulate the following,
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L-stage portfolio problem:

maximize
n+1∑

i=1

rL
i xL

i

subject to xl
i = rl−1

i xl−1
i − yl

i + zl
i, i = 1, . . . , n, l = 1, . . . , L

xl
n+1 = rl−1

n+1x
l−1
n+1 +

n∑

i=1

(1− µl
i)y

l
i −

n∑

i=1

(1 + νl
i)z

l
i, l = 1, . . . , L (4.27)

xl
i, y

l
i, z

l
i ≥ 0,

where

• xl
i is the dollar amount invested in asset i at time l (asset n + 1 is cash)

• rl−1
i is the uncertain return of asset i from period l − 1 to period l

• yl
i is the amount of asset i to sell at the beginning of period l

• zl
i is the amount of asset i to buy at the beginning of period l

• µl
i (νl

i) are the uncertain sell (buy) transaction costs of asset i at period l.

Of course, (4.27) as stated is simply a linear programming problem and contains no reference to

the uncertainty in the returns and the transaction costs. The authors note that one can take a multi-

stage stochastic programming approach to the problem, but that such an approach is computationally

intractable. With tractability in mind, the authors propose an ellipsoidal uncertainty set model (based

on the mean of a period’s return minus a safety factor θl times the standard deviation of that period’s

return, similar to [86]) for the uncertain parameters, and show how to solve a “rolling horizon” version

of the problem via SOCP.

From a structural standpoint, the authors in [11] are also able to show that solutions to their robust

version of (4.27) obey the property that one never both buys and sells an asset i during a single time

period l for all asset/time index pairs (i, l) satisfying

E
[
(ψl

i)
2
]
≤ (θ−2

l + 1)
(
E

[
ψl

i

])2
, (4.28)

where

ψl
i =




l−1∏
t=0

rt
n+1

l−1∏
t=0

rt
i




(
µl

i + νl
i

)
.
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Thus, provided θl is sufficiently large, the robust version of (4.27) matches the intuition that, because

of transaction costs, one should never both buy and sell an asset simultaneously. In particular, since ψ1
i

is known at decision-time, this implies that the rolling horizon policies never buy and sell simultaneously.

Pinar and Tütüncü [86] explore a two-period model for their robust profit opportunity problem. In

particular, they examine the problem

sup
x0

inf
r1∈U

sup
θ,x1

θ

subject to e>x1 = (r1)>x0 (self-financing constraint) (4.29)

(µ2)>x1 − θ
√

(x1)>Σ2x1 ≥ 0

e>x0 < 0,

where xi is the portfolio from time i to time i + 1, r1 is the uncertain return vector for period 1,

and (µ2,Σ2) is the mean and covariance of the return for period 2. The tractability of (4.29) depends

critically on U , but [86] derives a solution to the problem when U is ellipsoidal.

4.1.5 Computational results for robust portfolios

Most of the studies on robust portfolio optimization are corroborated by promising computational

experiments. Here we provide a short summary, by no means exhaustive, of some of the relevant results

in this vein.

• Ben-Tal et al. [11] provide results on a simulated market model, and show that their robust

approach greatly outperforms a stochastic programming approach based on scenarios (the robust

has a much lower observed frequency of losses, always a lower standard deviation of returns,

and, in most cases, a higher mean return). Their robust approach also compares favorably to a

“nominal” approach which uses expected values of the return vectors.

• Goldfarb and Iyengar [59] perform detailed experiments on both simulated and real market data

and compare their robust models to “classical” Markowitz portfolios. On the real market data,

the robust portfolios did not always outperform the classical approach, but, for high values of the

confidence parameter (i.e., larger uncertainty sets), the robust portfolios had superior performance.

• El Ghaoui et al. [57] show that their robust portfolios significantly outperform nominal portfolios

in terms of worst-case value-at-risk; their computations are performed on real market data.
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• Tütüncü and Koenig [94] compute robust “efficient frontiers” using real-world market data. They

find that the robust portfolios offer significant improvement in worst-case return versus nominal

portfolios at the expense of a much smaller cost in expected return.

• Erdoğan et al. [48] consider the problems of index tracking and active portfolio management and

provide detailed numerical experiments on both. They find that the robust models of Goldfarb

and Iyengar [59] can (a) track an index (SP500) with much fewer assets than classical approaches

(which has implications from a transaction costs perspective) and (b) perform well versus a bench-

mark (again, SP500) for active management.

• Ben-Tal et al. [6] apply a robust model based on the theory of convex risk measures to a real-world

portfolio problem, and show that their approach can yield significant improvements in downside

risk protection at little expense in total performance compared to classical methods.

As the above list is by no means exhaustive, we refer the reader to the references therein for more

work illustrating the computational efficacy of robust portfolio models.

4.2 Statistics, learning, and estimation

The process of using data to analyze or describe the parameters and behavior of a system is inherently

uncertain, so it is no surprise that such problems have been approached from a Robust Optimization

perspective. Here we describe some of the prominent, related work.

4.2.1 Least-squares problems

The problem of robust, least-squares solutions to systems of over-determined linear equations is con-

sidered by El Ghaoui and Lebret [56]. Specifically, given an over-determined system Ax = b, where

A ∈ Rm×n and b ∈ Rm, an ordinary least-squares problem is

min
x
‖Ax− b‖. (4.30)

In [56], the authors build explicit models to account for uncertainty for the data [A b]. Prior to this

work, there existed numerous regularization techniques for handling this uncertainty, but no explicit,

robust models. The authors consider two primary problems:

• The Robust Least-Squares (RLS) Problem:

min
x

max
‖∆A ∆b‖F≤ρ

‖(A + ∆A)x− (b + ∆b)‖,
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where ‖ · ‖F is the Frobenius norm of a matrix, i.e., ‖A‖F = Tr(A>A).

• The Structured Robust Least-Squares (SRLS) Problem:

min
x

max
‖δ‖≤ρ

‖A(δ)x− b(δ)‖,

where

A(δ) = A0 +
p∑

i=1

δiAi,

b(δ) = b0 +
p∑

i=1

δibi.

Some of the main results from [56] are the following:

1. RLS (4.31) may be formulated as an SOCP, which, in turn, may be reduced to a one-dimensional

convex optimization problem.

2. There exists a threshold uncertainty level ρmin(A, b) (which the authors compute explicitly) such

that, for all ρ ≤ ρmin(A, b), the solutions to (4.30) and (4.31) coincide. Thus, ordinary least-

squares solutions are ρmin(A, b)-robust.

3. SRLS (4.31) is equivalent to an SDP in 3 variables.

4.2.2 Binary classification via linear discriminants

Robust versions of binary classification problems are explored in several papers. The basic problem

setup is as follows: one has a collection of data vectors associated with two classes, x and y, with

elements of both classes belonging to Rn. The realized data for the two classes have empirical means

and covariances (µx,Σx) and (µy,Σy), respectively. Based on the observed data, we wish to find a

linear decision rule for deciding, with high probability, to which class future observations belong. In

other words, we wish to find a hyperplane H(a, b) =
{
z ∈ Rn | a>z = b

}
, with future classifications on

new data z depending on the sign of a>z − b such that the misclassification probability is as low as

possible.

Lanckriet et al. [69] approach this problem first from the approach of distributional robustness.

In particular, they assume the means and covariances are known exactly, but nothing else about the
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distribution. In particular, the Minimax Probability Machine (MPM) finds a separating hyperplane

(a, b) to the problem

maximize α

subject to inf
x∼(µx,Σx)

P
(
a>x ≥ b

)
≥ α (4.31)

inf
y∼(µy ,Σy)

P
(
a>y ≤ b

)
≥ α,

where the notation x ∼ (µx,Σx) means the inf is taken with respect to all distributions with mean µx

and covariance Σx. The authors then show that (4.31) can be solved via SOCP, and the worst-case

misclassification probability is given as

1
1 + κ2∗

:=

(√
a>∗ Σxa∗ +

√
a>∗ Σya∗

)2

1 +
(√

a>∗ Σxa∗ +
√

a>∗ Σya∗
)2 , (4.32)

where κ−1∗ is the optimal value of the SOCP formulation, and a∗ is an optimal separator. They then

proceed to enhance the model by accounting for uncertainty in the means and covariances. The robust

problem in this case is

maximize α

subject to inf
x∼(µx,Σx)

P
(
a>x ≥ b

)
≥ α ∀ (µx,Σx) ∈ X (4.33)

inf
y∼(µy ,Σy)

P
(
a>y ≤ b

)
≥ α, ∀ (µy,Σy) ∈ Y,

where the authors use the following uncertainty model for the means and covariances:

X =
{

(µx,Σx) | (µx − µ0
x)>Σ−1

x (µx − µ0
x) ≤ ν2, ‖Σx −Σ0

x‖F ≤ ρ
}

, (4.34)

Y =
{

(µy,Σy) | (µy − µ0
y)
>Σ−1

y (µy − µ0
y) ≤ ν2, ‖Σy −Σ0

y‖F ≤ ρ
}

. (4.35)

One point worth noting is that this uncertainty model does not include an explicit restriction that

the covariance matrix be positive semi-definite; if ρ is sufficiently small, however, and the “nominal”

covariance matrices are positive definite, then this is not an issue. Otherwise, (4.33) is somewhat

conservative. The authors in [69] show that (4.33) is equivalent to an appropriately defined, nominal

MPM problem of the form (4.31).

Theorem 4.1. (Lanckriet et al., [69]). The optimal robust minimax probability classifier for problem

(4.33) with uncertainty sets X , Y defined in (4.34), (4.35), respectively, can be obtained by solving a
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nominal MPM problem (4.31) with Σx = Σ0
x + ρI and Σy = Σ0

y + ρI. If κ−1∗ is the optimal value of

that problem, then the corresponding worst-case misclassification probability is

1− αrob
∗ :=

1
1 + max(0, κ∗ − ν)2

. (4.36)

El Ghaoui [55] et al. consider binary classification problems using an uncertainty model on the

observations directly. The notation used is slightly different. Here, let X ∈ Rn×N be a matrix with the

N columns each corresponding to an observation, and let y ∈ {−1, +1}n be an associated label vector

denoting class membership. [55] considers an interval uncertainty model for X:

X (ρ) =
{
Z ∈ Rn×N | X − ρΣ ≤ Z ≤ X + ρΣ

}
, (4.37)

where Σ and ρ ≥ 0 are pre-specified parameters. They then seek a linear classification rule based on

the sign of a>x − b, where a ∈ Rn \ {0} and b ∈ R are decision variables. The robust classification

problem with interval uncertainty is

min
a6=0,b

max
Z∈X (ρ)

L(a, b,Z, y), (4.38)

where L is a particular loss function. The authors then compute explicit, convex optimization problems

for several types of commonly used loss functions (support vector machines, logistic regression, and

minimax probability machines; see [55] for the full details).

Another technique for linear classification is based on so-called Fisher discriminant analysis (FDA)

[51]. For random variables belonging to class x or class y, respectively, and a separating hyperplane a,

this approach attempts to maximize the Fisher discriminant ratio

f(a,µx,µy,Σx,Σy) :=

(
a>(µx − µy)

)2

a> (Σx + Σy) a
, (4.39)

where the means and covariances, as before, are denoted by (µx,Σx) and (µy,Σy). The Fisher discrim-

inant ratio can be thought of as a “signal-to-noise” ratio for the classifier, and the discriminant

anom := (Σx + Σy)
−1 (µx − µy)

gives the maximum value of this ratio. Kim et al. [67] consider the robust Fisher linear discriminant

problem

maximizea6=0 min
(µx,µy,Σx,Σy)∈U

f(a, µx, µy,Σx,Σy), (4.40)

where U is a convex uncertainty set for the mean and covariance parameters. The main result is as

follows.
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Theorem 4.2. (Kim et al., [67]). Let U be a convex set. Then the discriminant

a∗ :=
(
Σ∗

x + Σ∗
y

)−1 (µ∗x − µ∗y)

is optimal to the Robust Fisher linear discriminant problem (4.40), where (µ∗x, µ∗y,Σ
∗
x,Σ∗

y) is any optimal

solution to the convex optimization problem:

minimize (µx − µy)
>(Σx + Σy)−1(µx − µy)

subject to (µx, µy,Σx,Σy) ∈ U .

Notice that Theorem 4.2 is quite general in the sense that no structural properties, other than

convexity, are imposed on the uncertainty set U .

Other work using robust optimization for classification and learning, includes that of Shivaswamy,

Bhattacharyya and Smola [91] where they consider SOCP approaches for handling missing and uncertain

data, and also Caramanis and Mannor [40], where robust optimization is used to obtain a model for

uncertainty in the label of the training data.

4.2.3 Parameter estimation

Calafiore and El Ghaoui [38] consider the problem of maximum likelihood estimation for linear models

when there is uncertainty in the underlying mean and covariance parameters. Specifically, they consider

the problem of estimating the mean x̄ of an unknown parameter x with prior distribution N (x̄, P (∆p)).

In addition, we have an observations vector y ∼ N (ȳ,D(∆d)), independent of x, where the mean

satisfies the linear model

ȳ = C(∆c)x̄. (4.41)

Given an a priori estimate of x, denoted by xs, and a realized observation ys, the problem at hand

is to determine an estimate for x̄ which maximizes the a posteriori probability of the event (xs,ys).

When all of the other data in the problem are known, due to the fact that x and y are independent

and normally distributed, the maximum likelihood estimate is given by

x̄ML(∆) = arg min
x̄
‖F (∆)x̄− g(∆)‖2, (4.42)
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where

∆ =
[
∆>

p ∆>
d ∆>

c

]>
,

F (∆) =


D−1/2(∆d)C(∆c)

P−1/2(∆p)


 ,

g(∆) =


D−1/2(∆d)ys

P−1/2(∆p)xs


 .

The authors in [38] consider the case with uncertainty in the underlying parameters. In particularly,

they parameterize the uncertainty as a linear-fractional (LFT) model and consider the uncertainty set

∆1 =
{
∆ ∈ ∆̂

∣∣∣ ‖∆‖ ≤ 1
}

, (4.43)

where ∆̂ is a linear subspace (e.g., Rp×q) and the norm is the spectral (maximum singular value) norm.

The robust or worst-case maximum likelihood (WCML) problem, then, is

minimize max
∆∈∆1

‖F (∆)x− g(∆)‖2. (4.44)

One of the main results in [38] is that the WCML problem (4.44) may be solved via an SDP formulation.

When ∆̂ = Rp×q, (i.e., unstructured uncertainty) this SDP is exact; if the underlying subspace has more

structure, however, the SDP finds an upper bound on the worst-case maximum likelihood.

Eldar et al. [47] consider the problem of estimating an unknown, deterministic parameter x based

on an observed signal y. They assume the parameter and observations are related by a linear model

y = Hx + w,

where w is a zero-mean random vector with covariance Cw. The minimum mean-squared error (MSE)

problem is

min
x̂
E

[‖x− x̂‖2
]
. (4.45)

Obviously, since x is unknown, this problem cannot be directly solved. Instead, the authors assume

some partial knowledge of x. Specifically, they assume that the parameter obeys

‖x‖T ≤ L, (4.46)

where ‖x‖2
T = x>Tx for some known, positive definite matrix T ∈ Sn, and L ≥ 0. The worst-case

MSE problem then is

min
x̂=Gy

max
{‖x‖T≤L}

E
[‖x− x̂‖2

]
= min

x̂=Gy
max

{‖x‖T≤L}

{
x>(I −GH)>(I −GH)x + Tr(GCwG>)

}
. (4.47)
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Notice that this problem restricts to estimators which are linear in the observations. [47] then shows

that (4.47) may be solved via SDP and, moreover, when T and Cw have identical eigenvectors, that the

problem admits a closed-form solution. The authors also extend this formulation to include uncertainty

in the system matrix H. In particular, they show that the robust worst-case MSE problem

min
x̂=Gy

max
{‖x‖T≤L, ‖δH‖≤ρ}

E
[‖x− x̂‖2

]
, (4.48)

where the matrix H + δH is now used in the system model and the matrix norm used is the spectral

norm, may also be solved via SDP.

4.3 Supply chain management

Bertsimas and Thiele [28] consider a robust model for inventory control as discussed above in Section 2.2.

They use a cardinality-constrained uncertainty set, as developed in Section 2.3. One main contribution

of [28] is to show that the robust problem has an optimal policy which is of the (sk, Sk) form, i.e., order

an amount Sk−xk if xk < sk and order nothing otherwise, and the authors explicitly compute (sk, Sk).

Note that this implies that the robust approach to single-station inventory control has policies which

are structurally identical to the stochastic case, with the added advantage that probability distributions

need not be assumed in the robust case. A further benefit shown by the authors is that tractability

of the problem readily extends to problems with capacities and over networks, and the authors in [28]

characterize the optimal policies in these cases as well.

Ben-Tal et al. [9] propose an adaptable robust model, in particular an AARC for an inventory control

problem in which the retailer has flexible commitments with the supplier; this is as previously discussed

in Section 3. This model has adaptability explicitly integrated into it, but computed as an affine function

of the realized demands. This structure allows the authors in [9] to obtain an approach which is not only

robust and adaptable, but also computationally tractable. The model is more general than the above

discussion in that it allows the retailer to pre-specify order levels to the supplier (commitments), but

then pays a piecewise linear penalty for the deviation of the actual orders from this initial specification.

For the sake of brevity, we refer the reader to the paper for details.

Bienstock and Özbay [30] propose a robust model for computing basestock levels in inventory control.

One of their uncertainty models, inspired by adversarial queueing theory, is a non-convex model with

“peaks” in demand, and they provide a finite algorithm based on Bender’s decomposition and show

promising computational results.
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4.4 Engineering

Robust Optimization techniques have been applied to a wide variety of engineering problems. In this

section, we briefly mention some of the work in this area. For the sake of brevity, we omit most technical

details and refer the reader to the relevant papers for more.

Some of the many papers on robust engineering design problems are the following.

1. Structural design. Ben-Tal and Nemirovski [12] propose a robust version of a truss topology design

problem in which the resulting truss structures have stable performance across a family of loading

scenarios. They derive an SDP approach to solving this robust design problem.

2. Circuit design. Boyd et al. [33] and Patil et al. [85] consider the problem of minimizing delay

in digital circuits when the underlying gate delays are not known exactly. They show how to

approach such problems using geometric programming. See also [73] and [72], already discussed

above.

3. Power control in wireless channels. Hsiung et al. [62] utilize a robust geometric programming

approach to approximate the problem of minimizing the total power consumption subject to

constraints on the outage probability between receivers and transmitters in wireless channels with

lognormal fading.

4. Antenna design. Lorenz and Boyd [71] consider the problem of building an array antenna with

minimum variance when the underlying array response is not known exactly. Using an ellipsoidal

uncertainty model, they show that this problem is equivalent to an SOCP. Mutapcic et al. [77]

consider a beamforming design problem in which the weights cannot be implemented exactly,

but instead are known only to lie within a box constraint. They show that the resulting design

problem has the same structure as the underlying, nominal beamforming problem and may, in

fact, be interpreted as a regularized version of this nominal problem.

5. Control. Notions of robustness have been widely popular in control theory for several decades

(see, e.g., Başar and Bernhard [5], and Zhou et al. [95]). Somewhat in contrast to this literature,

Bertsimas and Brown [21] explicitly use recent RO techniques to develop a tractable approach to

constrained linear-quadratic control problems.
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5 Future directions

The goal of this paper has been to survey the known landscape of the theory and applications of RO.

Some of the unknown questions critical to the development of this field are the following:

1. Tractability of adaptable RO. While in some very special cases, we have known, tractable ap-

proaches to multi-stage RO, these are still quite limited, and it is fair to say that most adaptable

RO problems currently remain intractable. The most pressing research directions in this vein,

then, relate to tractability, so that a similarly successful theory can be developed as in single-

stage static Robust Optimization.

2. Characterizing the price of robustness. Some work (e.g., [26, 63]) has explored the cost, in terms

of optimality from the nominal solution, associated with robustness. These studies, however, have

been largely empirical and offer no hard, theoretical bounds or insights into understanding when

robustness is cheap or expensive.

3. Developing RO from a data-driven perspective. While some RO approaches build uncertainty sets

directly from data, most of the models in the Robust Optimization literature are not directly

connected to data. Even the approaches (e.g., [20, 6]) that do utilize data do not present explicit

sample complexity guarantees. Developing a data-driven theory of RO is interesting from a theo-

retical perspective, and also compelling in a practical sense, as many real-world applications are

data-rich.
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[5] T. Başar and P. Bernhard. H∞-Optimal Control and Related Minimax Design Problems: A Dynamic Game
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