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Abstract—In this paper, we consider the downlink of a the growing demand for wireless applications has led to a
cognitive radio network where a cognitive base station sees  scarcity of spectrum. However, a recent Federal Commu-
multiple cognitive users on the same frequency band as a nications Commission (FCC) study [1] has revealed that

group of primary transceivers. The cognitive base station ges | i f t th hall ted iqmif
an orthogonal scheduling scheme (TDMA/FDMA) to serve arge portions of spectrum, though allocated, are sigmtiga

its users. For this purpose, the base station is interestechi under-utilized by the licensees. Cognitive radio techgglo
acquiring an estimate of the interference (from the primary introduced by J. Mitola [2], is a promising solution to
network) power at each of its cognitive receivers as a measer this problem, one that can potentially increase the spectru
of channel quality. This can be surely achieved if we allow fo utilization efficiency as recognized by the FCC [3]. Thisttec

the feedback (from the cognitive receivers to the cognitivébase | s f iti i a/ d t
station) bandwidth to scale linearly in the number of cognitve 10109y calls for cognitive (unlicensed/secondary) users

receivers, but in densely populated networks, the cost of shan ~ Operate on the same frequency band as the primary licensed
acquisition might be too high. This leads us to the questionfo users while attempting to access the spectrum seamlessly. |
whether we can do better in terms of bandwidth efficiency. other words, these users adjust their operating paranteters

We observe that in many scenarios — that are common in cq,se only minimal impact to the primary licensed users.
practice — where the primary network exhibits sparse change We introd bl f int tin th text
in transmit powers from one scheduling instant to the next, € "’_'.ro uce_ our problem of Interes .'n € an ex
it is possible to acquire this interference state with only a Of cognitive radio networks before presenting a review of

logarithmic scaling in feedback bandwidth. More specificaly, related work in the field.
in cognitive networks where the channels are solely determed
by the positions of nodes, we can useompressed sensing to  A. The Problem

recover the interference state. In addition to being a first . . . .
application of compressed sensing in the domain of limited  YVe have a number of primary transceiver pairs scattered in

feedback, to the best of our knowledge, this paper makes a key a given geographical area. There is a cognitive radio nétwor
matherr_]atical contribution co_ncerning the favourable senig  that shares the same geographical area (and spectrum by def-
properties of path-loss matrices that are composed of non- jnition). The cognitive radio network consists of a cogreti

zero mean, dependent random entries. Finally, we numericil . L . s
study the robustness properties of the least absolute shrikage base station (cognitive transmitter) and a number of cagnit

and selection operator (LASSO), a popular recovery algoritm, ~ USErs or recei\{ers as Shown in Fig. 1. The cognitive b_ase
under two error models through simulations. The first model  Station serves its users in an orthogonal manner (e.g. time-

considers a varying amount of error added to all entries of division-multiple-access). In order to decide which caigei
the sensing matrix. The second one, a more adversarial model ;ser to serve in each scheduling time slot, it is necessary fo

considers a large amount of error added to only a fraction of e . . . g
the entries of the sensing matrix that are chosen uniformly & the cognitive base station to possess information pengini

random. Simulation results establish that the LASSO recowy  t0 the quality of the wireless link between itself and each

algorithm is robust to imperfect channel knowledge. of its users. Consequently, it is interested in estimathmey t

interference power received by each cognitive node from the

primary network. Channel or interference state infornmatio
With the tremendous increase in wireless connectivity oven a frequency-division-duplexing (FDD) system is typlgal

the last decade, the demand for wireless spectrum has nesequired through an orthogonal feedback channel between

been greater. Traditionally, a portion of spectrum is @ted each receiver and the base statiofihus, it is possible to

or licensed for exclusive use by a specific group of usemscquire full channel state information by incurring a linea

by regulatory agencies. This inherent rigidity coupledhwit increase of feedback bandwidth in the number of users. But

I. INTRODUCTION

The research of the first two authors was partially suppobedNSF 1The feedback channel is necessary since channel recipraiinot be
grants EFRI-0735905, CNS-0721532, CNS-0831580, and DTR#ntg exploited in an FDD system as can be done in a time-divisiguiexing
HDTRA1-08-0029. The research of Lei Ying was supported byFNggant  system. The feedback channel is also assumed to be ortHotwriae
CNS-0831756 and DTRA grant HDTRA1-09-1-0055. primary network.



is this the most bandwidth-efficient method of acquisition®ystems. It has been used in the context of multipath channel
We show that when the primary users exhibit limited changesstimation (see [11]-[13] and references therein). This is
in their transmitted power levels between adjacent tim&sslo possible since a wideband channel typically has a large
as is the case in many common wireless applications, it imumber of channel taps but with energy concentrated only
possible to acquire channel state information with only &n a few of them. It has also recently been used to solve
logarithmic increase of feedback bandwidth in the numbepectrum sensing problems in cognitive networks operating
of users. in the interweave paradigm (see Yucek et al. [14] for a sprve
on the topic). In this paradigm, the cognitive radios com-
municate opportunistically by sensing holes in the spectru
thereby intrinsically relying on intermittent activity ftarns

of the primary users.
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C. Main Contributions and Organization
The main contributions of this paper are as follows:

1) A first (to the best of our knowledge) application
of compressed sensing in designing limited feedback
protocols for cognitive radio networks.

A proof that path-loss matrices satisfy thall space
property. Such channel matrices allow for efficient
acquisition of the interference state usiignorm min-
imization. By efficient, we mean logarithmic scaling
in feedback bandwidth. The proof technique is novel

2)

Fig. 1. Downlink of a cognitive radio network that shares theme
spectrum as a group of primary transceivers.

B. Literature review

Cognitive radios have been categorized into three operat-
ing paradigms based on the type of network side informa-
tion that is available along with the regulatory constraint
imposed by the primary networkinderlay overlay, and 3)
interweave[4]. While there has been significant progress
in engineering systems under each of these paradigms, we
will only review literature that is relevant to the underlay
paradigm, which is of interest in this paper. These are
systems that allow cognitive users to operate under trga
condition that the interference caused to the primary users
below an acceptable threshold [5].

Literature on cognitive underlay systems predominantl
tackles physical layer design issues. In [6], [7], adaptiv
power and rate policies are designed for the cognitivRI
transmitters given a constraint on the maximum allowable
interference at the primary receivers. Hossain et al. |
consider power allocation policies for the cognitive user
under a minimum performance constraint for each cognitiv:

constraint on the primary users.

In contrast to the above literature on cognitive underlaﬁq
networks, we are interested in the scheduling aspects per
taining to the downlink of a cognitive underlay network. In
particular, we focus on the problem of efficient acquisition
of channel state information by the cognitive base station i
order to facilitate user (cognitive) scheduling. As mené&d
earlier, we wish to accomplish this task with a logarithmic
increase of feedback bandwidth in the number of cognitiv
users (as opposed to a linear scaling) using a techniquezical
compressed sensing. This work differs from past work sucl!
as Gopalan et al [9] and Ouyang et al. [10] in that we exploﬁ
the underlying sparse structure induced by the application
accomplish bandwidth reduction.

Compressed sensing has received tremendous interest,
the recent past and it has found many applications in wiselesase.

since path-loss matrices contain entries that have non-
zero mean and are not independent, a scenario that has
not been dealt with extensively in past research.

A numerical study of the robustness of another popular
recovery algorithm to imperfect knowledge of chan-
nel state. Numerical evidence establishes favourable
robustness properties of the algorithm.

The rest of this paper is organized as follows. In Section

, we introduce the system model for the cognitive radio

network under consideration. In Section Ill, we prove the

“goodness” of path-loss sensing matrices. In Section IV, we

tudy the recovery performance of compressed sensing under

ﬁnperfect channel knowledge.

otation z;; denotes elemenfi,j) of matrix X while

; denotes element of vector x. (.)7 is the transpose

perator. Forx € RY, x4, A C {1,2,...,N} denotes

e vectorx restricted to the entries ipd. For matrices
kXN

user in addition to the maximum allowable interferenc%aterixRof X, Xar A C {12,

AC{1,2,..

e columns contained . Finally, || - ||, is the p-norm

.,k} denotes the sub-
formed by the rows contained inl. X 4,
., N} denotes the sub-matrix &X formed by

perator on vectors.

Il. SYSTEM MODEL

Each primary transmitter is dropped uniformly on a disc
of radius r, centered at the origin. There are a total of
primary transmitters located at poinf$X, ;, YV, ;)}¥,
the disc. There ar& cognitive receiversplaced on a
ollection of many circles of radfirc 1,7¢2,...,7cq} Where

g is such that% ¢ 7+ for simplicity andZ* represents the

2\We set the number of cognitive receivers equal to the numibyerimary
Hsmitters for simplicity. The analysis can be extenaecbter the general



set of non-negative integers. Each circle containsognitive ~ for all time) thereby not adapting to changes in the transmis
receivers located at fixed pointg X, ;,Y.;)}}Y, that are sion policy of the cognitive network. At timg the primary
equally-spacetias shown in Fig. 2. ThéV corresponding users transmit collectively at powp(?), i.e., user transmits
primary receivers that complete the primary network andt powerp;(t).
the cognitive base station that completes the cognitive net In order to make scheduling decisions, the cognitive base
work can be arbitrarily located anywhere on thg-plane. station requires knowledge of the channel quality between
The above spatial distribution model is chosen to providiéself and each cognitive receiver. The channel quality to
tractability in the analysis that follows. In the simulat® a cognitive receiver depends critically on the interfeeenc
section, we will show that the proposed algorithms work evepower that this node receives from the primary network.
under more regular spatial models such as users scattefgtls, it is important to estimate (perfectly if possibleg th
uniformly at random on a square area. For the sake diterference power received from the primary network. Let
the analysis, we will also partition the cognitive recesverthe interference power received by cognitive receiveat
according to the circle they belong to thus creatingarti- time ¢ be denoted by, ;(t).
tions {P1, Pa, ..., Py} such that J!_, P; = {1,2,...,N} Under the above assumptions, the interference power
and P, N P; = 0 for i # j. The distance between received tl)\y the cognitive receivérat time ¢ is given by
vi(t) = >_;—; hijp;(t). Collecting these interference powers
across all cognitive receivers, we get the interference sta

y(t) = Hp(t) wherey (1) = [yi(t) y2(t) ... yn ()]

The rows ofH are ordered according to the partition ordering

B {P1,Ps,...,P,}. For example, for the system in Fig.2,
the rows ofH would be ordered1,2,3,4,5,6,7,8}. The
cognitive base station would like to acquire full knowledge
of interference statg(¢) in order to perform user scheduling.
At the beginning of scheduling instant following limited

Fig. 2. Network with primary transmitters (not shown) umifdy dis- feedback literature (see the survey by Love et al. [15] and

tributed on the blue disc of radius,. There areN = 8 cognitive receivers references therein), we assume that the cognitive baserstat

and r,» rospocively. This gives rise 10 pariion - £1.2,54) spa 118 the ability to request observatiops(t) (interference

P2 = {5,6,7,8). The cognitive receivers are equally-spaced on each circl@OWers) from a subset of cognitive receivers. This is done

as shown. through orthogonal feedback channels from each user, which

essentially means that the observations, when transmitted
primary transmitteri and cognitive receivey is given by  from the users, do not interfere with each ofh@®f course,

dij = /(Xpi — Xci)? + (Vi — Ye.i)?. We assume that the e cognitive base station can queryZillcognitive receivers,
channel attenuation between any two nodes in the netwogk 7 — (1,2 ... N1 and acquire the interference state but

is solely determined by a path-loss dain is this the most bandwidth efficient approach? It turns out
52 that this is not the most efficient approach since it does not
hij = - 1(dij 2 0) +1(dij <9), (1) exploit the underlying structure of the primary network as
ij

explained shortly.
whered > 0 is commonly referred to as the critical distance

andI(-) is the indicator function. Here, we assume a pathA. Sparsity

loss coefficient of two but this can be generalized to any sjnce the very motivation for cognitive radio networks is
larger constant quite easily. This is an approximation ef thihat the primary spectrum is under-utilized, this autonzaly
free space path loss model [19] since the latter precludes tfhqyces sparsity into the power profile vectxt). Moreover,
placement of nodes within a distance @fmetres. On the {5, networks where the dynamics (primary user activity,
other hand, our model in (1) states that within a distance @hannel coherence times, cognitive user activity) opevate
0 metres, there is no channel attenuation. This assumpti@ierent time-scales, which is the case with many wireless
affords us analytical tractability while compromising yer systems, it is natural for the power difference veatt) =
little on modelling accuracy. p(t) — p(t — 1) to be more sparse than the absolute power
The cognitive base station adopts transmit strategies ttﬁtof"e vectorsp(t) and p(¢t — 1). This is true in particular
respect an upper bound on interference caused to the primg{Men the dynamics of the primary user activity operates
network. We assume that the primary transmitters choogg g slower time-scale than that of the cognitive network.
their transmit strategy based on this interference capdfixggnsider for instance a scenario where a small subset of

_ rimary receivers are mobile. This would require power
3We note that this would roughly be the case wiérbecomes large and P y q P

the users are uniformly distributed. control on the part of a correspondingly small fraction of
4This model is accurate for sufficiently large schedulingetiseales and/or
if all transmitters, receivers and surrounding objects aienstationary for 5These channels are assumed to be orthogonal to the primary as

long periods of time. well.



primary transmitters in order to maintain the same ratexploit the sparsity structure induced by our wireless iappl
Another scenario is where only a small subset of primargation and use compressed sensing techniques to conserve
users have data to transmit at each instant. Under thefsmdback bandwidth. We note that in our application, the
settings, the vectos(t) = p(t) — p(t — 1) is sparse, say sensing matrix is provided by the channel as opposed to
S-sparse (it contains at moStnon-zero entries) and we cantraditional compressed sensing where the designer is etlow
define to choose a convenient sensing mechanism.

z(t) = y(t) — y(t — 1) = Hs(¢) Before we conclude this section, we note that a host of

other algorithms such as the greedy correlation approach

to be the difference in interference powers between adfacgro], and the least absolute shrinkage and selection aperat
scheduling time slots. Here, we assume that the channelASS0) [22] have all been shown to work well as recovery
remains constant for a long period of time, which accuratelyols. The LASSO, given by
models a system with slow-moving or stationary users. For
this reason, we also assume that the cognitive base station
has full knowledge of all (both primary and cognitive) uselis method of recovery that we will use for the purposes of
positions in the network. In the longer version of this papegur simulations in Section IV. The theoretical connections
[31], we will discuss implementation methods that can helpetween LASSO and Basis Pursuit have been well-analysed
alleviate this requirement. by authors such as Tropp [21]

Under such a setting where we have naturally-occurring
sparsity inz(t) and/ory(t), it is possible to significantly l1l. NSP OF PATH-LOSS MATRICES
reduce the required feedback bandwidth. kegtt) denote In this section, we establish that path-loss matrit&s
the observations acquired from the queried users at ting@tisfy the NSP (which will be defined shortly) when the
t and letk = |I| represent the size of this set. It is offeedback bandwidth obeys = O(Slog N). Theorem 4
immediate interest to determine the smallest query sige  constitutes the main result in this section.

_feedback bandwidth) that the_ cognitive bgse station requirA_ Preliminaries

in order to recovery.(t) reliably. We will show that it
is possible to recoves(t) (and hencey;.(t)) through the
technique ottompressed sensinging onlyk = O (SlogN)
observations thus resulting in a significant reduction )
feedback bandwidth. In this work, we do not consider thgull space property of ordeg if for all subsetsS <
number of bits required to communicate(t) reliably as we 1,2,..., N} with |S| < 5, the following holds

are interested primarily in the scaling behaviour of feattba l[vs|li < ||[vsell1, ¥v € N(M)\ 0.

bandwidth.

Compressed sensing The topic of compressed sensing ere_SC =11,2,...,N}\ §. Based on this prope_rty, _the
received tremendous interest in the recent years [16]—[1 &owmg_rgcoyery result [26] has appeared both implitl
The theory essentially states that one can recover spa d explicitly in works such_as [25], [27]. Let the support
data 6(¢) in our case) exactly, given an underdetermined€t Ofs(t) be denoted bys with |S| < 5. A vectors(?) is
system of O(SlogN) equations. The results are attractiveS'Sparse itS| < 5.
from an algorithm perspective as well since it has been showtheorem 1. Let M € R¥*V | EveryS-sparse vectos € RV
that recovery is possible using standard computationallys the solution to the/;-norm minimization problem in (2)
efficient convex optimization techniques such @snorm  with y = Ms iff M satisfies the NSP of orde.
minimizatiorf, often calledBasis Pursuitf23], given by

minimize 1|[Hy,x —z;(t)|> + A|x||1, (3)

We define the null space property from Gribonval et al.
[26]. Given a matrixM, let A'(M) denote its null space.
Olpefinition (Null space Property)A matrix M satisfies the

O
The NSP is typically quite difficult to prove directly leadin
to the development of sufficient conditions that are easier
) . to establish. One such sufficient condition is tlestricted
Here,z;(t) = y(t) —yi(t — 1) andHy,, is the sub-matrix jsometry property[28] that has become quite popular in
of path-loss entries (as defined in (1)) corresponding to tr}%cem years and is defined below.
rows in/ c {1,2,..., k}. Compressed sensing theory stategqfinition (Restricted Isometry Propertyh matrix M sat-

that it is possible to recover arfy-sparse vector if and only isfies the Restricted Isometry Property (RIP) of orgeif
if the sensing matrixH satisfies theNull Space Property there exists:, (M) € (0,1) such that
P )

(NSP) [25] of orderS. This property will be defined in

the next section. Furthermore, the choice of subisistnot (1 — &,(M))[|vr[l3 < [[M7cvrl3 < (1+ 6(M))|lvrl3
important (only the size) for this special class of matridas (4)
the following section, we will show that path-loss matriess holds for all sets7” with |7 < p.

defined in (1) do indeed satisfy the NSP and hence facilitate Here, e, (M) is called therestricted isometric constardf

compressed sensing. In our setting, this means that we cih The RIP essentially requires that &lk | 7| sub-matrices
of M be well-conditioned. The following result that connects

6¢;-norm minimization can be written as a linear program. the RIP and NSP.

minimize ||x||1
subject to Hy,x =z(t)

)



Theorem 2. Suppose the restricted isometric constanequivalent to the following one:

€2p(M) satisfies (iv) Moment generating functioriE [exp(tz)] < expt*Ky,)
1 for all t € R.

37
then M satisfies the NSP of ordex

€2p <
O
A random variable that satisfies the above property is called
O asub-gaussiamandom variable. Such random variables are
The approach we use to prove “goodness” of path-lossften characterized by the,-norm?, which is defined as
matricesH is motivated by the following observation. In
general, the null space of a product of two matri®éd1
contains the null space &1 and therefore ifNM satisfies
the NSP, so doedl. This allows us to study the class of
effectivepath-loss matricead = BG = BWH where

E[l=7))7
=

It follows that if the ¢o-norm of z is finite, thenz is a sub-
gaussian random variable withx||,, = K». This is the case

WT = (W wi.. WqT]T for bounded random variables with symmetric distributions
Wi = [W7:|0 Wi|1 - ~-W¢|%72]

(6)

[|2]l. = sUR,>.

3

Lemma 2. Let z be a symmetrically distributed, bounded
(5) random variable with|z| < M, M > 0. Then,z is a sub-

T —
Wi = w 1-10...0 gaussian random variable withz||,, < cM?, ¢ > 0.

3

(- o

In higher dimensions, a random vectsrof dimension
and w;; denotes the vectow; cyclically shifted to the x s called sub-gaussian #”x is sub-gaussian for every
right by [ positions; B is defined in (6) with3, ~ RN,

Bernoulli(3), Vi and independent acrossD = diag{d} _ .
is a diagonal matrix withd on its diagonal. The Bernoulli Lemma 3. Let{z;}}/, be a collection of independent, zero-
random variables have suppdtt1}. We focus our attention Mean, sub-gaussian random variables. Thenis a sub-
on establishing the recovery propertiesfrather thanH. — gaussian random vector withz|[,, = Cmax ||z |y, .
We will show thatA satisfies the RIP witlk = O(Slog N) 0
observations and then invoke the result in Theorem 2 abovgne can make a similar characterization of sub-exponential
The transformgtlorw essentially subtracts adjacent_r_ows ofandom variables through the following lemma.
H corresponding to users that belong to ganepartition.
Thus, the dimension o is (k — ¢) x k. The transformation Lemma 4. Let z be random variable. The following prop-
B weights and adds adjacent rows @f erties are equivalent with parametefs; > 0 differing from
According to our spatial distribution model, when condi-€ach other by at most an absolute constant factor.
tioned on the positions of the cognitive users, the columr(® Tails: Pr(|z[ > t) < exp(1 — ;) for all t > 0,
of H become stochastically independent since each primagy) Moments:(E [|z|1’])% < Kop for all p > 1,
transmitter is independently tr_lrown. We will rely heavny(iii) Super-exponential momerit: {exp(%)} <e.
on recent results from Vershyin [29] and Adamcyzk et al. 3
[30] that deal with sensing matrices containing indepehden O
columns. Before we reproduce the RIP result [29], [30] foA random variable that satisfies the above property is called
matrices with independent columns, we present a primé sub-exponentiakandom variable. Thej;-norm of z is
on sub-gaussian and sub-exponential random variableg alo#efined as )
: ) : i Py 3
with some useful results from non-asymptotic matrix theory 2l = SUp,s, (E|z) . @
B. Useful concentration inequalities
We refer the reader to the tutorial paper by Vershynifhis immediately brings us to the next two lemmas which
[29] for a great introduction to non-asymptotic matrix theo explore the connection between sub-gaussian and sub-
Lemmas 1-6 below are well-known past results that aréxponential random variables.
summarized in this paper [29]. The proofs are not reproducqz_%mma 5

is a sub-gaussian random variable if and only
due to lack of space.

if 22 is a sub-exponential random variable. Furthermore, we
Lemma 1. Let z be random variable. The following prop- have that||z[|7, < [[2*[|y, < 2[|2[|Z,.

erties are equivalent with parametefs; > 0 differing from
each other by at most an absolute constant factor.

(i) Tails: Pr(|z| > t) < exp(1 — I@—Z) for all ¢ > 0,

(i) Moments:(]E[|z|P])% < Ky/pforall p>1,

. 3 22

- . = <e. — .
(iif) Super ?Xponentlal momerk eXp_(K:s)J i.e “Alternate definitions of this norm have been adopted (such 430])
Moreover, if E[z] = 0 then properties (i)-(iii) are also that are all equivalent to within a constant factor.

O
The following lemma contains a large-deviations resulteor
weighted sum of sub-exponential random variables.



B B2 0 0 - - 0 0 0
0 B3 B4 O - - 0 0 0
1 1 . . . L. . .
B = diag . S : : ©
{\/Var{gu} + Var{ga1} \/Var{g<k_q)1} +Var{911}} 0 0 0 0 - - 0 Bougys Boeogen)
Bok—qy O O 0O - - 0O 0 Ba(k—q)—1
Lemma 6. Let {21, 22, ..., 25} be a collection of indepen- Proof sketch The channel matri contains elements that
dent, zero-mean, sub-exponential random variables and lgte identically distributed by the symmetry of primary san
VUmaz,> = Max ||zi[|y,. Then, mitters’ placement on a disc and the circular placement of
M _ 2 . the cognitive receivers. Thus, the matix obtained after
Pr < Zz > Mt) < exp (—cMmln{W—7 ¢—}) left multiplication by W contains zero-mean entries while
i=1 s Tman preserving column independence. A fact that is less obvious

U s that the entries oG are symmetric. This follows from
We are now ready to prove a concentration bound on thfe definition ofG in (5), where we have droppetifference
event {k(1 — ¢)[|x||3 < [|Ax[|* < k(1 + ¢)||x[[3} in order rows corresponding to users from different partitions, and
to establish the RIP (hence NSP) for matAx Before we from the notion of exchangeable random variables. Recall
move on to this task, we require one more definition. Ahat G is of size(k —q) x N.
random vectorm of dimensionM is called isotropic if Next, we multiply G by the random matridB. Since G
E[lm"x|?] = ||x||? for all x € RM. contains entries with symmetric distributions, we will sho
C. NSP of effective path-loss matricAs Fhat the multiplication byB does not destroy thg .stochastic
independence across the columns @f In addition, the
We reproduce the recent RIP (hence NSP) result [29], [3Qhjumns ofA are identically distributed allowing us to focus
concerning matrices with independent columns. We refer thg, he properties of the first columay. a; is isotropic

reader to [29], [30] for the proof. since the presence of the i.i.d. Bernoulli random variables

Theorem 3. Let M be ank x N random matrix whose Bi successfully nulls the pairwise cross-correlation ambngs
columns are independent, isotropic and sub-gaussian witRe €lements oh,. The constants in the diagonal matrix
Ymaz,m = Max ||my||y,. Furthermore, let the columns diag 1 1 are
satisfy ||m;||> = & almost surely. Then, the normalized VVar{gi3+Var{g..y "\ /Var{gg._ )} +Var{on }
matrix #M is such that ifk > Cy, .. e 2Slog (%), chosen to make the variance of eagh, i = 1,..., (k = d),
then unity.
€p <LM> <e (8) The columna; can be shown to be sub-gaussian as
Vk follows. We observe that when conditioned on the location of
with probability at least1 — 2exp—cy,... ,.c%k). Here, primary tran§mitter1, the iny randomness ia; reside_s in
Cynn and Cy.  depend only the worst-case sub-the Bernoulli random variables;. Thus, when conditioned
gaussian nOTWmm;m. on the location of primary transmittér a; contains symmet-
rically distributed, bounded, independent random vaesgbl
) ) ~ B bringing into effect the result in Lemma 3.
As mentioned earlier, the channel matiik contains inde-  gjmijarly, norm-concentration is proved by alluding to the

pendent columns since the positions of the cognitive USELS e ghservation. Again, when conditioned on the location
are fixed. However, each column contains entries that agg primary transmitter1, from Lemma 5 {az }H is a
’ 1 i1JSi=1

not centered, not isotropic and that are highly coupleds Thijection of independent sub-exponential random vaesbl
is because all entries ih; are completely determined by bringing into effect the result in Lemma 6. O
the position of the primary transmittér Hence, it is not

immediately clear whether the column is sub-gaussian dueFrom Theorems 3 and 4 satisfies the RIP and in turn,

to this strong coupling. - . :
. . the NSP for a sufficiently small isometric constant wiigr-

To prove the NSP oH, our'approach will be to suitably q) = O(SlogN). This implies that satisfies the NSP when

left-multiply the channel matrid by carefully-chosen ma- ;”_ O(Slog). Note that the number of circles containing

EF';:ES} ‘Qilo as o trr? eet the suﬁltg:tletnt c;)hndltlon_s n Thlteorfe:rrl_ e cognitive receivers appears as an additive constant and
€ Tollowing theorem constitutes the main result ot thig, o -6 goes not affect the order of the result.

paper. The proof is involved and hence deferred to a IongerWe conclude this section with a comment on some imple-

version of this paper [31] due to lack of space. Instead, Wr%entation aspects of the proposed limited feedback protoco
provide a sketch of the proof.

We observe almost immediately that the proposed protocol
Theorem 4. The effective path-loss matrik = BWH of admits a distributed implementation. This would involvelea
size (k — ¢) x N contains independent, isotropic, centeredgcognitive receiver flipping a coin with a certain probalilit
sub-gaussian columns. Furthermore, we have thaf|> = 1 which guarantees that the number of observations received b
almost surely. the base station is greater than the lower bound in Theorem 4




with high probability. However, such a protocol would worksparse (which of course automatically implies th@t), the
only if we are operating in the setting where the absolutdifference in powers, is sparse). Hence, we can focus on
power profile vectors are sparse. This is because, to operageoveringp(t) instead ofs(¢). We further assume that the
in the sparse dynamics mode, we would require the querpgnitive base station knovespriori the value of the primary
set] to remain constant over all time, which would not betransmit power thereby requiring only support recoverye Th

guaranteed under a distributed coin-flipping protocol. simulation parameters are provided below in Table I.
V. STUDY OF ROBUSTNESS TABLE |
Thus far in this paper, we have studied sparse recovery in SIMULATION PARAMETERS
the context of path_-loss sensing matrices assuming that thepescription Associated Simulation
cognitive base station has perfect knowledge of the sensingof parameter variable Value
matrix H. In reality though, this is seldom true since the [ Cell size d 2000 metres
system is subject to errors that could stem from the channglCritical distance 9 100 metres
No. of users N 100

estimation process, quantization, the fact that node ntpbil | (;ognitive and
that is faster than the tracking ability of channel estioati | primary)

algorithm, shadowing and other small-scale fading effects Sparsity S 5

This motivates us to analyse numerically the performance of ;:;ﬁgteprena'ty A 0-0005

sparse recovery under imperfect channel knowledge, whic T

forms the subject of this section. Primary transmit p(t) [10...10 0 0...0] Watts
We consider two perturbation models in our simulations: 5 95

(i) (E1) Small error introduced into all entries of the sensing ﬁg‘r";‘;roxzcttgr —
matrix (i) (E2) Large error introduced into a small fraction | ggtimate distortion
of entries, sayf € [0,1], chosen uniformly at random.
Under both models E1 and E2, the error is multiplicative and \we make a few remarks on the simulation results. Note
random, i.e. the perturbed matrix entryis = (1 +¢i;)hij  that each figure contains four curves corresponding to
wheree;; ~ U|[—p, p] for somep € [0, 1]. This multiplicative ;. (24,29, 35, 41,47}.

per-entry perturbation allows us to introduce error in a

systematic fashion since the parametemow represents Remarks

the maximum percentage error per entry. Under both pefy ynder both error models, we see from Fig. 3 that the
turbation models E1 and E2, the performance metric isystem s significantly robust to imperfect channel knogked
average distortion per channel measurement. More formal@iven the range of the distortion values.

let s represent the output df minimization under channel iy ynder error model E1, when all entries are corrupted by
imperfections and denote the true vector. Then, average disgactor of 15%. we see from Fig. 3(a) that 2% increase
tortion per channel measurement wheinV entries, chosen i the number of observations or feedback bandwidth results
uniformly at random, are corrupted by multiplicative noisg, 5 30% decrease in distortion. As we move fro —

with a maximum magnitude of00p% while consuming a Slog N to & = 1.25Slog N however, the reduction in

feedback bandwidth of observations is given by distortion is now less thaB0%. This leads to believe that
1 . the distortion exhibitdiminishing returnsin the feedback
Dr(p. f) = N IE(@) HL(f) (lly =51l (9 pandwidth, which is a reasonable in the context of wireless
systems.

iii) Under error model E1, if we keep the distortion fixed at
random matrix that models the locations of the error. Thi il "W b : ! X

. . . .6, we see from Fig. 3(a) that @0% increase in feedback
matrix containsfk N ones chosen uniformly at random. Thebandwidth fromk — 1.255log N to k — 2Slog N results
remainingkN — fkN entries are zero. '

wherey = Hs, y = Hs and L(f) € {0,1}}*N is a %

in order to measureDsjoqy (p,1) for p € [0,1] and o5 ed by an error of magnitude at mogo%, we see that

0 € {1,1.25,1.5,1.75,2}. The results are presented in, 950 increase in the number of observations or feedback
Fig. 3(a). Under the second error model E2, we measufgngwidth results in 27% decrease in distortion. As in the
Dyslogn (1, f) for f € 0. 1] and @ € {1,1.25,1.5,1.75.2}  earfier case, we also see evidence of diminishing returns.
and present the results in Fig. 3(b). The recovery algorithiy ynder error model E2, if we keep the distortion fixed at
of choice is the LASSO as defined in (3). Primary usefj 5 e see from Fig. 3(a) that 20% increase in feedback

activity is modelled as ON-OFF for the sake of simplicity.pandwidth fromk — 1.58log N to k = 2Slog N results in
This means that if primary useris ON, thenp;(t) = 10; 5 150% increase in error tolerance.

else p;(t) = 0. This models scenarios where the primary
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