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Abstract

We consider two new formulations for classifica-
tion problems in the spirit of support vector ma-
chines based on robust optimization. Our new for-
mulations are designed to build in protection to
noise and control overfitting, but without being overly
conservative. Our first formulation allows the noise
between different samples to be correlated. We
show that the standard norm-regularized support
vector machine classifier is a solution to a special
case of our first formulation, thus providing an ex-
plicit link between regularization and robustness
in pattern classification. Our second formulation
is based on a softer version of robust optimization
called comprehensive robustness. We show that
this formulation is equivalent to regularization by
any arbitrary convex regularizer extending our first
equivalence result. Moreover, we explain how the
connection of comprehensive robustness to convex
risk-measures can be used to design risk-measure
constrained classifiers with robustness to the input
distribution. Our formulations result in convex op-
timization problems that can be easily solved. Fi-
nally, we provide some empirical results that show
the promise of comprehensive robust classifiers.

1 Introduction

Support Vector Machines (SVMs for short), originated in [1]
and can be traced back as early as [2] and [3]. They continue
to be one of the most successful algorithms for classification.
SVMs address the classification problem by finding the hy-
perplane (in the feature space) that achieves maximum sam-
ple margin when the training samples are separable. When
the samples are not separable, a penalty term that approxi-
mates the total training-error is added to the minimizing ob-
jective, as suggested by [4] and [5]. It is well known that
minimizing the training error itself can lead to poor classi-
fication performance for new (unlabeled) data; that is, such
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an approach may have poor generalization error because of,
essentially, overfitting [6]. A variety of modifications have
been proposed to combat this problem, one of the most pop-
ular methods being that of minimizing a combination of the
training-error and a regularization term. The latter is typi-
cally chosen as a norm of the classifier. The resulting reg-
ularized classifier performs better on new data. This phe-
nomenon is often interpreted from a statistical learning the-
ory view: the regularization term restricts the complexityof
the classifier, hence the deviation of the testing error and the
training error is controlled (cf [7, 8, 9, 10, 11] and references
therein).

In this paper we follow a different approach, first pro-
posed in [12]. We assume that the training data are generated
by the true underlying distribution, but some non-iid (po-
tentially adversarial) disturbance is then added to the sam-
ples we observe. We harness new developments in robust
optimization (see [13, 14, 15] and references therein), so-
called comprehensive robust optimization [16], and risk the-
ory [17, 18], to derive new robust SVM classifiers. The use
of robust optimization in classification is not new; see, for
example, [19, 12, 20]. Robust classification models stud-
ied in past work have considered only box-type uncertainty
sets, which allow the possibility that the data have all been
skewed in some non-neutral manner by a correlated distur-
bance. This has made it difficult to obtain non-conservative
generalization bounds. Moreover, there has not been an ex-
plicit connection to the regularized classifier, although at a
high-level it is known that regularization and robust opti-
mization are related (see, e.g., [13]). The main contribution
in this paper is the development of two new robust SVM clas-
sifiers that mitigate conservatism, provide an explicit con-
nection to regularization (and as a byproduct PAC-style gen-
eralization error bounds), and provide the structure for ef-
ficiently computable classifiers satisfying risk measure con-
straints. In particular, our contributions include the follow-
ing:

• Our first robust SVM formulation permits finer control
of the adversarial disturbance, restricting it to satisfy
aggregate constraints across data points, therefore re-
ducing the possibility of highly correlated disturbance.
This allows us to obtain bounds on the generalization
error of the robust classifiers, as we show that as a spe-
cial case of our robust formulation, we recover norm-
based regularizers. In particular, we show the norm-



regularized SVM classifier isequivalentto a robust SVM
classifier.

• We next show that this new robust formulation is useful
beyond complexity estimates and the precise connec-
tion to regularization: we use it to obtain considerably
less conservative chance constraints, and we also use it
to reprove consistency of SVM for classification.

• The second of our robust SVM formulations uses com-
prehensive robustness to construct “soft robust” classi-
fiers whose performance is given different guarantees,
based on the level of disturbance affecting the training
data. This is in contrast to robust optimization, which
provides the same guarantees uniformly inside the un-
certainty set, and no guarantees outside. We show that
this richer class of robustness is exactly equivalent to
a much broader class of regularizers, including, e.g.,
KL divergence based SVM regularizers, thus extend-
ing the scope of the previous equivalence. Moreover,
we give favorable computational complexity results for
these comprehensive robust classifiers.

• We next show the connection to risk theory, at the same
time extending past work on chance constraints, and
also opening the door for constructing classifiers with
different risk-based guarantees. Although the connec-
tion seems natural, to the best of our knowledge this
is the first attempt to view classification from a risk-
hedging perspective.

In the final section, we illustrate the performance of our new
classifiers through simulation. In particular we show that
the comprehensive robust classifier, which can be viewed as
a generalization of the standard SVM and the robust SVM,
provides superior empirical results.

Structure of the Paper: This paper is organized as fol-
lows. In Section 2 the equivalence between the robust classi-
fication and the regularization process is shown. We also de-
velop the connection to chance constraints. In Section 3 we
investigate the comprehensive robust classification framework.
We relate comprehensive robust classification with convex
risk theory in Section 4. The kernelized version of compre-
hensive robust classification is given in Section 5. We pro-
vide numerical simulation results comparing robust classifi-
cation and comprehensive robust classification in Section 6.
Some concluding remarks are given in Section 7.

Notation: Capital letters are used to denote matrices, and
boldface letters are used to denote column vectors. For a
given norm‖ · ‖, we use‖ · ‖∗ to denote its dual norm. Sim-
ilarly, for a functionf(·) defined on a setH, f∗(·) denotes
its conjugate function, i.e.,f∗(y) = supx∈H{y⊤x− f(x)}.
For a vectorx and a positive semi-definite matrixC of the
same dimension,‖x‖C denotes

√
x⊤Cx. We useδ to de-

note disturbance affecting the samples. We use superscriptr
to denote the true value for an uncertain variable, so thatδr

i
is the true (but unknown) noise of theith sample. The set of
non-negative scalars is denoted byR

+. The set of integers
from 1 to n is denoted by[1 : n].

2 Robust Classification and Regularization
The main contributions of this section are: (i) we formulate
and solve a new robust classification problem which, unlike
other research, limits the adversary to using a correlated dis-
turbance; (ii) using this model, we show that the standard
regularized classifier is a special case of our robust classi-
fication, thus explicitly relating robustness and regulariza-
tion. This provides an alternative explanation for the suc-
cess of regularization, and also suggesting new physically-
motivated ways to construct regularizers; (iii) we formulate
a chance-constrained classifier which can be approximated
by the robust formulation for correlated disturbance, and as
a result is far less conservative than what previous models
could provide; (iv) finally, we show that the robustness per-
spective can be useful in its own right, by using it to prove a
consistency result for regularized SVM classification.

2.1 Robust Classification for Correlated Disturbance

We consider the standard2-class classification setup, where
we are given a number of training samples{xi, yi}m

i=1 ⊆
R

n × {−1, +1}. A linear classifier is specified by the func-
tion hw,b(x) = sgn(〈w, x〉 + b). For the standard regular-
ized classifier, the parameters(w, b) are obtained by solving
the following convex optimization problem:

min
w,b

: r(w, b) +

m
∑

i=1

ξi

s.t. : ξi ≥
[

1 − yi(〈w,xi〉 + b)]

ξi ≥ 0,

wherer(w, b) is a regularization term. The standard robust
optimization techniques robustify at a constraint-wise level,
allowing the disturbances̃δ = (δ1, . . . , δm) to lie in some
uncertainty setN :

min
w,b

: r(w, b) +

m
∑

i=1

ξi (1)

s.t. : ξi ≥
[

1 − yi(〈w,xi − δi〉 + b)], δ̃ ∈ N ,

ξi ≥ 0.

It is well-known (e.g., [21]) that due to the constraint-wise
uncertainty formulation, the uncertainty set is effectively rect-
angular; that is, ifNi denotes the projection ofN onto theδi

component, then replacingN by the potentially larger prod-
uct setNbox = N1 × · · · × Nm yields an equivalent formu-
lation. Effectively, this allows simultaneous worst-casedis-
turbances across many constraints, and this is exactly what
leads to overly conservative formulations. The goal is to ob-
tain a robust formulation where the disturbances{δi} may
be meaningfully taken to be correlated, so that the problem
is no longer equivalent to the box case. In order to side-step
this problem, we robustify an equivalent SVM formulation:

min
w,b

r(w, b) +

m
∑

i=1

max
[

1 − yi(〈w,xi〉 + b), 0
]

,

and we thus obtain:

min
w,b

max
δ̃∈N

r(w, b) +

m
∑

i=1

max
[

1 − yi(〈w,xi − δi〉 + b), 0
]

.

(2)



Note that the problem (1) above is equivalent to:

min
w,b

max
δ̃∈Nbox

r(w, b) +

m
∑

i=1

max
[

1− yi(〈w,xi − δi〉+ b), 0
]

.

(3)
We define explicitly the correlated disturbance (or uncer-
tainty) set to be investigated.

Definition 1 1. A setN0 ⊆ R
n is called anAtomic Un-

certainty setif

(I) 0 ∈ N0;

(II) sup
δ∈N0

[

w⊤δ
]

= sup
δ′∈N0

[

− w⊤δ′
]

< ∞, ∀w ∈ R
n.

2. LetN0 be an atomic uncertainty set. A setN ⊆ R
n×m

is called aConcave Correlated Uncertainty Setof N0,
if

(I) {(δ1, · · · , δm)|δt ∈ N0; δi6=t = 0} ⊆ N , ∀ t;

(II) N ⊆ {(α1δ1, · · · , αmδm)|
m

∑

i=1

αi = 1; αi ≥ 0,

δi ∈ N0, ∀ i}.
The concave correlated uncertainty definition models the case
where the disturbances on each sample are treated identi-
cally, but their aggregate behavior across multiple samples
is controlled. Some interesting examples include

{(δ1, · · · , δm)|
m

∑

i=1

‖δi‖ ≤ c}

{(δ1, · · · , δm)|∃t ∈ [1 : m]; ‖δt‖ ≤ c, δi6=t = 0}

{(δ1, · · · , δm)|
m

∑

i=1

√

c‖δi‖ ≤ c}.

Theorem 2 Assume{xi, yi}m
i=1 are non-separable,r(·) :

R
n+1 → R is an arbitrary function,N0 is an atomic un-

certainty set andN is a concave correlated uncertainty set
ofN0, then the following min-max problem

inf
w,b

{

sup
(δ1,··· ,δm)∈N

r(w, b)+

m
∑

i=1

max
[

1−yi(〈w,xi−δi〉+b), 0
]

}

(4)
is equivalent to

min : r(w, b) + sup
δ∈N0

(w⊤δ) +

m
∑

i=1

ξi,

s.t. : yi(〈w, xi〉 + b) ≥ 1 − ξi, i = 1, · · · , m,

ξi ≥ 0, i = 1, · · · , m.

(5)

Furthermore, the minimization of Problem (5) is attainable
whenr(·, ·) is lower semi-continuous.

We defer proof of the theorem to the online appendix, [?].
This theorem reveals the main difference in conservatism
between the constraint-wise uncertainty in (1) and our for-
mulation in (2). Consider both formulations with the same
uncertainty set,N = {(δ1, · · · , δm)|∑m

i=1 ‖δi‖ ≤ c}. The
corresponding atomic set ofN is N0 = {‖δ‖ ≤ c}, but the

corresponding atomic set forNbox is mN0. Therefore the lat-
ter (recall (3)) is equivalent to a regularization coefficient of
the formmλ, that is linked to the number of training sam-
ples.

An immediate corollary is that a special case of our ro-
bust formulation is exactly equivalent to the norm-regularized
SVM setup:

Corollary 3 LetTk ,

{

(δ1, · · · δm)|∑m
i=1 ‖δi‖ ≤ c; #{i|δi =

0} ≥ m−k
}

, for k ∈ [1 : m] andc > 0 Assume{xi, yi}m
i=1

are non-separable, then the following two optimization prob-
lems on(w, b) are equivalent

min : max
(δ1,··· ,δm)∈Tk

m
∑

i=1

max
[

1 − yi

(

〈w, xi − δi〉 + b
)

, 0
]

,(6)

min :c‖w‖∗ +

m
∑

i=1

max
[

1 − yi

(

〈w, xi〉 + b
)

, 0
]

. (7)

Proof: Let N0 be the norm-ball andr(w, b) ≡ 0. Then
sup‖δ‖≤c(w

⊤δ) = c‖w‖∗. The corollary follows from The-
orem 2.

This explains the widely known fact that regularized clas-
sifier tends to be more robust. Specifically, it explains the ob-
servation that when the disturbance is noise-like and neutral
rather than adversarial, a norm-regularized classifier (with-
out any robustness requirement) has a performance often su-
perior to the constraint-wise robust classifier (see [22] and
Section 6). On the other hand, this observation also suggests
that the appropriate way to regularize should come from a
disturbance-robustness perspective. The above equivalence
implies that standard regularization essentially assumesthat
the disturbance is spherical; if this is not true, robustness
may yield a better regularization-like algorithm. To find a
more effective regularization term, a closer investigation of
the data variation is desirable, i.e., by examining the varia-
tion of the data and solving the corresponding robust classifi-
cation problem. For example, one way to regularize is split-
ting the given training samples into two subsets with equal
number of elements, and treating one as a disturbed copy
of the other. By analyzing the direction of the disturbance
and the magnitude of the total variation, one can choose the
proper norm to use, and a suitable tradeoff parameter.

2.2 Probabilistic Interpretation

Although Problem (4) is formulated without any probabilis-
tic assumption, it can be used to approximate an upper bound
for a chance-constrained classifier. Suppose the disturbance
(δr

1, · · · δr
m) follows a joint probability measureµ. Then

the chance-constrained classifier is given by the following
minimization problem on(w, b, l) given a confidence level
η ∈ [0, 1],

min : l

s.t. : µ
{

∑m
i=1 max

[

1 − yi(〈w, xi − δr
i 〉 + b), 0

]

≤ l
}

≥ 1 − η.
(8)

The formulations in [19, 20, 23] assume uncorrelated noise
and require all constraints to be satisfied with high proba-
bility simultaneously. They find a vector{ξ1, · · · , ξm} such



that eachξi bounds the hinge-loss for samplexr
i with high

probability. In contrast, our formulation above bounds the
average (or equivalently the sum of) empirical error. When
controlling this average quantity is of more interest, the uncorrelated-
noise formulation will be overly conservative.

Problem (8) is generally non-tractable. However, we can
approximate it as follows. Let

c∗ , inf{α|µ(
∑

i

‖δi‖ ≤ α) ≥ 1 − η}. 1

Then, for any(w, b) with probability no less than1 − η, the
following holds,

m
∑

i=1

max
[

1 − yi(〈w, xi − δr
i 〉 + b), 0

]

≤ max
P

i
‖δi‖≤c∗

m
∑

i=1

[

1 − yi(〈w, xi − δi〉 + b), 0
]

.

Thus (8) is upper bounded by (7) withc = c∗. This gives
an additional probabilistic robustness property of the stan-
dard regularized classifier. Notice that following a similar
approach but with the constraint-wise robust setup, i.e., the
box uncertainty set, would lead to considerably more pes-
simistic approximations of the chance constraint.

2.3 Consistency of Regularization

In this section, we work out a simple example to illustrate
how the robustness perspective might help in a statistical
learning setup, by establishing the consistency of the linear
classifier.

The following theorem is a well-known result in statisti-
cal machine learning [24]. Here we reprove it using our ro-
bust classifier setup, by bounding the total variation between
the set of test samples and the set of training samples.

Theorem 4 Let P be the underlying generating probability
with bounded supportX ×{−1, +1}, whereX ⊆ R

n. Then
for c > 0 there exists{γs} → 0 independent of(w, b) such
that

EP(1y 6=sgn(〈w, x〉+b)) ≤ γN + c‖w‖2 +

1

N

N
∑

i=1

max
[

1 − yi(〈w, xi〉 + b), 0
]

,

holds almost surely asN → +∞.

Proof: To prove this theorem, we need to establish the fol-
lowing lemma. Forc > 0, a testing sample(x′, y′) and a
training sample(x, y) are called asample pairif y = y′

and‖x − x′‖2 ≤ c. We say a set of training samples and a
set of testing samples forml pairings if there existl sample
pairs with no data reused. Givenn training samples andn
testing samples, we useMn to denote the largest number of
pairings.

Lemma 5 Givenc > 0, Mn/n → 1 almost surely asn →
+∞.

1Given µ, c
∗ is easily simulated, and for specific probability

measures (e.g., independent Gaussian disturbance), it canbe com-
puted analytically.

Proof: We make a partition ofX × {−1, +1} =
⋃T

i=1 Xi

such thatXi either has the form[α1, α1 +c/
√

n)× [α2, α2 +
c/
√

n) · · ·× [αn, αn +c/
√

n)×{+1} or [α1, α1 +c/
√

n)×
[α2, α2 + c/

√
n) · · · × [αn, αn + c/

√
n) × {−1}. That is,

each partition is the cartesian product of a rectangular cell
in X and a singleton in{−1, +1}. Notice that if a training
sample and a testing sample fall intoXi, they can form a
pairing.

Let P
tr
n andP

te
n be the empirical distribution of training

samples and testing samples, respectively. Now we calculate
the number of unpaired samplesn − Mn. This can be upper
bounded by

T
∑

i=1

|#(training samples inXi) − #(testing samples inXi)| =

n
T

∑

i=1

|
∫

IXi
dP

tr
n −

∫

IXi
dP

te
n |.

Furthermore, lettingF be the set of indicator functionsIXi
,

thenF is aP -Donsker class, and hence a Glivenko-Cantelli
class almost surely. We thus have

sup
f∈F

|
∫

fdP
tr
n −

∫

fdP
te
n | → 0,

almost surely whenn → +∞. This leads to

T
∑

i=1

|
∫

IXi
dP

tr
n −

∫

IXi
dP

te
n | → 0.

Therefore(n − Mn)/n → 0 almost surely.

Now we proceed to prove the theorem. Givenn training
samples andn testing samples withMn sample pairs, we
notice for that for these paired samples, the total testing error
is upper bounded by

max
(δ1,··· ,δn)∈TN

n
∑

i=1

max
[

1 − yi

(

〈w, xi − δi〉 + b
)

, 0
]

=cn‖w‖2 +

n
∑

i=1

max
[

1 − yi(〈w, xi〉 + b), 0].

Hence the classification error of the totaln testing samples
can be upper bounded by

(n − Mn) + cn‖w‖2 +

n
∑

i=1

max
[

1 − yi(〈w, xi〉 + b), 0].

Therefore, the average testing error is upper bounded by

1−Mn/n + c‖w‖2 +
1

n

n
∑

i=1

max
[

1− yi(〈w, xi〉+ b), 0].

Notice thatMn/n → 1 almost surely.

3 Comprehensive Robust Classification

Robust optimization provides a solution with but one guar-
antee: feasibility and worst-case performance control forany
realization of the uncertainty within the bounded uncertainty



set. If the uncertainty realization turns out favorable (e.g.,
close to mean behavior), no improved performance is guar-
anteed, while if the realization occurs outside the assumed
uncertainty set, all bets are off. This characteristic makes it
difficult to address noise with fat tails: if we take a small
uncertainty set, we have no protection guarantees for poten-
tially high probability events; on the other hand, if we seek
to protect ourselves over large uncertainty sets, the robust
setting may yield overly pessimistic solutions. In this sec-
tion we address exactly this problem, by designing a new
classifier with performance guarantees indexed to the level
of noise. We use the softer notion of “comprehensive robust-
ness,” recently explored in the robust optimization literature
[16].

This allows us to construct classifiers with improved em-
pirical performance. In addition, we show that this new no-
tion of robustness yields a broader range of regularization
schemes than robust optimization, including squared-norm,
and Kullback-Leibler regularization. Moreover, extending
the chance constraint results of the previous section, we are
able to provide probability bounds forall magnitudes of con-
straint violations.

The key idea to comprehensive robustness is to discount
lower-probability noise realizations, by reducing the loss in-
curred. If we denote the hinge loss of a sample under a cer-
tain noise realization asξi(δi) , max

[

1−yi(〈w, xi−δi〉+
b), 0

]

, the robust classifier (2) can be rewritten as:

min
w,b

max
(δ1,··· ,δm)∈N

{

r(w, b) +

m
∑

i=1

ξi(δi)
}

.

Instead, we formulate the comprehensive robust classifier by
introducing a discounted loss function depending not only
on the nominal hinge loss, but also on the noise realization
itself. Let hi(·, ·) : R × R

n → R satisfy0 ≤ hi(α, β) ≤
hi(α,0) = α. We useh to denote our discounted loss func-
tion: it discounts the loss depending on the realized data, yet
is always nonnegative, and provides no discount for samples
with zero disturbance. Thus, the comprehensive robust clas-
sifier is given by:

min
w,b

sup
(δ1,··· ,δm)∈N

{

r(w, b) +

m
∑

i=1

hi

(

ξi(δi), δi

)

}

, (9)

We primarily investigate additive discounts of the form
hi(α, β) , max(0, α − fi(β)), taking a brief detour in
Section 3.4 to consider multiplicative discounts. Additive
structure provides a rich class of discount functions, while
remaining tractable. Moreover additive structure provides
the link to risk theory and convex risk measures, which we
consider in Section 3.2.

We formulate the comprehensive robust classification with
additive discount function in Section 3.1 and establish an
equivalence relationship between comprehensive robust clas-
sifications and a broad class of regularization schemes in
Section 3.2. In particular, we show that the standard norm-
regularized SVM has a comprehensive robust representation,
and so do many regularized SVMs with non-norm regulariz-
ers.

In Section 3.2 we investigate the tractability of compre-
hensive robust classification. In Section 3.3 we discuss a spe-
cial class of discounts, namely norm discounts, and derive

probability bounds for such discounts. Finally, in Section3.4
we briefly investigate the tractability of multiplicative dis-
count functions with the formhi(α, β) , c(β)max(0, α).

3.1 Problem Formulation

We consider box uncertainty sets throughout, to facilitate
some of the analysis and allow focus on the effect of the dis-
count function.2 Substitutinghi(α, β) , max(0, α−fi(β))
into Equation (9) and extendingfi(·) to take the value+∞
for δi 6∈ Ni, we have the formulation of the comprehensive
robust classifier:

Comprehensive Robust Classifier:

min : r(w, b) +

m
∑

i=1

ξi,

s.t. : yi(〈w, xi − δi〉 + b) ≥ 1 − ξi − fi(δi),

∀δi ∈ R
n, i = 1, · · · , m

ξi ≥ 0; i = 1, · · · , m.

This fi(·) (extended real) function controls the disturbance
discount, and therefore must satisfy

inf
β∈Rn

fi(β) = fi(0) = 0. (10)

Notice that if we setfi(·) to be the indicator function of a
set, we recover the standard robust classifier. Thus the com-
prehensive robust classifier is a natural generalization ofthe
robust classifier with more flexibility on settingfi(·).

The fi(·) function also has a physical interpretation as
controlling the margin of the resulting classifier underall
noise. That is, whenξi = 0, the resulting classifier guar-
antees a margin1/‖w‖ for the observed samplexi (same
as the standard classifier), together with a guaranteed margin
(1 − fi(δi))/‖w‖ when the sample is perturbed byδi.

3.2 Comprehensive Robustness and Regularization

In this section we show that, any convex regularization term
in the constraint is equivalent to a comprehensive robust for-
mulation, and vice versa. Moreover, the standard regularized
SVM is equivalent to a (non-regularized) comprehensive ro-
bust classifier wherefi(δi) = α‖δi‖.

Given a functionf(·), letf∗ denote its Legendre-Fenchel
transform or conjugate function, given byf∗(s) = supx{〈s, y〉−
f(x)} [25]. Then we have the following, that shows that iff
is a disturbance discount that satisfies (10), then so does its
conjugate, and vice versa. We use this below to establish the
equivalence between convex regularization and comprehen-
sive robustness.

Lemma 6 (i) If f(·) satisfies (10), then so doesf∗(·).
(ii) If g(·) is closed and convex, andg∗(·) satisfies (10),
then so doesg(·).

2Nevertheless, we expect that combining the analysis of Section
2 will yield interesting results.



Theorem 7 The Comprehensive Robust Classifier (10) is equiv-
alent to the following convex program:

min :r(w, b) +

m
∑

i=1

ξi,

s.t. :yi(〈w, xi〉 + b) − f∗
i (yiw) ≥ 1 − ξi, i = 1, · · · , m,

ξi ≥ 0, i = 1, · · · , m.
(11)

Proof:Simple algebra yields

yi(〈w, xi − δi〉 + b) ≥ 1 − ξi − fi(δi), ∀δi ∈ R
n

⇐⇒ yi(〈w, xi〉 + b) − yiw
⊤δi + fi(δi) ≥ 1 − ξi, ∀δi ∈ R

n

⇐⇒ yi(〈w, xi〉 + b) − sup
δi∈Rn

[

yiw
⊤δi − fi(δi)

]

≥ 1 − ξi

⇐⇒ yi(〈w, xi〉 + b) − f∗
i (yiw) ≥ 1 − ξi.

Finally, note that the problem convexity follows immediately
from the (generic) convexity of the conjugate function.

From Lemma 6(i),

inf
w∈Rn

f∗
i (yiw) = f∗

i (0) = 0,

and thereforef∗
i (·) “penalizes”yiw and is thus a regulariza-

tion term. On the other hand, a classifier that has a convex
regularization termg(·) in each constraint is equivalent to
a comprehensive robust classifier with disturbance discount
f(·) = g∗(·) (Lemma 6(ii)). Therefore, the comprehen-
sive robust classifier is equivalent to the constraint-wisereg-
ularized classifier with general convex regularization. This
equivalence gives an alternative explanation for the general-
ization ability of regularization: intuitively, the set oftesting
data can be regarded as a “disturbed” copy of the set of train-
ing samples where the penalty on large (or low-probability)
disturbance is discounted. Empirical results show that a clas-
sifier that handles noise well has a good performance for test-
ing samples.

As an example of this equivalence, setfi(δi) = α‖δi‖
for α > 0 andr(w, b) ≡ 0. Here,

f∗
i (yiw) =

{

0 ‖w‖∗ ≤ α,
+∞ otherwise;

which is the indicator function of the dual-norm ball with
radiusα. Thus (11) is equivalent to

min :
∑m

i=1 ξi,
s.t. : yi(〈w, xi〉 + b) ≥ 1 − ξi, i = 1, · · · , m,

‖w‖∗ ≤ α,
ξi ≥ 0, i = 1, · · · , m.

(12)

We notice that Problem (12) is the standard regularized clas-
sifier. Hence, the comprehensive robust classification frame-
work is a general framework which includes both robust SVMs
and regularized SVMs as special cases. Hence, the results
obtained for comprehensive robust classifier (e.g., the prob-
abilistic bound in Subsection 3.3) can be easily applied to
robust SVMs and standard SVMs.

Tractability

We now give a sufficient condition on the discount for the
comprehensive robust classification problem (11) to be tractable.

Definition 8 A functionf(·) : R
n → R is calledEfficiently

Conjugatableif there exists a sub-routine such that for arbi-
trary h ∈ R

n andα ∈ R, in polynomial time it either reports

sup
x∈Rn

(

h⊤x − f(x)
)

≤ α,

or reportsx0 such that

h⊤x0 − f(x0) > α.

Theorem 9 Suppose

1. fi(·) is efficiently conjugatable,∀i ∈ [1 : m].

2. Bothr(w, b) and ∂r(w, b) can be evaluated in poly-
nomial time∀(w, b) ∈ R

n+1, where∂ stands for any
sub-gradient.

Then, Problem (11) can be solved in polynomial time.

We defer the proof of this theorem to the online appendix,
[?].

3.3 Norm Discount

In this subsection, we discuss a class of discount functions
based on certain ellipsoidal norms of the noise, i.e.,

fi(δi) = ti(‖δ‖V ),

for a nondecreasingti : R
+ → R

+. Simple algebra yields
f∗

i (y) = t∗i (‖y‖V −1), wheret∗i (y) = supx≥0

[

xy − t(x)
]

.
This formulation has a nice probabilistic interpretation:

Theorem 10 Suppose the random variableδr
i has mean0

and varianceΣ. Then the constraint

yi(〈w, xi − δi〉 + b) ≥ 1 − ξi − ti(‖δi‖Σ−1), ∀δi ∈ R
n,

(13)
is equivalent to

inf
δr

i
∼(0,Σ)

Pr
(

yi(〈w, xr
i 〉 + b) − 1 + ξi ≥ −s

)

≥

1 − 1
(

t−1
i (s)

)2
+ 1

, ∀s ≥ 0. (14)

Here, the infimum is taken over all random variables with
mean zero and varianceΣ, andt−1

i (s) , sup{r|t(r) ≤ x}.

Proof: In [19], the authors studied the robust formulation
and showed that for a fixedγ0, the following three inequali-
ties are equivalent:

◦ inf
δr

i
∼(0,Σ)

Pr
(

yi(〈w, xr
i 〉 + b) − 1 + ξi ≥ 0

)

≥ 1 − 1

γ2
0 + 1

,

◦ yi(〈w, xi〉 + b) − 1 + ξi ≥ γ0‖w‖Σ,

◦ yi(〈w, xi − δi〉 + b) − 1 + ξi ≥ 0, ∀‖δi‖Σ−1 ≤ γ0.



Observe that equation (14) is equivalent to

inf
δr

i
∼(0,Σ)

Pr
(

yi(〈w, xr
i 〉 + b) − 1 + ξi ≥ −ti(γ)

)

≥ 1 − 1

γ2 + 1
, ∀γ ≥ 0.

Hence, it is equivalent to:∀γ ≥ 0,

yi(〈w, xi − δi〉 + b) − 1 + ξi ≥ −ti(γ), ∀‖δi‖Σ−1 ≤ γ.

Sinceti(·) is nondecreasing, this is equivalent to (13).

Theorem 10 shows that the comprehensive robust formu-
lation bounds the probability ofall magnitudes of constraint
violation. It is of interest to compare this bound with the
bound given by the robust formulation. Indeed,

yi(〈w, xi〉 + b) − 1 + ξi ≥ γ0‖w‖Σ ⇐⇒
yi(〈w, xi〉 + b) − 1 + ξi + s ≥

(

γ0 +
s

‖w‖Σ

)

‖w‖Σ, ∀s ≥ 0 ⇐⇒

inf
δr

i
∼(0, Σ)

Pr
(

yi(〈w, xr
i 〉 + b) − 1 + ξi ≥ −s

)

≥

1 − 1

(γ0 + s
‖w‖Σ

)2 + 1
.

Hence the probability of large violation depends on‖w‖Σ,
and is impossible to bound without knowing‖w‖Σ a priori.

Remark 1 Notice the derived bound for the robust formu-
lation is tight, in the sense that if

yi(〈w, xi〉 + b) − 1 + ξi < γ0‖w‖Σ,

then there exists a zero-mean random variableδ
r
i with vari-

anceΣ such that

Pr
(

yi(〈w, xr
i 〉+b)−1+ξi ≥ −s

)

< 1− 1

(γ0 + s
‖w‖Σ

)2 + 1
.

This is because the multivariate Chebyshev inequality ([26,
27, 28]) states that

sup
z∼(z̄,σ)

Pr{a⊤z ≤ c} = (1 + d2)−1

where d2 = inf
z0|a⊤z0≤c

inf(z0 − z̄)⊤Σ−1(z0 − z̄).

Lettinga = yiw, z = −δr
i andc = 1−ξi−s−yi(〈w, xi〉+

b), we have

sup
δr

i
∼(0, Σ)

Pr
(

yi(〈w, xr
i 〉 + b) − 1 + ξi ≤ −s

)

= (1 + d2
0)

−1

where: d0 =
yi(〈w, xi〉 + b) − 1 + ξi + s√

w⊤Σw
.

Hence,

yi(〈w, xi〉 + b) − 1 + ξi < γ0‖w‖Σ

=⇒ d0 < γ0 + s/‖w‖Σ

=⇒ sup
δr

i
∼(0, Σ)

Pr
(

yi(〈w, xr
i 〉 + b) − 1 + ξi ≤ −s

)

>

[

1 + (γ0 + s/‖w‖Σ)2
]−1

,

showing that the bound is tight.

With a similar argument, we can derive probability bounds
under a Gaussian noise assumption.

Theorem 11 If δr
i ∼ N (0, Σ), then the constraint

yi(〈w, xi − δi〉 + b) ≥ 1 − ξi − ti(‖δi‖Σ−1), ∀δi ∈ R
n,

(15)
is equivalent to

Pr
(

yi(〈w, xr
i 〉 + b) − 1 + ξi ≥ −s

)

≥ Φ
(

t−1(s)
)

,(16)

∀s ≥ 0. (17)

Here,Φ(·) is the cumulative distribution function ofN (0, 1).

Proof:For fixedk ≥ 1/2 and constantl, the following con-
straints are equivalent:

Pr(yiw
⊤δr

i ≥ l) ≥ k

⇐⇒ l ≤ Φ−1(k)
(

w⊤Σw
)1/2

⇐⇒ l ≤ yw⊤δi, ∀‖δi‖Σ−1 ≤ Φ−1(k).

Notice that (15) is equivalent to

Pr
(

yi(〈w, xr
i 〉 + b) − 1 + ξi ≥ −t(γ)

)

≥ Φ(γ), ∀γ ≥ 0,

and hence it is equivalent to:∀γ ≥ 0,

yi(〈w, xi − δi〉 + b) − 1 + ξi ≥ −ti(γ),

∀‖δi‖Σ−1 ≤ Φ−1
(

Φ(γ)
)

= γ.

Sinceti(·) is nondecreasing, this is equivalent to (15).

3.4 Multiplicative Discount

In this subsection we consider a multiplicative structure for
the disturbance discount, and investigate its tractability. The
multiplicative discount has the form:

min
w,b

max
(δ1,···δm)∈N

{r(w, b)+

m
∑

i=1

ci(δi)max
[

1 − yi(〈w, xi − δi〉 + b), 0
]

}

wherec(·) : R
n → R satisfies

0 ≤ ci(δ) ≤ ci(0) = 1; ∀δ ∈ R
n.

By adding slack variables, we get the following optimization
problem:

Comprehensive Robust Classifier (Multiplicative):
min : r(w, b) +

∑m
i=1 ξi,

s.t. : ξi ≥ ci(δ)
[

1 − yi(〈w, xi − δi〉 + b)
]

,
∀δi ∈ R

n, i = 1, · · · , m,
ξi ≥ 0, i = 1, · · · , m.

(18)
Define

gi(δ) ,

{

1
ci(δ) if c(δ) > 0,

+∞ otherwise.
Problem (18) can be rewritten as:

min : r(w, b) +
∑m

i=1 ξi,
s.t. : gi(δi)ξi ≥

[

1 − yi(〈w, xi − δi〉 + b)
]

,
∀δi ∈ R

n, i = 1, · · · , m,
ξi ≥ ǫ, i = 1, · · · , m.

Notice that we perturb the constraintξi ≥ 0 to ξi ≥ ǫ for
smallǫ > 0 to avoid the case that bothξi = 0 andgi(δi) =
∞ hold simultaneously. Under this modification, we have
the following tractability theorem:



Theorem 12 Suppose

1. gi(·) is efficiently conjugatable,∀i ∈ [1 : m]

2. Bothr(w, b), ∂r(w, b) can be evaluated in polynomial
time ∀(w, b) ∈ R

n+1, where∂ stands for any sub-
gradient.

Then, Problem (18) can be solved in polynomial time.

We defer the proof to the online appendix, [?].

4 Comprehensive Robustness and Convex
Risk Measures

We showed in Section 2.2 that the robust optimization classi-
fier has an equivalent probabilistic interpretation as a chance
constrained classifier. Comprehensive robust classifiers un-
der the additive discount model also have a probabilistic par-
allel. In this section we establish the connection to risk-
measure constrained classifiers. A risk measure is a map-
ping from a random variable to the real numbers, that, at a
high level, captures some valuation of that random variable.
Simple examples of risk measures include expectation, stan-
dard deviation, and conditional value at risk (CVaR). Risk
measure constraints represent a natural way to express risk
aversion, corresponding to particular risk preferences. We
show that comprehensive robust classifiers correspond to the
class of so-called convex risk measures.

Given a probability space(Ω,F , P), letX denote the set
of random variables onΩ. A risk measureis a function
ρ : X → R, and defines a preference relationship among
random variables:X1 is preferable overX2 if and only if
ρ(X1) ≤ ρ(X2). Alternatively, we can regardρ(·) as the
measurement of how risky a random variable is:X1 is a less
risky decision thanX2 whenρ(X1) ≤ ρ(X2). A risk mea-
sure is calledconvexif it satisfies the following three condi-
tions: (i) Convexity:ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 −
λ)ρ(Y ); (ii) Monotonicity: X ≤ Y ⇒ ρ(X) ≤ ρ(Y ); and
(iii) Translation Invariance:ρ(X + a) = ρ(X) + a, ∀a ∈ R.
Convexity means diversifying reduces risk. Monotonicity
says that if one random loss is always less than another, it
is more favorable. Translation invariance says that if a fixed
penaltya is going to be paid in addition toX , we are indif-
ferent to whether we will pay it before or afterX is realized.
A convex risk measureρ(·) is callednormalizedif it satis-
fiesρ(0) = 0 and∀X ∈ X , ρ(X) ≥ EP(X), which essen-
tially says that the risk measureρ(·) represents risk aversion.
Many widely used criteria comparing random variables are
normalized convex risk measures, including expected value,
Conditional Value at Risk (CVaR), and the exponential loss
function [16][29].

Equipped with a normalized convex risk measureρ(·),
we can formulate a classification problem as

Risk-Measure Constrained Classifier

min :r(w, b) +

m
∑

i=1

ξi,

s.t. :ρi(ξi) ≥ ρi(1 − yi(〈w, xr
i 〉 + b)), i = 1, · · · , m,

ξi ≥ 0, i = 1, · · · , m.
(19)

Substitutingρi(0) = 0 and xr
i = xi − δr

i wherexi =
EP(xr

i ), the constraint can be rewritten as

ξi + yi(〈w, xi〉 + b) − 1 ≥ ρi(yiw
⊤δ

r
i ). (20)

This formulation seeks a classifier whose total risk is min-
imized. Whenxr

i is precisely known, this formulation re-
duces to the standard SVM.

The following theorem states that the risk-constrained
classifier and the comprehensive robust classifier are equiv-
alent. The proof is postponed to the online appendix, online
appendix, [?]..

Theorem 13 (1) A Risk-Measure Constrained Classifier with
normalized convex risk measuresρi(·) is equivalent to Com-
prehensive Robust Classifier where

fi(δ) = inf{α0
i (Q)|EQ(δr

i ) = δ},
α0

i (Q) , sup
X′∈X

(

EQ(X ′) − ρi(X
′)
)

.

(2) A Comprehensive Robust Classifier with convex discount
functionsfi(·) is equivalent to a Risk-Constrained Classifier
where

ρi(X) = inf{m ∈ R|X − m ∈ Ai},
Ai , {X ∈ X|X(ω) ≤ fi

(

δr
i (ω)

)

, ∀ω ∈ Ω},
assuming thatδr

i has supportRn.

Let P be the set of probability measures absolutely continu-
ous w.r.t.P. It is known [17, 18] that any convex risk mea-
sureρ(·) can be represented asρ(X) =

∑

Q∈P [EQ(X) −
α(Q)] for some convex functionα(·); conversely, given any
such convex functionα, the resulting functionρ(·) is indeed
a convex risk measure. Givenα(·), ρ(·) is called the corre-
sponding risk measure. The functionα(·) can be thought of
as a penalty function on probability distributions. This gives
us a way to directly investigate classifier robustness with re-
spect to distributional deviation. As an example, suppose we
want to be robust over distributions that are nowhere more
than a factor of two greater than a nominal distribution,P.
This can be exactly captured by the risk constraint using risk
measureρ(·), whereρ corresponds to the convex functionα
given by lettingα(·) satisfyα(Q) = 0 for dQ/dP ≤ 2, and
α(Q) = +∞ for all otherQ.

A natural notion of distributional divergence is the Kullback-
Leibler divergence. The next result derives the correspond-
ing risk measure when the reference noise,δr

i , is Gaussian.

Theorem 14 Supposeδr
i ∼ N (0, Σi) and let ρ(·) be the

corresponding risk measure of

α(Q) =

{
∫

dQ
dP

log dQ
dP

dP Q ≪ P,
+∞ otherwise.

Then the Risk-Measure Constrained Classifier is equivalent
to

min :r(w, b) +

m
∑

i=1

ξi,

s.t. :yi(〈w, xi〉 + b) − w⊤Σiw/2 ≥ 1 − ξi, i = 1, · · · , m,

ξi ≥ 0, i = 1, · · · , m.



Proof: We first show that for the KL divergence, its corre-
sponding convex risk measure equalslog EP[eX ] by applying
the following theorem adapted from [17].

Theorem 15 Suppose a convex risk measure can be repre-
sented as

ρ(X) = inf{m ∈ R|EP[l(X − m)] ≤ x0},
for an increasing convex functionl : R → R and scalarx0.
Thenρ(·) is the corresponding risk measure of

α0(Q) = inf
λ>0

1

λ

(

x0 + EP

[

l∗(λ
dQ

dP
)
]

)

.

Note thatlog EP[eX ] = inf{m ∈ R|EP

[

eX−m
]

≤ 1}, and
hence the risk measurelog EP[eX ] can be represented as in
the theorem, withl(x) = ex, andx0 = 1. The conclusion
of the theorem, tells us thatlog EP[eX ] is the corresponding
risk measure of

α0(Q) = inf
λ>0

1

λ

(

1 + EP

[

λ
dQ

dP
log(λ

dQ

dP
) − λ

dQ

dP

]

)

=EP

[dQ

dP
log

dQ

dP

]

+ inf
λ>0

[ 1

λ
+ EP(

dQ

dP
)(log λ − 1)

]

=

{

∫ dQ
dP

log dQ
dP

dP Q ≪ P,
+∞ otherwise,

where the last equation holds sinceEP(dQ/dP) = 1 and
infλ>0(1/λ+logλ−1) = 0. Thereforeρ(X) = log EP[eX ]
is indeed the corresponding risk measure to KL-divergence.
Now we evaluatelog EP(eyiw

⊤δr

i ). Sinceδr
i ∼ N(0, Σi),

yiw
⊤δr

i ∼ N(0,w⊤Σiw), which leads to

EP(eyiw
⊤δr

i ) =

∫ +∞

−∞

1√
2π

exp
[

− t2/2
√

w⊤Σiw
]

etdt

=

∫ +∞

−∞

1√
2π

exp
{

− (t −
√

w⊤Σiw)2

/

2
√

w⊤Σiw
}

ew⊤Σiw/2dt

= ew⊤Σiw/2

∫ +∞

−∞

1√
2π

exp
{

− (t −
√

w⊤Σiw)2

/

2
√

w⊤Σiw

}

dt = ew⊤Σiw/2.

Thuslog EP(eyiw
⊤δr

i )=w⊤Σiw/2, proving the theorem.

Observe that here we get a regularizer (in each constraint)
that is thesquareof an ellipsoidal norm, and hence is differ-
ent from the norm regularizer obtained from the robust clas-
sification framework. In fact, recalling the result from Sec-
tion 3.3, we notice that the new regularizer is the result of a
quadratic discount function, instead of the indicator discount
function used by the robust classification.

For generalδr
i andα(·), it is not always straightforward

to find and optimize the explicit form of the regularization
term. Hence we sample, approximatingP with its empiri-
cal distributionPn. This is equivalent to assumingδr

i has
finite support{δ1

i , · · · , δt
i} with probability {p1, · · · , pt}.

We note that the distribution of the noise is often unknown,
where only some samples of the noise are given. Therefore,
the finite-support approach is often an appropriate method in
practice.

Theorem 16 For δr
i with a finite support, the risk-measure

constrained classifier is equivalent to

min :r(w, b) +
m

∑

i=1

ξi,

s.t. :yi(〈w, xi〉 + b) − α∗
(

yi∆
⊤
i w + λi1

)

+ λi ≥
1 − ξi, i = 1, · · · , m;

ξi ≥ 0, i = 1, · · · , m;

whereα∗(y) , supx≥0{y⊤x−α(x)} and∆i , {δ1
i , · · · , δt

i}.

Proof:It suffices to prove that Constraint (20) is equivalent
to

yi(〈w, xi〉 + b) − α∗
(

yi∆
⊤
i w + λi1

)

+ λi ≥ 1 − ξi,

which is the same as showing that the conjugate function of

fi(δ) , inf{α(q)|
t

∑

j=1

qjδ
j
i = δ}

evaluated atyiw equals

min
λ

{α∗
(

yi∆
⊤
i w + λ1

)

− λ}.

By definition,f∗(yiw) = supδ∈Rn

{

yiw
⊤δ−f(δ)

}

, which
equals

Maximize onδ,q: yiw
⊤δ − α(q)

subject to: ∆iq − δ = 0,

1⊤q = 1

q ≥ 0.

(21)

Notice that (21) equals

L(δ,q, c, λ) , max
δ; q≥0

min
c,λ

{

yiw
⊤δ − α(q) +

c⊤∆iq − c⊤δ + λ1⊤q − λ
}

.

Since Problem (21) is convex and all constraints are linear,
Slater’s condition is satisfied and the duality gap is zero.
Hence, we can exchange the order of minimization and max-
imization:
L(δ,q, c, λ)

=min
c,λ

max
δ,q≥0

{

yiw
⊤δ − α(q) + c⊤∆iq − c⊤δ + λ1⊤q− λ

}

=min
c,λ

{

max
δ

(

yiw
⊤δ − c⊤δ

)

+

max
q≥0

(

c⊤∆iq + λ1⊤q − α(q)
)

− λ
}

=min
λ

{

max
q≥0

(

yiw
⊤∆iq + λ1⊤q − α(q)

)

− λ
}

=min
λ

α∗
(

yi∆
⊤
i w + λ1

)

− λ.

Here, the third equality holds becausec = yiw is the neces-
sary condition to makemaxδ

(

yiw
⊤δ − c⊤δ

)

finite.

Example. Let α(q) =
∑t

j=1 qj log(qj/pj), the KL diver-
gence for discrete probability measures. By applying Theo-
rem 16, Constraint (20) is equivalent to

yi(〈w, xi〉 + b) − log
(

t
∑

j=1

pj exp(yiw
⊤δ

j
i )

)

≥ 1 − ξi,

⇐⇒
t

∑

j=1

pj exp
(

yiw
⊤δ

j
i − yi(〈w, xi〉 + b) + 1 − ξi

)

≤ 1.



This is a geometric program, a class of convex problems and
is known to be solved efficiently [27].

5 Kernelized Comprehensive Robust
Classifier

Much of the previous development can be extended to the
kernel space. We defer most proofs to the appendix, but give
the statements of the main theorems here. The main con-
tributions in this section are (i) a representer theorem in the
case where we have discount functions in the feature space;
and (ii) a sufficient approximation in the case that we have
discount functions in the original sample space.

We usek(·, ·) : R
n × R

n → R to represent the kernel
function, andK to denote the Gram matrix with respect to
(x1, · · · ,xm). We assume thatK is a non-zero matrix with-
out loss of generality.

We first investigate the case where the noise exists ex-
plicitly in the feature space. Letφ(·) be the mapping from
the sample spaceRn to the feature spaceΦ. Let Φ̂ ⊆ Φ be
the subspace spanned by{φ(x1), · · · , φ(xm)}. For a vector
z ∈ Φ, denotez= as its projection on̂Φ, andz⊥ , z−z= as
its residual. The following theorem states that we can focus
onw ∈ Φ̂ without loss of generality.

Theorem 17 If fi(·) is such that

fi(δ) ≥ fi(δ
=), ∀δ ∈ Φ,

andw ∈ Φ satisfies

y(〈w, φ(xi)−δi〉+b) ≥ 1−ξi−fi(δi), ∀δi ∈ Φ, (22)

then its projectionw= also satisfies (22).

The kernelized comprehensive robust classifier can be
written as:

Kernelized Comprehensive Robust Classifier:
min : r

(
∑m

j=1 αjφ(xj), b
)

+
∑m

i=1 ξi,
s.t. : yi(〈

∑m
j=1 αjφ(xj), φ(xi) −

∑m
j=1 cjφ(xj)〉 + b) ≥

1 − ξi − fi

(
∑m

j=1 cjφ(xj)
)

,

∀
(

c1, · · · , cm) ∈ R
m, i = 1, · · · , m,

ξi ≥ 0, i = 1, · · · , m,
(23)

Definec , (c1, · · · , cm)), gi(c) , fi(
∑m

i=1 ciφ(xi)), and
r̃(α, b) , r

(
∑m

j=1 αjφ(xj), b
)

. Let ei denote theith basis
vector. Then Problem (23) can be rewritten as

min :r̃(α, b) +

m
∑

i=1

ξi,

s.t. :yi(e
⊤
i Kα + b) − yiα

⊤Kc ≥ 1 − ξi − gi(c),

∀c ∈ R
m, i = 1, · · · , m,

ξi ≥ 0, i = 1, · · · , m,

where the constraint can be further simplified as

yi(e
⊤
i Kα + b) − g∗i (yiKα) ≥ 1 − ξi, i = 1, · · · , m.

Notice that generallyg∗(·) depends on the exact formulation
of the feature mappingφ(·). However, for the following spe-
cific class off(·), we can determineg∗(·) from K without
knowingφ(·).

Theorem 18 If there existshi : R
+ → R

+ such that

fi(δ) = hi(
√

〈δ, δ〉), ∀δ ∈ Φ,

then
g∗i (yiKα) = h∗

i (‖α‖K).

Notice that whenhi is an increasing function, thenfi(δ) ≥
fi(δ

=) is automatically satisfied∀δ ∈ Φ.
The previous results hold for the case where we have ex-

plicit discount functions in the feature space. However, in
certain cases the discount functions naturally lie in the orig-
inal sample space. The next theorem gives a sufficient alter-
native in this case.

Theorem 19 Supposehi : R
+ → R

+ satisfies

hi

(
√

k(xi,xi) + k(xi − δ,xi − δ) − 2k(xi,xi − δ)
)

≤ fi(δ), ∀δ ∈ R
n. (24)

Then

yi

(

〈w, φ(xi) − δφ〉 + b
)

≥ 1 − ξi − hi(
√

〈δφ, δφ〉),
∀δφ ∈ Φ, (25)

implies

yi

(

〈w, φ(xi −δ)〉+ b
)

≥ 1− ξi− fi(δ), ∀δ ∈ R
n. (26)

Notice the condition in Theorem 19 only involves the
kernel functionk(·, ·) and is independent of the explicit fea-
ture mapping. Hence this theorem applies for abstract map-
pings, and specifically mappings into infinite-dimension spaces.

Theorem 20 Equip the sample space with a metricd(·, ·),
and suppose there existk̂i : R

+ → R, and f̂i : R
+ →

R
⋃{+∞} such that,

k(x,x′) = k̂(d(x,x′)), ∀x,x′ ∈ R
n;

fi(δ) = f̂i(d(xi,xi − δi)), ∀δ ∈ R
n.

(27)

Thenhi : R
+ → R

+
⋃{+∞} defined as

hi(x) = inf
y|∃z∈Rn:y=d(xi,z), k̂(y)=k̂(0)−x2/2

f̂i(y) (28)

satisfies Equation (24), and for anyh′(·) that satisfies Equa-
tion (24), h′(x) ≤ h(x), ∀x ≥ 0 holds. Here, we take
infy∈∅ f̂i(y) to be+∞.

6 Numerical Simulations

In this section, we report some empirical experiments that
were used to gain further insight into the performance of the
comprehensive robust classifier. To this end, we compare the
performance of three classification algorithms: the standard
SVM, the standard robust SVM with ellipsoidal uncertainty
set, and comprehensive robust classifier with ellipsoidal un-
certainty set with linear discount function from the center
of the ellipse to its boundary (see below). The simulation
results show that a comprehensive robust classifier with the
discount function appropriately tuned has a performance su-
perior to both the robust classifier and the standard SVM.



This soft formulation of robustness builds in protection to
noise, without being overly conservative.

We use the non-kernelized version for both the robust
classification and the comprehensive robust classification. We
use a linear discount function for the comprehensive robust
classifier. That is, noise is bounded in the same ellipsoidalset
as for the robust SVM,{δ|‖δ‖Σ−1 ≤ 1}, and the discount
function is

fi(δ) =

{

α‖δ‖Σ−1 ‖δ‖Σ−1 ≤ 1,
+∞ otherwise.

The parameterα controls the disturbance discount. Asα
tends to zero, there is no discount inside the uncertainty set,
and we recover the robust classifier. Asα tends to+∞, the
discount increases until effectively the constraint is only im-
posed at the center of the ellipse, hence recovering the stan-
dard SVM classifier.

We use SeduMi 1.1R3 [30] to solve the resulting convex
programs. We first compare the performance of the three al-
gorithms on the Wisconsin-Breast-Cancer data set from the
UCI repository [31]. In each iteration, we randomly pick
50% of the samples as training samples and the rest as test-
ing samples. Each sample is corrupted by i.i.d. noise, which
is uniformly distributed in an ellipsoid{δ|‖δ‖Σ−1 ≤ 1}.
Here, the matrixΣ is diagonal . For the first40% of features,
Σii = 16, and for the remaining features,Σii = 1. This cap-
tures the setup where noise is skewed toward part of the fea-
tures, and is more common in practice compared to spherical
ones. We repeat30 such iterations to get the average empir-
ical error of the three different algorithms. Figure 1 shows
that for appropriately chosen discount parameterα, the com-
prehensive robust classifier outperforms both the robust and
standard SVM classifiers. As anticipated, whenα is small,
the comprehensive robust classification has a testing error
rate comparable to the robust classification. For largeα,
the classifier’s performance is similar to that of the standard
SVM. This figure essentially shows that protection against
noise is beneficial as long as it does not become overly con-
servative. The comprehensive robust classification is of in-
terest because it provides a more flexible approach to handle
the noise.
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Figure 1: Simulation results for WBC Data.

We run similar simulations on Ionosphere and Sonar data
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Figure 2: Simulation results for Ionosphere Data.
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Figure 3: Simulation results for Sonar Data.

sets from the UCI repository [31]. To fit the variability of
the data, we scale the uncertainty set: for40% of the fea-
tures,Σii equals0.3 for Ionosphere and0.01 for Sonar; for
the remaining features,Σii equals0.0003 for Ionosphere and
0.00001 for Sonar. Figure 2 and Figure 3 show the respective
simulation results. Similarly to the WBC data set, the com-
prehensive classification achieves its optimal performance
for mid-rangeα, and is superior to both the standard SVM
and the robust SVM.

7 Concluding Remarks

This work investigates the relationship between robust clas-
sification and its extensions, and regularized SVM classifica-
tion, and seeks to develop robust classifiers with controlled
conservatism. In particular, we show that the standard norm-
regularized SVM classifier is in fact the solution to a robust
classification setup, and thus known results about regular-
ized classifiers extend to robust classifiers. To the best of our
knowledge, this is the first explicit such link between regu-
larization and robustness in pattern classification. This link
suggests that norm-based regularization essentially builds in
a robustness to sample noise whose probability level sets are



symmetric, and moreover have the structure of the unit ball
w.r.t. the regularizing norm. It would be interesting to under-
stand the performance gains possible when the noise does
not have such characteristics, and the robust setup is used
in place of regularization with appropriately defined uncer-
tainty set.

We further expand on this connection by showing that
any arbitrary convex constraint regularization is equivalent
to the classifier obtained through a formulation using a softer
version of robustness known as comprehensive robustness.
This allows the connection to convex risk measures, from
which we develop risk-constrained classifiers.

At a high level, our contribution is the introduction of a
more geometric notion of hedging and controlling complex-
ity (robust and comprehensive robust classifiers integrally
depend on the uncertainty set and structure of the discount
function) and the link to probabilistic notions of hedging,in-
cluding chance constraints and convex risk constraints. We
believe that in the realm of applications, particularly when
distribution-free PAC-style bounds are typically exceedingly
pessimistic, the design flexibility of such a framework will
yield superior performance. A central issue on the appli-
cation front is to understand how to effectively use the ad-
ditional degrees of freedom and flexibility since now we are
designing uncertainty sets, and discount functions, rather than
simply choosing regularization parameters that multiply a
norm.
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