Robustness, Risk, and Regularization in Support Vector Makines

Xu Huan,* and Shie Mannor* and Constantine Caramanis'

Abstract

We consider two new formulations for classifica-
tion problems in the spirit of support vector ma-
chines based on robust optimization. Our new for-
mulations are designed to build in protection to
noise and control overfitting, but without being overly
conservative. Our first formulation allows the noise
between different samples to be correlated. We
show that the standard norm-regularized support
vector machine classifier is a solution to a special
case of our first formulation, thus providing an ex-
plicit link between regularization and robustness
in pattern classification. Our second formulation
is based on a softer version of robust optimization
called comprehensive robustness. We show that
this formulation is equivalent to regularization by
any arbitrary convex regularizer extending our first
equivalence result. Moreover, we explain how the
connection of comprehensive robustness to convex
risk-measures can be used to design risk-measure
constrained classifiers with robustness to the input
distribution. Our formulations result in convex op-
timization problems that can be easily solved. Fi-
nally, we provide some empirical results that show
the promise of comprehensive robust classifiers.

1
Support Vector Machines (SVMs for short), originated in [1]

Introduction

and can be traced back as early as [2] and [3]. They continue

to be one of the most successful algorithms for classifinatio

an approach may have poor generalization error because of,
essentially, overfitting [6]. A variety of modifications hav
been proposed to combat this problem, one of the most pop-
ular methods being that of minimizing a combination of the
training-error and a regularization term. The latter isityp
cally chosen as a norm of the classifier. The resulting reg-
ularized classifier performs better on new data. This phe-
nomenon is often interpreted from a statistical learnireg th
ory view: the regularization term restricts the complexity

the classifier, hence the deviation of the testing error bad t
training error is controlled (cf [7, 8, 9, 10, 11] and refecen
therein).

In this paper we follow a different approach, first pro-
posed in [12]. We assume that the training data are generated
by the true underlying distribution, but some non-iid (po-
tentially adversarial) disturbance is then added to the-sam
ples we observe. We harness new developments in robust
optimization (see [13, 14, 15] and references therein), so-
called comprehensive robust optimization [16], and rigk th
ory [17, 18], to derive new robust SVM classifiers. The use
of robust optimization in classification is not new; see, for
example, [19, 12, 20]. Robust classification models stud-
ied in past work have considered only box-type uncertainty
sets, which allow the possibility that the data have all been
skewed in some non-neutral manner by a correlated distur-
bance. This has made it difficult to obtain non-conservative
generalization bounds. Moreover, there has not been an ex-
plicit connection to the regularized classifier, althouglaa
high-level it is known that regularization and robust opti-
mization are related (see, e.g., [13]). The main contriuti
in this paper is the development of two new robust SVM clas-
sifiers that mitigate conservatism, provide an explicit-con
nection to regularization (and as a byproduct PAC-style gen

SVMs address the classification problem by finding the hy- ¢5jization error bounds), and provide the structure fer ef

perplane (in the feature space) that achieves maximum sam

ple margin when the training samples are separable. Whe

mates the total training-error is added to the minimizing ob
jective, as suggested by [4] and [5]. It is well known that
minimizing the training error itself can lead to poor classi
fication performance for new (unlabeled) data; that is, such
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ficiently computable classifiers satisfying risk measune-co

Nstraints. In particular, our contributions include theldal-
the samples are not separable, a penalty term that approxi-

ing:

e Our first robust SVM formulation permits finer control
of the adversarial disturbance, restricting it to satisfy
aggregate constraints across data points, therefore re-
ducing the possibility of highly correlated disturbance.
This allows us to obtain bounds on the generalization
error of the robust classifiers, as we show that as a spe-
cial case of our robust formulation, we recover norm-
based regularizers. In particular, we show the norm-



regularized SVM classifier isquivalento arobust SVM 2 Robust Classification and Regularization

classifier. . I . . .
The main contributions of this section are: (i) we formulate

and solve a new robust classification problem which, unlike
e We next show that this new robust formulation is useful other research, limits the adversary to using a correlated d
beyond complexity estimates and the precise connec-turbance; (i) using this model, we show that the standard
tion to regularization: we use it to obtain considerably regularized classifier is a special case of our robust classi
less conservative chance constraints, and we also use ification, thus explicitly relating robustness and reguatari
to reprove consistency of SVM for classification. tion. This provides an alternative explanation for the suc-
cess of regularization, and also suggesting new physically
e The second of our robust SVM formulations uses com- Motivated ways to construct regularizers; (iii) we forntala
prehensive robustness to construct “soft robust” classi- & chance-constrained classifier which can be apprOXimated
fiers whose performance is given different guaranteesy by the rquSt formulation for _CorrelatEd diStUrba_nce, and a
based on the level of disturbance affecting the training @ result is _far Igss conservative than what previous models
data. This is in contrast to robust optimization, which could provide; (iv) finally, we show that the robustness per-
provides the same guarantees uniformly inside the un- Spective can be usefulin its own right, by using it to prove a
certainty set, and no guarantees outside. We show thatconsistency result for regularized SVM classification.

this richer class of robustness is exactly equivalent to , 1 gy ot Classification for Correlated Disturbance
a much broader class of regularizers, including, e.g.,

KL divergence based SVM regularizers, thus extend- We consider the standagdclass classification setup, where

ing the scope of the previous equivalence. Moreover, We are given a number of training samples;, y;}i; C
we give favorable computational complexity results for R™ x {—1,+1}. Alinear classifier is specified by the func-

these comprehensive robust classifiers. tion A™*(x) = sgn({w, x) + b). For the standard regular-
ized classifier, the parametdns, b) are obtained by solving

. : the following convex optimization problem:
e We next show the connection to risk theory, at the same 9 P P

time extending past work on chance constraints, and . -

also opening the door for constructing classifiers with Rl r(w,b) + Z&-

different risk-based guarantees. Although the connec- =1

tion seems natural, to the best of our knowledge this st &> [1—yi((w,x;) +b)]
is the first attempt to view classification from a risk- & >0,

hedging perspective. wherer(w, b) is a regularization term. The standard robust

optimization techniques robustify at a constraint-wisele

In the final section, we illustrate the performance of our new allowing the disturbances = (81,...,6,) to lie in some
classifiers through simulation. In particular we show that uncertainty seiV: T
the comprehensive robust classifier, which can be viewed as m
a generalization of the standard SVM and the robust SVM, min : r(w,b) + Zf @
provides superior empirical results. w,b ’ — !

Structure of the Paper: This paper is organized as fol- - =
lows. In Section 2 the equivalence between the robust elassi St &= [1-wpi({w,xi —di) +b)], €N,
fication and the regularization process is shown. We also de- & > 0.
velop the connection to chance constraints. In Section 3 wet js well-known (e.g., [21]) that due to the constraint-ais
investigate the comprehensive robust classification fresnle  ncertainty formulation, the uncertainty set is effedgjvect-
We relate comprehensive robust classification with convex angular; that is, if\; denotes the projection ¢f onto thes;
risk theory in Section 4. The kernelized version of compre- component, then replacing by the potentially larger prod-
hensive robust classification is given in Section 5. We pro- yct set\;,, = A x --- x N, yields an equivalent formu-
vide numerical simulation results comparing robust cfassi |ation. Effectively, this allows simultaneous worst-catie
cation and comprehensive robust classification in Section 6 rhances across many constraints, and this is exactly what
Some concluding remarks are given in Section 7. leads to overly conservative formulations. The goal is to ob

Notation: Capital letters are used to denote matrices, and tain a robust formulation where the disturban¢és may
boldface letters are used to denote column vectors. For abe meaningfully taken to be correlated, so that the problem
given norm|| - ||, we usef| - ||* to denote its dual norm. Sim- s no longer equivalent to the box case. In order to side-step
ilarly, for a function f(-) defined on a sek{, f*(-) denotes this problem, we robustify an equivalent SVM formulation:
its conjugate function, i.ef*(y) = supyep iy 'x— f(x)}.

For a vectorx and a positive semi-definite matriX of the min r(w,b) + Z max [1 — (W, x;) + b), 0}7
same dimension|x||c denotesvx " Cx. We used to de- wob i=1

note disturbance affecting the samples. We use superscript and we thus obtain:

to denote the true value for an uncertain variable, sodhat m

is the true (but unknown) noise of tfi¢* sample. The setof  in maxr(w,b) + Z max [1 —yi((w,x; — 8;) +b), 0},
non-negative scalars is denotedRy. The set of integers wb FeN im1

from 1 to n is denoted by1 : n]. 2



Note that the problem (1) above is equivalent to: corresponding atomic set fo,., is mNg. Therefore the lat-
ter (recall (3)) is equivalent to a regularization coeffitief

min max 7(w, b) +zm:max [1 — (W, x; — &)+ b), 0]. the formm, that is linked to the number of training sam-
Wb FeNioy P ples. _ _ _ )

3) An |mme(j|at§ corollary is f[hat a special case of_our ro-
We define explicitly the correlated disturbance (or uncer- bustformulationis exactly equivalentto the norm-regiazd
tainty) set to be investigated. SVM setup:

Definiton 1 1. A set\y, C R" is called anAtomic Un- Corollary 3 Let7;, = {(517 e O) | Do 100l < e #{il6s =

certainty seff 0} > m—k}, fork € [1: m]andc > 0 Assumdx;, y; } 74

() 0eN; are non-separable, then the following two optimizatioripro
()  sup [WT(ﬂ = sup [— WT(;’} < o0, Vw € R". lemson(w,b) are equivalent
5€No 5/6./\/0 m

2. LetA\, be an atomic uncertainty set. A st C R"*™ min: omax Z max [1 —y; ((w, x; — &;) +b), (B)
is called aConcave Correlated Uncertainty Set\, =1

i min :c||w|* + Zmax [1—y;((w, x;) +b),0]. (7)
(|) {(51,--- 76m)|6t 6./\[0; 51'75,5 ZO} QN, Vi, i=1
m Proof: Let Ay be the norm-ball and(w,b) = 0. Then
() N C{(br,ambm)| D i =1; a; >0, supy 5 <.(w ' 8) = c|[wl|*. The corollary follows from The-
=1 orem 2. |

di € No, Vil This explains the widely known fact that regularized clas-

The concave correlated uncertainty definition models te ca Sifier tends to be more robust. Specifically, it explains the o
where the disturbances on each sample are treated identiservation that when the disturbance is noise-like and akutr

cally, but their aggregate behavior across multiple sample rather than adversarial, a norm-regularized classifiethfwi
is controlled. Some interesting examples include out any robustness requirement) has a performance often su-

perior to the constraint-wise robust classifier (see [22] an

— Section 6). On the other hand, this observation also suggest
{01, 0m)| Z 03] < c} that the appropriate way to regularize should come from a

=1 disturbance-robustness perspective. The above equialen
{(61,-+,dm)|Ft € [1:m]; [|6¢]] <, bize = O} implies that standard regularization essentially assutns

m the disturbance is spherical; if this is not true, robustnes
{(81,+,0m)| Z Vel < e} may yield a better regularization-like algorithm. To find a

i=1 more effective regularization term, a closer investigatid

the data variation is desirable, i.e., by examining theavari
tion of the data and solving the corresponding robust dlassi
cation problem. For example, one way to regularize is split-
ting the given training samples into two subsets with equal
number of elements, and treating one as a disturbed copy
m of the other. By analyzing the direction of the disturbance
inf { ( sup r(w, b)+z max [1—y;((w,x;—8;)+b), 0] t and the magnitude of the total variation, one can choose the

Theorem 2 Assume{x;, y; }/., are non-separabley(:) :
R**t! — R is an arbitrary function,\/y is an atomic un-
certainty set andV is a concave correlated uncertainty set
of Ny, then the following min-max problem

Wb R (81, ,8m)EN i=1 @ proper norm to use, and a suitable tradeoff parameter.
is equivalent to 2.2 Probabilistic Interpretation
m Although Problem (4) is formulated without any probabilis-
min :7(w,b) + sup (w'8) + Z &, tic assumption, it can be used to approximate an upper bound
seNo = (5) for a chance-constrained classifier. Suppose the distaeban
s.boryi((w, x5) +0) 21 =&, i=1,---,m, (8%,---8" ) follows a joint probability measurg. Then

the chance-constrained classifier is given by the following
minimization problem or(w, b, 1) given a confidence level

Furthermore, the minimization of Problem (5) is attainable 7 € [0, 1],

&E>0,1=1,--- ,m.

whenr(-, -) is lower semi-continuous. min : [

We defer proof of the theorem to the online append®, [ s.t.: N{ >ty max [1—yi((w, x; — 87) +0),0] < l}
This theorem reveals the main difference in conservatism >1-—n.

between the constraint-wise uncertainty in (1) and our for- (8)
mulation in (2). Consider both formulations with the same The formulations in [19, 20, 23] assume uncorrelated noise
uncertainty set\" = {(d1,- - , )| > ivq [10:]] < c}. The and require all constraints to be satisfied with high proba-

corresponding atomic set 8f is Ny = {||d|| < ¢}, but the bility simultaneouslyThey find a vectof&y, - - - , &, } such



that eacht; bounds the hinge-loss for sampté with high
probability. In contrast, our formulation above bounds the

average (or equivalently the sum of) empirical error. When ¢/
controlling this average quantity is of more interest, thearrelatéds, ap + c/\/n) - - -

noise formulation will be overly conservative.

Proof: We make a partition o’ x {—1, +1} = UL X;
such that¥; either has the formuy, a1 +¢/v/n) X (o, as +
V) -+ X [, i e/y/7) X {1} OF [, o + ¢/ /)
X [am, an + ¢/y/n) x {—1}. Thatis,
each patrtition is the cartesian product of a rectanguldr cel

Problem (8) is generally non-tractable. However, we can in X and a singleton if—1, +1}. Notice that if a training

approximate it as follows. Let

¢ £ inffalu(Y_ 116 < @) > 1-n}.?

Then, for any(w, b) with probability no less tham — 7, the
following holds,

Zmax [1 —y;({w, x; — 87) + b), O]
i=1

Z I||I(15a|:i(<c* ; [1—yi((w, x; — 8;) +b),0].

Thus (8) is upper bounded by (7) with= c¢*. This gives

an additional probabilistic robustness property of thesta
dard regularized classifier. Notice that following a simila
approach but with the constraint-wise robust setup, e, t

box uncertainty set, would lead to considerably more pes-

simistic approximations of the chance constraint.

2.3 Consistency of Regularization
In this section, we work out a simple example to illustrate

how the robustness perspective might help in a statistical

learning setup, by establishing the consistency of thaline
classifier.

The following theorem is a well-known result in statisti-
cal machine learning [24]. Here we reprove it using our ro-
bust classifier setup, by bounding the total variation betwe
the set of test samples and the set of training samples.

Theorem 4 Let P be the underlying generating probability
with bounded suppo’t’ x {—1, +1}, whereX C R™. Then
for ¢ > 0 there existd~,} — 0 independent ofw, b) such
that

EIP(ly;ﬁsgn((w,x>+b)) <N+ CHWH2 +

| &
¥ Zmax [1 —yi((w, x;) + b),O},

i=1
holds almost surely a& — +oo.

Proof: To prove this theorem, we need to establish the fol-
lowing lemma. Forc > 0, a testing sampléx’,y’) and a
training sample(x, y) are called ssample pairif y = ¢’
and||x — x'||2 < e. We say a set of training samples and a
set of testing samples forirpairings if there exist sample
pairs with no data reused. Giventraining samples and
testing samples, we usd,, to denote the largest number of
pairings.

Lemma5 Givenc > 0, M,,/n — 1 almost surely as —
+00.

1Given y, ¢* is easily simulated, and for specific probability
measures (e.g., independent Gaussian disturbance), liteceom-
puted analytically.

sample and a testing sample fall indg, they can form a
pairing.

Let PI" andPi¢ be the empirical distribution of training
samples and testing samples, respectively. Now we cagculat
the number of unpaired samples- M,,. This can be upper
bounded by

T
Z |#(training samples ifY;) — #(testing samples if;)| =

i=1

nZ|/IXl ]P’”—/IXT,deﬂ.

Furthermore, letting” be the set of indicator function,,
thenF is aP-Donsker class, and hence a Glivenko-Cantelli
class almost surely. We thus have

sup | [ fdP!" — /fd]P’fﬂ — 0,

feF

almost surely when — +oco. This leads to

T
Z|/Ixidef —/Ixid]P’fﬂ —0.
=1

Therefore(n — |

Now we proceed to prove the theorem. Givetraining
samples anch testing samples withl/,, sample pairs, we
notice for that for these paired samples, the total testiray e
is upper bounded by

M,)/n — 0 almost surely.

Zmax 1—yl(<w X; — 6i)+b),0]

ma.
(51, 5 )ETN

=cn||w||2 + Zmax [1—yi((w, x;) +b), 0].

i=1

Hence the classification error of the totatesting samples
can be upper bounded by

(n — M) + cn||wl|2 + Zmax [1—yi((w, x;) +b), 0].

Therefore, the average testing error is upper bounded by

171
1= My /n+cllwlla+ = max [1—y;((w, x;) +b), 0].
/n+cl[wl2 3 ax [1 - yi({(w, x;) +0), 0]

Notice thatM,, /n — 1 almost surely. |

3 Comprehensive Robust Classification

Robust optimization provides a solution with but one guar-
antee: feasibility and worst-case performance contraifigr
realization of the uncertainty within the bounded uncettai



set. If the uncertainty realization turns out favorabley(e.

probability bounds for such discounts. Finally, in Sectioh

close to mean behavior), no improved performance is guar-we briefly investigate the tractability of multiplicativesd
anteed, while if the realization occurs outside the assumedcount functions with the form;(a, B) 2 c(B) max(0, ).

uncertainty set, all bets are off. This characteristic rsake
difficult to address noise with fat tails: if we take a small
uncertainty set, we have no protection guarantees for poten

3.1 Problem Formulation

tially high probability events; on the other hand, if we seek We consider box uncertainty sets throughout, to facilitate

to protect ourselves over large uncertainty sets, the tobus
setting may yield overly pessimistic solutions. In this-sec

some of the analysis and allow focus on the effect of the dis-
count functior? Substitutingz; (a, 3) £ max(0, a — fi(B3))

tion we address exactly this problem, by designing a new into Equation (9) and extending(-) to take the valueroo
classifier with performance guarantees indexed to the levelfor §; ¢ i, we have the formulation of the comprehensive

of noise. We use the softer notion of “comprehensive robust-
ness,” recently explored in the robust optimization litera
[16].

This allows us to construct classifiers with improved em-
pirical performance. In addition, we show that this new no-
tion of robustness yields a broader range of regularization
schemes than robust optimization, including squared-norm
and Kullback-Leibler regularization. Moreover, exterglin
the chance constraint results of the previous section, we ar
able to provide probability bounds fal magnitudes of con-
straint violations.

The key idea to comprehensive robustness is to discoun
lower-probability noise realizations, by reducing theslas

curred. If we denote the hinge loss of a sample under a cer-

tain noise realization &(d;) £ max [1—y;((w, x;—d;)+
b), 0}, the robust classifier (2) can be rewritten as:

N{r(w,b) +;gi(5i)}.

Instead, we formulate the comprehensive robust classifier b
introducing a discounted loss function depending not only
on the nominal hinge loss, but also on the noise realization
itself. Leth;(-,-) : R x R® — R satisfy0 < h;(a,3) <
h;(a,0) = a. We useh to denote our discounted loss func-
tion: it discounts the loss depending on the realized datia, y

min max
Wb (81, ,0m)€

robust classifier:

Comprehensive Robust Classifier:
T(Wa b) + Z gia
=1

yi((w, x; — 6;) +0) > 1 =& — fi(8:),
V6, ER™, i=1,--,m
i=1,- . m.

s.t. :

& >0

This f;(-) (extended real) function controls the disturbance

tdiscount, and therefore must satisfy

inf fi(8) = fi(0) =0.

L (10)
Notice that if we setf;(-) to be the indicator function of a
set, we recover the standard robust classifier. Thus the com-
prehensive robust classifier is a natural generalizatidghef
robust classifier with more flexibility on setting(-).

The f;(-) function also has a physical interpretation as
controlling the margin of the resulting classifier unddir
noise. That is, wheg; = 0, the resulting classifier guar-
antees a margin/||w|| for the observed sample; (same
as the standard classifier), together with a guaranteedmarg
(1 — fi(d:))/|lw]| when the sample is perturbed 8y

is always nonnegative, and provides no discount for samples

with zero disturbance. Thus, the comprehensive robust clas
sifier is given by:

min sup

wp s {r(w. ) + > ni(€:(6).5) L@

We primarily investigate additive discounts of the form
hi(a, B) & max(0,a — f;(3)), taking a brief detour in
Section 3.4 to consider multiplicative discounts. Additiv
structure provides a rich class of discount functions, avhil
remaining tractable. Moreover additive structure proside
the link to risk theory and convex risk measures, which we
consider in Section 3.2.

3.2 Comprehensive Robustness and Regularization

In this section we show that, any convex regularization term
in the constraint is equivalent to a comprehensive robust fo
mulation, and vice versa. Moreover, the standard regudriz
SVM is equivalent to a (non-regularized) comprehensive ro-
bust classifier wherg; (8;) = &,

Given a functionf(-), let f/* denote its Legendre-Fenchel
transform or conjugate function, given If§(s) = sup_{(s, y)—
f(z)} [25]. Then we have the following, that shows thaf if
is a disturbance discount that satisfies (10), then so dses it
conjugate, and vice versa. We use this below to establish the

We formulate the comprehensive robust classification with€duivalence between convex regularization and comprehen-
additive discount function in Section 3.1 and establish an SiVe robustness.

equivalence relationship between comprehensive robasst cl

sifications and a broad class of regularization schemes inLemma 6

Section 3.2. In particular, we show that the standard norm-

regularized SVM has a comprehensive robust representation

and so do many regularized SVMs with non-norm regulariz-
ers.

In Section 3.2 we investigate the tractability of compre-
hensive robust classification. In Section 3.3 we discusgsa sp

(i) If f(-) satisfies (10), then so dogs(-).

(i) If g(-) is closed and convex, and(-) satisfies (10),
then so doeg(+).

2Nevertheless, we expect that combining the analysis of@ect

cial class of discounts, namely norm discounts, and derive 2 will yield interesting results.



Theorem 7 The Comprehensive Robust Classifier (10) is equitractability

alent to the following convex program:

min :7(w,b) + Z{},

=1

s.t. y1(<W? X’i> + b) - fz*(y’bw) 2 1- g’ia = 4 , M,
&E>0,0=1,---,m
(11)

Proof:Simple algebra yields

yi((w, xi — 8;) +b) > 1 - & — fi(d:), ¥o; € R"
= yi((w, xi) +b) —yw 8+ fi(8:) > 1 - &, ¥, €R”
= yi((w, x;) +b) - 5Sgp lyw6; — fi(8:)] > 1-&
— yi((w, x;) +b)— fiyiw) > 1 =&,

Finally, note that the problem convexity follows immedlgte
from the (generic) convexity of the conjugate functionl

From Lemma 6(i),

Jof i (yiw) =

and thereforg(-) “penalizes”y;w and is thus a regulariza-
tion term. On the other hand, a classifier that has a convex
regularization terny(-) in each constraint is equivalent to
a comprehensive robust classifier with disturbance didcoun
fe) g*(-) (Lemma 6(ii)). Therefore, the comprehen-
sive robust classifier is equivalent to the constraint-wege
ularized classifier with general convex regularization.isTh
equivalence gives an alternative explanation for the gadner
ization ability of regularization: intuitively, the set tésting
data can be regarded as a “disturbed” copy of the set of train-
ing samples where the penalty on large (or low-probability)
disturbance is discounted. Empirical results show thaas-cl
sifier that handles noise well has a good performance for test
ing samples.

As an example of this equivalence, getd;) = «l|d;]]
for . > 0 andr(w,b) = 0. Here,

) =4 0wl <o,
Ji(yaw) = { +o00  otherwise
which is the indicator function of the dual-norm ball with
radiusa. Thus (11) is equivalent to

min : Z;ilgia
st oyi((w, x) +0) >1-&, i=1,---,m,
Iwl* < e, (12)

51207 izlv"'am

We notice that Problem (12) is the standard regularized clas

sifier. Hence, the comprehensive robust classificationdram

work is a general framework which includes both robust SVMs
and regularized SVMs as special cases. Hence, the results

obtained for comprehensive robust classifier (e.g., thbpro

abilistic bound in Subsection 3.3) can be easily applied to ©

robust SVMs and standard SVMs.

We now give a sufficient condition on the discount for the
comprehensive robust classification problem (11) to bedbde.

Definition 8 A functionf(-) : R® — R is calledEfficiently
Conjugatabléf there exists a sub-routine such that for arbi-
trary h € R™ anda € R, in polynomial time it either reports

sup (b7x — /(%) < a,
x€eR™

or reportsx, such that

h'xy — f(x0) > a.
Theorem 9 Suppose

1. fi(+) is efficiently conjugatablézi € [1 : m)].

2. Bothr(w,b) and Or(w,b) can be evaluated in poly-
nomial timeV(w,b) € R"*!, whered stands for any
sub-gradient.

Then, Problem (11) can be solved in polynomial time.

We defer the proof of this theorem to the online appendix,

[?].

3.3 Norm Discount

In this subsection, we discuss a class of discount functions

based on certain ellipsoidal norms of the noise, i.e.,
fi(8:) = t:([|6]]v),

for a nondecreasing : RT — RT. Simple algebra yields

£(y) = ti(lyllv-1), wheret} (y) = sup,~ [zy — t(z)].
This formulation has a nice probabilistic interpretation:

Theorem 10 Suppose the random variab® has mearD
and variancex. Then the constraint

yl(<wa X — 61> +b) > 1 _57, - ti(HéiHE’l)a val € Rna
(13)
is equivalent to
inf  Pr(y;((w,x;)+b)—1+& > —s) >
s r(yi((w, x7) +0) =1+ & > —s)
! Vs > 0. (14)

- — . 7
(t7(s)" +1

Here, the infimum is taken over all random variables with

mean zero and variancg, andt; ' (s) £ sup{r[t(r) < z}.

Proof: In [19], the authors studied the robust formulation
and showed that for a fixeq), the following three inequali-
ties are equivalent:

inf  Pr(y((w, x})+b) —1+& >0
gt Erlulw, x0) +0) =144 > 0)
1
>1-——,
75 +1

yi((w, x;) +0) = 14+ & > yllwls,
yi((w, x; —0;) +b) — 14+ & >0,

(¢]

[|dills-1 < 0.



Observe that equation (14) is equivalent to

inf Pr(yi(<w, x[)+b)—14¢& > _ti(’Y))

87~ (0,5)

>1-

Yy > 0.
21 2
Hence, it is equivalent toZy > 0,
yi((w, x; — ;) +0) =1+ & = —ti(7), V[|dillz—1 <.

Sincet;(+) is nondecreasing, this is equivalent to (13).H

With a similar argument, we can derive probability bounds
under a Gaussian noise assumption.

Theorem 11 If §; ~ N(0, X), then the constraint
yl(<wa X — 61> + b) > 1- 57, - ti(HéiHE’l)a val € Rna
(

15)
is equivalent to
Pr(yi(<w, xX[)+b)—14¢& > —s) > @(t_l(sX)L(S)
Vs > 0. (17)
Here,®(-) is the cumulative distribution function &f(0, 1).

Theorem 10 shows that the comprehensive robust formu-pyqof: For fixedk > 1/2 and constant, the following con-

lation bounds the probability @il magnitudes of constraint
violation. It is of interest to compare this bound with the
bound given by the robust formulation. Indeed,

yi({w, x;) +b) — 1+ & > ywlw|s =

yi((w, x;) +0) —1+& +5>
S
(70+m)|\w|\z, Vs >0 <
inf Pr(y((w,x;)+b) —1+§& > —s) >
5o B Pr(((w, <) +0) — 146 > —s)
1

S 2 :
(Yo + ) +1

Hence the probability of large violation depends |p#||s,
and is impossible to bound without knowitj|| s a priori.

Remark 1 Notice the derived bound for the robust formu-
lation is tight, in the sense that if
yi((w, x;) +b) = 14+& < yollwlls,
then there exists a zero-mean random variableith vari-
anceX such that
1
(o + )+ 1

Pr(yi(<w, x[)+b)—1+&; > —s) <1-

straints are equivalent:
Pr(ysw' 6, >1) >k
— 1<d(k)(w sw)'?
— 1 <yw'd;, V|bills-1 < OL(E).
Notice that (15) is equivalent to
Pr(yal(w, x0) +b) = 1+ & > (7)) = (3), ¥y >0,
and hence it is equivalent toy > 0,
yi((w, x; = 8;) +b) =1+ & > —t:(7),
V|81 < @7H(D(7)) =1
Sincet; () is nondecreasing, this is equivalent to (15).H

3.4 Multiplicative Discount

In this subsection we consider a multiplicative structune f
the disturbance discount, and investigate its tractgbilihe
multiplicative discount has the form:

{r(w,b)+

min max
w,b (81, 8m)EN

m

¢;(8;) max [1 — y; ((w, x; — §;) +), 0}}
i=1

This is because the multivariate Chebyshev inequality, ([26 Wherec(:) : R" — R satisfies

27, 28]) states that
sup Pria'z<c¢}=(1+4d*)!

z~(Z,0)

d’> = inf

zolaT zo<c

where inf(zg — z) 'Yz — 2).

Lettinga = y;w,z = —4; andc = 1—& —s—y;({(w, x;)+
b), we have

sup  Pr(y((w, x[)+b) —1+& < —s) = (1+dg)""
5~ (0,5)

where: dy = yi((w, x;) +b) —1+& + s
w ! Xw

Hence,
yi((w, x;) +b) = 14+ & < yllwls
do <0+ s/|wlls

sup  Pr(yi((w, x{) +b) =1 +& < —s) >
57~(0,%)

=
=

-1
[1+ (o +s/lwl=)?] ",
showing that the bound is tight.

0<¢(d) <c¢(0)=1; Vo eR™
By adding slack variables, we get the following optimizatio
problem:

Comprehensive Robust Classifier (Multiplicative):
min :  r(w,b) + >, &,
st &> c(0)[1—y((w, x; — 8;) +b)],
Vo, eR™, i=1,---,m,
gi 207 Z:1, y 1.
(18)
Define . )
—= if ¢(8) >0
(el ae ! ,
9:(9) { +o0o  otherwise
Problem (18) can be rewritten as:
min:  r(w,b) + >0, &,
st gi(6;)& > [1 —yi({w, x; — 8;) + b)],
Vo, eR™, i=1,---,m,
fiZQ ’L:lv , M.
Notice that we perturb the constraifit > 0to & > e for
smalle > 0 to avoid the case that both = 0 andg;(d;) =
oo hold simultaneously. Under this modification, we have
the following tractability theorem:



Theorem 12 Suppose Substitutingp;(0) = 0 andx} = x; — d; wherex; =

. o ) Ep(xT), the constraint can be rewritten as
1. g;(-) is efficiently conjugatablé/i € [1 : m)]

T T
2. Bothr(w,b), dr(w,b) can be evaluated in polynomial & +yi({w, x;) +0) =1 2 pi(yiw 6). (20
time V(w,b) € R™*!, whered stands for any sub-  This formulation seeks a classifier whose total risk is min-
gradient. imized. Whenx! is precisely known, this formulation re-

duces to the standard SVM.

Then, Problem (18) can be solved in polynomial time. The following theorem states that the risk-constrained

We defer the proof to the online appendig].[ classifier and the comprehensive robust classifier are equiv
alent. The proof is postponed to the online appendix, online
4 Comprehensive Robustness and Convex appendix, g]..
Risk Measures Theorem 13 (1) A Risk-Measure Constrained Classifier with

normalized convex risk measurgs-) is equivalent to Com-

We showed in Section 2.2 that the robust optimization classi prehensive Robust Classifier where

fier has an equivalent probabilistic interpretation as ancha

constrained classifier. Comprehensive robust classifiers u fi(6) = inf{ad(Q)|Eq(d]) = &},
der the additive discount model also have a probabilistic pa 0 a Nyt
allel. In this section we establish the connection to risk- (@) = 5}23( (EQ(X ) = pilX ))'

measure constrained classifiers. A risk measure is a map- . . ) .
ping from a random variable to the real numbers, that, at a (2) A Comprehensive Robust Classifier with convex discount

high level, captures some valuation of that random variable functionsf; () is equivalent to a Risk-Constrained Classifier
Simple examples of risk measures include expectation; stan WN€re
dard deviation, and conditional value at risk (CVaR). Risk (X inf{m € R|X —m € A4;},

measure constraints represent a natural way to express risk ,

aversion, corresponding to particular risk preferenceg W A {X € XX (w) < £i(87(w)), Yw € O},

show that comprehensive robust classifiers correspone@to th assuming thas’ has supporR™.

class of so-called convex risk measures.

Given a probability spacg?, F,P), let X denote the set  Let P be the set of probability measures absolutely continu-
of random variables of2. A risk measureis a function ous w.r.t.P. Itis known [17, 18] that any convex risk mea-
p : X — R, and defines a preference relationship among surep(-) can be represented atX) = > o p[Eq(X) —
random variablesXX; is preferable ovelX, if and only if a(Q)] for some convex function(-); conversely, given any
p(X1) < p(X2). Alternatively, we can regard(-) as the  such convex function, the resulting function(-) is indeed
measurement of how risky a random variableXs:is a less a convex risk measure. Giver(-), p(-) is called the corre-
risky decision thanX, whenp(X;) < p(Xs). A risk mea- sponding risk measure. The functiaf-) can be thought of
sure is callecconvexf it satisfies the following three condi-  as a penalty function on probability distributions. Thigegi

1> 1l

tions: (i) Convexity:p(AX + (1 — A)Y) < Ap(X) + (1 — us a way to directly investigate classifier robustness veéith r
A)p(Y); (i) Monotonicity: X <Y = p(X) < p(Y); and spect to distributional deviation. As an example, suppase W
(iii) Translation Invariancep(X + a) = p(X) + a,Va € R. want to be robust over distributions that are nowhere more

Convexity means diversifying reduces risk. Monotonicity than a factor of two greater than a nominal distributiBn,
says that if one random loss is always less than another, itThis can be exactly captured by the risk constraint usirg ris
is more favorable. Translation invariance says that if aofixe measure(-), wherep corresponds to the convex functien
penaltya is going to be paid in addition t&, we are indif- given by lettinga(-) satisfya(Q) = 0 for dQ/dP < 2, and
ferent to whether we will pay it before or aftér is realized. a(Q) = +oo for all other@.
A convex risk measurg(-) is callednormalizedif it satis- A natural notion of distributional divergence is the Kuidka
fiesp(0) = 0 andvX € X, p(X) > Ep(X), which essen-  Leibler divergence. The next result derives the correspond
tially says that the risk measupé-) represents risk aversion.  ing risk measure when the reference no&e,is Gaussian.
Many widely used criteria comparing random variables are
normalized convex risk measures, including expected yalue Theorem 14 Supposey; ~ N (0,%;) and letp(-) be the
Conditional Value at Risk (CVaR), and the exponential loss corresponding risk measure of
function [16][29]. dQ dQ

Equipped with a normalized convex risk measgite), Q) = { [ @ log g dP ch<< P,
we can formulate a classification problem as oo otherwise.
Then the Risk-Measure Constrained Classifier is equivalent

Risk-Measure Constrained Classifier to

min :r(w, b) + qu min :r(w, b) + ifz‘,

=1
st.:pi(&) > pi(1—yi((w, X]) + b)), i=1,---,m,
51207 7'217 y .

i=1
stoyi((w, x) +b) —w ' Zyw/2>1—&, i=1,---,m,
(19 620, i=1,m



Proof: We first show that for the KL divergence, its corre-
sponding convex risk measure equalsEg[e* | by applying
the following theorem adapted from [17].

Theorem 15 Suppose a convex risk measure can be repre-
sented as

p(X) = inf{m € RIEp[{(X —m)] < x0},
for an increasing convex functidn R — R and scalarzx.
Thenp(-) is the corresponding risk measure of

N
(32 )}).
Note thatlog Ep[e™] = inf{m € R|Ep[e*~™] < 1}, and
hence the risk measuteg Ep[eX] can be represented as in
the theorem, withi(z) = ¢*, andzy = 1. The conclusion
of the theorem, tells us thadg Ep[eX] is the corresponding
risk measure of

_ing L 4@, 4@y 9@
(@) = fnf 3 <1+EP[AdP1 sAp) - )\d]PJ)

o dQ . dQ dQ

=Ep [ log =] + inf [A + Ep(—p) (log A — 1)]

_{ f”é%log de}P’ Q <P,

+00 otherwise

where the last equation holds sinEe(dQ/dP) = 1 and
infy~o(1/A+logA—1) = 0. Thereforep(X) = log Ep[eX]

is indeed the corresponding risk measure to KL-divergence.

Now we evaluatdog Ep(e¥% ' %7). Sinces’ ~ N(0,%;),
w8 ~ N(0,w'X;w), which leads to

—+o0
Ep(e¥™ 57) \/_exp {—t2/2\/WTEin|€tdt
+oo 1
= NoT exp{ —(t— VW Zw)?
o T

/2 wiY,w }eWTET‘W/th
ev Biw/2 /+OO ! exp{ —(t— VW Ew)?
oo V2T ’
/2\/ w'yw }dt =W Tiw/2,

Thuslog Ep (e ™ 97 )=

w ' ¥, w/2, proving the theorenill

Observe that here we get a regularizer (in each constraint)

that is thesquareof an ellipsoidal norm, and hence is differ-
ent from the norm regularizer obtained from the robust clas-
sification framework. In fact, recalling the result from Sec
tion 3.3, we notice that the new regularizer is the result of a
guadratic discount function, instead of the indicator distt
function used by the robust classification.

For generab; anda(-), it is not always straightforward
to find and optimize the explicit form of the regularization
term. Hence we sample, approximatifignith its empiri-
cal distributionP,,. This is equivalent to assuming} has
finite support{d;,---, 8"} with probability {p;,--- ,p:}.
We note that the distribution of the noise is often unknown,
where only some samples of the noise are given. Therefore,
the finite-support approach is often an appropriate method i
practice.

Theorem 16 For §; with a finite support, the risk-measure
constrained classifier is equivalent to

min :r(w,b) + i&,

s ((w, x5) +b) — o (1A w+ N1) + A >
1_57;7 z:]w , M
57,201 2217 , M
wherea*(y) £ sup,o{y ' x—a(x)} andA; £ {8},---, 8%}
Proof:It suffices to prove that Constraint (20) is equivalent
to
which is the same as showing that the conjugate function of
|qu5ﬂ = 8}

fi(8) £ inf{a(q

evaluated at; w equals

m}%n{oz* (y: AW+ A1) — A}

By definition, f* (y;w) = supscpn {ysw ' 6 — f(8)}, which
equals

Maximize ond, q:  y;w a(q)
subjectto: A;q — 6 0,
- (21)
1 g=1
q=>0.

Notice that (21) equals
£(67 q7 C7 A)

i W —
Jnax, min {yiw o(q) +

c'Aig—c'd+21Tq— /\}.
Since Problem (21) is convex and all constraints are linear,
Slater’s condition is satisfied and the duality gap is zero.
Hence, we can exchange the order of minimization and max-
imization:
L(d,q,c,))

T T T
_T&nﬁi’( {yiw'd —a(q) +c"Ajg—c'd+ A 1Tq— A}

= Iin)\n { max (inT(s — CT5)+

max (c"Aig+A17q —alq)) — A}

—m/\ln{rélgg (ylw A;q+2A1l'q a(q)) )‘}
- A

Here, the third equality holds because- y;w is the neces-
sary condition to makenaxs (y;w '8 — ¢’ 8) finite. [ |

= InAin o (yiAlTW + /\1)

Example. Let a(q) = >°_, ¢;log(q;/p;), the KL diver-
gence for discrete probability measures. By applying Theo-
rem 16, Constraint (20) is equivalent to
t
vi((w, x;) +b) —log (Y pj exp(yiw
Jj=1

T(SZ)) >1- gia

t

— ijexp
j=1

(ylw &) —yil(w, x;) +b) +1 —fl) <



This is a geometric program, a class of convex problems andTheorem 18 If there existsh; : Rt — R* such that
is known to be solved efficiently [27].
fz(é) = hz( <6, 6>),V6 S (I),
5 Kernelized Comprehensive Robust then
Classifier 9 (yiKa) = hi (e ).

Much of the previous development can be extended to the  Notice that wherh; is an increasing function, thefa(8) >
kernel space. We defer most proofs to the appendix, but give r.(5=) is automatically satisfieds € ®.

the statements of the main theorems here.  The main con- The previous results hold for the case where we have ex-
tributions in this section are (i) a representer theorenhé& t  yjicit discount functions in the feature space. However, in
case where we have discount functions in the feature spacecertain cases the discount functions naturally lie in tfig-or

and (ii) a sufficient approximation in the case that we have jn| sample space. The next theorem gives a sufficient alter-
discount functions in the original sample space. native in this case.

We usek(-,-) : R® x R" — R to represent the kernel
function, andK to denote the Gram matrix with respectto  Theorem 19 Supposé; : RT — R satisfies

(%1, ,%Xm). We assume that’ is a non-zero matrix with-
out loss of generality. hi (v E(xi,%:) + k(x; — 8,%; — 8) — 2k(x;,%; — §))
We first investigate the case where the noise exists ex- < fi(8), V& €R". (24)

plicitly in the feature space. Lei(-) be the mapping from
the sample spadR” to the feature spaceé. Let® C ® be Then

the subspace spanned p¥(x1), - - - , #(x,,)}. For a vector
z € ®, denotez= as its projection o®, andz+ £ z—z= as yi((W, 6(xi) = 8) +b) 21— & — hi(y/ (8¢, 0e)),
its residual. The following theorem states that we can focus Véyp € 9, (25)

onw e & without loss of generality.
Theorem 17 If f;(-) is such that
fi(6) = fi(67), Vo€,

andw € @ satisfies

implies
yi((w, p(x; — 8)) +b) > 1—& — fi(d), Vb €R". (26)

Notice the condition in Theorem 19 only involves the
kernel functionk(-, -) and is independent of the explicit fea-
y({w, &(x;)—8;)+b) > 1—-& — fi(8;), Vo, € @, (22) ture mapping. Hence this theorem applies for abstract map-
then its projectionw= also satisfies (22). pings, and specifically mappings into infinite-dimensioacgs.

The kernelized comprehensive robust classifier can beTheorem 20 Equip the. §amp|e space with a metriG, -),
written as: and suppose there exisf : R* — R, and f; : Rt —

Kernelized Comprehensive Robust Classifier: R U{+-o0} such that,

min : 7’( ZTzl a;(x;), b) + >0 &, k(x,x) = l%(d(x, x)), Vvx,x' € R™ 27
st yi((O0T0) ayd(xy), (%) — D000 ¢o(x4)) +b) > ; n
: m - - id:idxi,xi—di ,VéGR.
1= &[S cr0(x))), fi(0) = fid( )
V(e -+ em) ER™, i=1,--- ,m, Thenh; : RY — R [J{+o0} defined as
gizoaizla"'ama . ~
(23) hi(z) = . inf , fity)  (28)
Definec £ (c1, -+ ,cm)), gile) 2 fi(S, cs(x:)), and yiEseRny=d(x.2), By)=k0)—a?/2
(a,b) £ r( Y1 a;6(x;),b). Lete; denote the' basis  satisfies Equation (24), and for any(-) that satisfies Equa-
vector. Then Problem (23) can be rewritten as tion (24), h'(z) < h(z),Vz = 0 holds. Here, we take

m inf,cg fi(y) to be+oo.
min :7(a, b) + Zfz,

i—1 6 Numerical Simulations
T T : . - .
s.t. (e, Ka+b) —ya Ke>1-¢ — gi(c), In this section, we report some empirical experiments that
YceeR™ i=1,---,m, were used to gain further insight into the performance of the
_ C_ comprehensive robust classifier. To this end, we compare the
512077’_15 7m7 .pr . .
) o performance of three classification algorithms: the steshda
where the constraint can be further simplified as SVM, the standard robust SVM with ellipsoidal uncertainty

T . . set, and comprehensive robust classifier with ellipsoidal u
vile; Koot ) —gi(yila) 21 =&, i=1,---,m. certainty set with linear discount function from the center
Notice that generally*(-) depends on the exact formulation of the ellipse to its boundary (see below). The simulation
of the feature mapping(-). However, for the following spe-  results show that a comprehensive robust classifier with the
cific class off(-), we can determing*(-) from K without discount function appropriately tuned has a performanee su
knowingo(-). perior to both the robust classifier and the standard SVM.



This soft formulation of robustness builds in protection to
noise, without being overly conservative.

We use the non-kernelized version for both the robust
classification and the comprehensive robust classificathm
use a linear discount function for the comprehensive robust
classifier. Thatis, noise is bounded in the same ellipsasietal
as for the robust SVM{4|||4||x-: < 1}, and the discount
function is

||z

o) ={ 10
The parametetr controls the disturbance discount. As
tends to zero, there is no discount inside the uncertairnty se
and we recover the robust classifier. A¢ends to+oo, the
discount increases until effectively the constraint isyani-
posed at the center of the ellipse, hence recovering the stan
dard SVM classifier.

We use SeduMi 1.1R3 [30] to solve the resulting convex
programs. We first compare the performance of the three al-
gorithms on the Wisconsin-Breast-Cancer data set from the
UCI repository [31]. In each iteration, we randomly pick

[0]g-1 <1,
otherwise

50% of the samples as training samples and the rest as test-

ing samples. Each sample is corrupted by i.i.d. noise, which
is uniformly distributed in an ellipsoidé|||d||s-: < 1}.
Here, the matrix: is diagonal . For the first0% of features,

> = 16, and for the remaining features;; = 1. This cap-

tures the setup where noise is skewed toward part of the fea-
tures, and is more common in practice compared to spherical

ones. We reped0 such iterations to get the average empir-
ical error of the three different algorithms. Figure 1 shows
that for appropriately chosen discount parametehe com-
prehensive robust classifier outperforms both the robust an
standard SVM classifiers. As anticipated, whers small,

the comprehensive robust classification has a testing error

rate comparable to the robust classification. For laige
the classifier's performance is similar to that of the stadda
SVM. This figure essentially shows that protection against
noise is beneficial as long as it does not become overly con-
servative. The comprehensive robust classification is -of in
terest because it provides a more flexible approach to handl
the noise.

0.05

—e— Comp.
o Std.
- = =Rob.
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0.04}

error rate
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Figure 1: Simulation results for WBC Data.

We run similar simulations on lonosphere and Sonar data

0.2

0.18f

error rate

0.16f
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- = =Rob.
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Figure 2: Simulation results for lonosphere Data.
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error rate

0.27}

- - =-Rob.
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Figure 3: Simulation results for Sonar Data.

sets from the UCI repository [31]. To fit the variability of

Ghe data, we scale the uncertainty set: 46f% of the fea-

tures,;; equals).3 for lonosphere and.01 for Sonar; for
the remaining feature;;; equald).0003 for lonosphere and
0.00001 for Sonar. Figure 2 and Figure 3 show the respective
simulation results. Similarly to the WBC data set, the com-
prehensive classification achieves its optimal perforreanc
for mid-rangec, and is superior to both the standard SVM
and the robust SVM.

7 Concluding Remarks

This work investigates the relationship between robust-cla
sification and its extensions, and regularized SVM classific
tion, and seeks to develop robust classifiers with contiolle
conservatism. In particular, we show that the standard norm
regularized SVM classifier is in fact the solution to a robust
classification setup, and thus known results about regular-
ized classifiers extend to robust classifiers. To the beatiof o
knowledge, this is the first explicit such link between regu-
larization and robustness in pattern classification. Tihis |
suggests that norm-based regularization essentiallgsinil

a robustness to sample noise whose probability level sets ar



symmetric, and moreover have the structure of the unit ball [12] C. Bhattacharyya, K. Pannagadatta, and A. Smola. Arskco
w.r.t. the regularizing norm. It would be interesting to end
stand the performance gains possible when the noise does
not have such characteristics, and the robust setup is used
in place of regularization with appropriately defined uncer
tainty set.

We further expand on this connection by showing that

any arbitrary convex constraint regularization is equanal
to the classifier obtained through a formulation using aesoft
version of robustness known as comprehensive robustness.
This allows the connection to convex risk measures, from [15]
which we develop risk-constrained classifiers.

At a high level, our contribution is the introduction of a

more geometric notion of hedging and controlling complex-
ity (robust and comprehensive robust classifiers integrall
depend on the uncertainty set and structure of the discount[17]
function) and the link to probabilistic notions of hedgiimg,
cluding chance constraints and convex risk constraints. We[1g]
believe that in the realm of applications, particularly whe
distribution-free PAC-style bounds are typically excewgly

pessimistic, the design flexibility of such a framework will

yield superior performance. A central issue on the appli-
cation front is to understand how to effectively use the ad-

ditional degrees of freedom and flexibility since now we are
designing uncertainty sets, and discount functions, raiize

simply choosing regularization parameters that multiply a

norm.
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