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Abstract— In this paper, we consider the downlink of a
cognitive radio network where a cognitive base station serves
multiple cognitive users on the same frequency band as a
group of primary transceivers. The cognitive base station uses
an orthogonal scheduling scheme (TDMA/FDMA) to serve
its users. For this purpose, the base station is interested in
acquiring an estimate of the interference (from the primary
network) power at each of its cognitive receivers as a measure
of channel quality. This can be surely achieved if we allow for
the feedback (from the cognitive receivers to the cognitivebase
station) bandwidth to scale linearly in the number of cognitive
receivers, but in densely populated networks, the cost of such an
acquisition might be too high. This leads us to the question of
whether we can do better in terms of bandwidth efficiency.
We observe that in many scenarios – that are common in
practice – where the primary network exhibits sparse changes
in transmit powers from one scheduling instant to the next,
it is possible to acquire this interference state with only a
logarithmic scaling in feedback bandwidth. More specifically,
in cognitive networks where the channels are solely determined
by the positions of nodes, we can usecompressed sensing to
recover the interference state. In addition to being a first
application of compressed sensing in the domain of limited
feedback, to the best of our knowledge, this paper makes a key
mathematical contribution concerning the favourable sensing
properties of path-loss matrices that are composed of non-
zero mean, dependent random entries. Finally, we numerically
study the robustness properties of the least absolute shrinkage
and selection operator (LASSO), a popular recovery algorithm,
under two error models through simulations. The first model
considers a varying amount of error added to all entries of
the sensing matrix. The second one, a more adversarial model,
considers a large amount of error added to only a fraction of
the entries of the sensing matrix that are chosen uniformly at
random. Simulation results establish that the LASSO recovery
algorithm is robust to imperfect channel knowledge.

I. I NTRODUCTION

With the tremendous increase in wireless connectivity over
the last decade, the demand for wireless spectrum has never
been greater. Traditionally, a portion of spectrum is allocated
or licensed for exclusive use by a specific group of users
by regulatory agencies. This inherent rigidity coupled with
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the growing demand for wireless applications has led to a
scarcity of spectrum. However, a recent Federal Commu-
nications Commission (FCC) study [1] has revealed that
large portions of spectrum, though allocated, are significantly
under-utilized by the licensees. Cognitive radio technology,
introduced by J. Mitola [2], is a promising solution to
this problem, one that can potentially increase the spectrum
utilization efficiency as recognized by the FCC [3]. This tech-
nology calls for cognitive (unlicensed/secondary) users to
operate on the same frequency band as the primary licensed
users while attempting to access the spectrum seamlessly. In
other words, these users adjust their operating parametersto
cause only minimal impact to the primary licensed users.

We introduce our problem of interest in the context
of cognitive radio networks before presenting a review of
related work in the field.

A. The Problem

We have a number of primary transceiver pairs scattered in
a given geographical area. There is a cognitive radio network
that shares the same geographical area (and spectrum by def-
inition). The cognitive radio network consists of a cognitive
base station (cognitive transmitter) and a number of cognitive
users or receivers as shown in Fig. 1. The cognitive base
station serves its users in an orthogonal manner (e.g. time-
division-multiple-access). In order to decide which cognitive
user to serve in each scheduling time slot, it is necessary for
the cognitive base station to possess information pertaining
to the quality of the wireless link between itself and each
of its users. Consequently, it is interested in estimating the
interference power received by each cognitive node from the
primary network. Channel or interference state information
in a frequency-division-duplexing (FDD) system is typically
acquired through an orthogonal feedback channel between
each receiver and the base station1. Thus, it is possible to
acquire full channel state information by incurring a linear
increase of feedback bandwidth in the number of users. But

1The feedback channel is necessary since channel reciprocity cannot be
exploited in an FDD system as can be done in a time-division-duplexing
system. The feedback channel is also assumed to be orthogonal to the
primary network.



is this the most bandwidth-efficient method of acquisition?
We show that when the primary users exhibit limited changes
in their transmitted power levels between adjacent time slots,
as is the case in many common wireless applications, it is
possible to acquire channel state information with only a
logarithmic increase of feedback bandwidth in the number
of users.
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Fig. 1. Downlink of a cognitive radio network that shares thesame
spectrum as a group of primary transceivers.

B. Literature review

Cognitive radios have been categorized into three operat-
ing paradigms based on the type of network side informa-
tion that is available along with the regulatory constraints
imposed by the primary network:underlay, overlay, and
interweave[4]. While there has been significant progress
in engineering systems under each of these paradigms, we
will only review literature that is relevant to the underlay
paradigm, which is of interest in this paper. These are
systems that allow cognitive users to operate under the
condition that the interference caused to the primary usersis
below an acceptable threshold [5].

Literature on cognitive underlay systems predominantly
tackles physical layer design issues. In [6], [7], adaptive
power and rate policies are designed for the cognitive
transmitters given a constraint on the maximum allowable
interference at the primary receivers. Hossain et al. [8]
consider power allocation policies for the cognitive users
under a minimum performance constraint for each cognitive
user in addition to the maximum allowable interference
constraint on the primary users.

In contrast to the above literature on cognitive underlay
networks, we are interested in the scheduling aspects per-
taining to the downlink of a cognitive underlay network. In
particular, we focus on the problem of efficient acquisition
of channel state information by the cognitive base station in
order to facilitate user (cognitive) scheduling. As mentioned
earlier, we wish to accomplish this task with a logarithmic
increase of feedback bandwidth in the number of cognitive
users (as opposed to a linear scaling) using a technique called
compressed sensing. This work differs from past work such
as Gopalan et al [9] and Ouyang et al. [10] in that we exploit
the underlying sparse structure induced by the applicationto
accomplish bandwidth reduction.

Compressed sensing has received tremendous interest in
the recent past and it has found many applications in wireless

systems. It has been used in the context of multipath channel
estimation (see [11]–[13] and references therein). This is
possible since a wideband channel typically has a large
number of channel taps but with energy concentrated only
in a few of them. It has also recently been used to solve
spectrum sensing problems in cognitive networks operating
in the interweave paradigm (see Yücek et al. [14] for a survey
on the topic). In this paradigm, the cognitive radios com-
municate opportunistically by sensing holes in the spectrum
thereby intrinsically relying on intermittent activity patterns
of the primary users.

C. Main Contributions and Organization

The main contributions of this paper are as follows:

1) A first (to the best of our knowledge) application
of compressed sensing in designing limited feedback
protocols for cognitive radio networks.

2) A proof that path-loss matrices satisfy thenull space
property. Such channel matrices allow for efficient
acquisition of the interference state using`1-norm min-
imization. By efficient, we mean logarithmic scaling
in feedback bandwidth. The proof technique is novel
since path-loss matrices contain entries that have non-
zero mean and are not independent, a scenario that has
not been dealt with extensively in past research.

3) A numerical study of the robustness of another popular
recovery algorithm to imperfect knowledge of chan-
nel state. Numerical evidence establishes favourable
robustness properties of the algorithm.

The rest of this paper is organized as follows. In Section
2, we introduce the system model for the cognitive radio
network under consideration. In Section III, we prove the
“goodness” of path-loss sensing matrices. In Section IV, we
study the recovery performance of compressed sensing under
imperfect channel knowledge.
Notation: xij denotes element(i, j) of matrix X while
xi denotes elementi of vector x. (.)T is the transpose
operator. Forx ∈ R

N , xA, A ⊆ {1, 2, . . . , N} denotes
the vectorx restricted to the entries inA. For matrices
X ∈ R

k×N , XA,r, A ⊆ {1, 2, . . . , k} denotes the sub-
matrix of X formed by the rows contained inA. XA,c,
A ⊆ {1, 2, . . . , N} denotes the sub-matrix ofX formed by
the columns contained inA. Finally, || · ||p is the p-norm
operator on vectors.

II. SYSTEM MODEL

Each primary transmitter is dropped uniformly on a disc
of radius rp centered at the origin. There are a total of
N primary transmitters located at points{(Xp,i, Yp,i)}Ni=1

on the disc. There areN cognitive receivers2 placed on a
collection of many circles of radii{rc,1, rc,2, . . . , rc,q} where
q is such thatN

q
∈ Z

+ for simplicity andZ+ represents the

2We set the number of cognitive receivers equal to the number of primary
transmitters for simplicity. The analysis can be extended to cover the general
case.



set of non-negative integers. Each circle containsN
q

cognitive
receivers located at fixed points{(Xc,i, Yc,i)}Ni=1 that are
equally-spaced3 as shown in Fig. 2. TheN corresponding
primary receivers that complete the primary network and
the cognitive base station that completes the cognitive net-
work can be arbitrarily located anywhere on thexy-plane.
The above spatial distribution model is chosen to provide
tractability in the analysis that follows. In the simulations
section, we will show that the proposed algorithms work even
under more regular spatial models such as users scattered
uniformly at random on a square area. For the sake of
the analysis, we will also partition the cognitive receivers
according to the circle they belong to thus creatingq parti-
tions {P1,P2, . . . ,Pq} such that

⋃q

i=1 Pi = {1, 2, . . . , N}
and Pi ∩ Pj = ∅ for i 6= j. The distance between
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Fig. 2. Network with primary transmitters (not shown) uniformly dis-
tributed on the blue disc of radiusrp. There areN = 8 cognitive receivers
in the network equally-divided across two circles (q = 2) of radii rc,1
and rc,2 respectively. This gives rise to partitionsP1 = {1, 2, 3, 4} and
P2 = {5, 6, 7, 8}. The cognitive receivers are equally-spaced on each circle
as shown.

primary transmitteri and cognitive receiverj is given by
dij =

√
(Xp,i −Xc,i)2 + (Yp,i − Yc,i)2. We assume that the

channel attenuation between any two nodes in the network
is solely determined by a path-loss gain4

hij =
δ2

d2ij
I (dij ≥ δ) + I (dij < δ) , (1)

whereδ > 0 is commonly referred to as the critical distance
and I(·) is the indicator function. Here, we assume a path-
loss coefficient of two but this can be generalized to any
larger constant quite easily. This is an approximation of the
free space path loss model [19] since the latter precludes the
placement of nodes within a distance ofδ metres. On the
other hand, our model in (1) states that within a distance of
δ metres, there is no channel attenuation. This assumption
affords us analytical tractability while compromising very
little on modelling accuracy.

The cognitive base station adopts transmit strategies that
respect an upper bound on interference caused to the primary
network. We assume that the primary transmitters choose
their transmit strategy based on this interference cap (fixed

3We note that this would roughly be the case whenN becomes large and
the users are uniformly distributed.

4This model is accurate for sufficiently large scheduling time scales and/or
if all transmitters, receivers and surrounding objects remain stationary for
long periods of time.

for all time) thereby not adapting to changes in the transmis-
sion policy of the cognitive network. At timet, the primary
users transmit collectively at powerp(t), i.e., useri transmits
at powerpi(t).

In order to make scheduling decisions, the cognitive base
station requires knowledge of the channel quality between
itself and each cognitive receiver. The channel quality to
a cognitive receiver depends critically on the interference
power that this node receives from the primary network.
Thus, it is important to estimate (perfectly if possible) the
interference power received from the primary network. Let
the interference power received by cognitive receiveri at
time t be denoted bypint,i(t).

Under the above assumptions, the interference power
received by the cognitive receiveri at time t is given by
yi(t) =

∑N

j=1 hijpj(t). Collecting these interference powers
across all cognitive receivers, we get the interference state

y(t) = Hp(t) wherey(t) = [y1(t) y2(t) . . . yN (t)]T .

The rows ofH are ordered according to the partition ordering
{P1,P2, . . . ,Pq}. For example, for the system in Fig.2,
the rows ofH would be ordered{1, 2, 3, 4, 5, 6, 7, 8}. The
cognitive base station would like to acquire full knowledge
of interference statey(t) in order to perform user scheduling.
At the beginning of scheduling instantt, following limited
feedback literature (see the survey by Love et al. [15] and
references therein), we assume that the cognitive base station
has the ability to request observationsyi(t) (interference
powers) from a subsetI of cognitive receivers. This is done
through orthogonal feedback channels from each user, which
essentially means that the observations, when transmitted
from the users, do not interfere with each other5. Of course,
the cognitive base station can query allN cognitive receivers,
i.e. I = {1, 2, . . . , N} and acquire the interference state but
is this the most bandwidth efficient approach? It turns out
that this is not the most efficient approach since it does not
exploit the underlying structure of the primary network as
explained shortly.

A. Sparsity

Since the very motivation for cognitive radio networks is
that the primary spectrum is under-utilized, this automatically
induces sparsity into the power profile vectorp(t). Moreover,
for networks where the dynamics (primary user activity,
channel coherence times, cognitive user activity) operateon
different time-scales, which is the case with many wireless
systems, it is natural for the power difference vectors(t) =
p(t) − p(t − 1) to be more sparse than the absolute power
profile vectorsp(t) andp(t − 1). This is true in particular
when the dynamics of the primary user activity operates
on a slower time-scale than that of the cognitive network.
Consider for instance a scenario where a small subset of
primary receivers are mobile. This would require power
control on the part of a correspondingly small fraction of

5These channels are assumed to be orthogonal to the primary users as
well.



primary transmitters in order to maintain the same rate.
Another scenario is where only a small subset of primary
users have data to transmit at each instant. Under these
settings, the vectors(t) = p(t) − p(t − 1) is sparse, say
S-sparse (it contains at mostS non-zero entries) and we can
define

z(t) = y(t)− y(t − 1) = Hs(t)

to be the difference in interference powers between adjacent
scheduling time slots. Here, we assume that the channel
remains constant for a long period of time, which accurately
models a system with slow-moving or stationary users. For
this reason, we also assume that the cognitive base station
has full knowledge of all (both primary and cognitive) user
positions in the network. In the longer version of this paper
[31], we will discuss implementation methods that can help
alleviate this requirement.

Under such a setting where we have naturally-occurring
sparsity inz(t) and/ory(t), it is possible to significantly
reduce the required feedback bandwidth. LetyI(t) denote
the observations acquired from the queried users at time
t and let k = |I| represent the size of this set. It is of
immediate interest to determine the smallest query sizek (or
feedback bandwidth) that the cognitive base station requires
in order to recoveryIc(t) reliably. We will show that it
is possible to recovers(t) (and henceyIc(t)) through the
technique ofcompressed sensingusing onlyk = O (SlogN)
observations thus resulting in a significant reduction of
feedback bandwidth. In this work, we do not consider the
number of bits required to communicateyI(t) reliably as we
are interested primarily in the scaling behaviour of feedback
bandwidth.

Compressed sensing The topic of compressed sensing has
received tremendous interest in the recent years [16]–[18].
The theory essentially states that one can recover sparse
data (s(t) in our case) exactly, given an underdetermined
system ofO(SlogN) equations. The results are attractive
from an algorithm perspective as well since it has been shown
that recovery is possible using standard computationally-
efficient convex optimization techniques such as`1-norm
minimization6, often calledBasis Pursuit[23], given by

minimize ||x||1
subject to HI,rx = zI(t)

. (2)

Here,zI(t) = yI(t)− yI(t− 1) andHI,r is the sub-matrix
of path-loss entries (as defined in (1)) corresponding to the
rows in I ⊆ {1, 2, . . . , k}. Compressed sensing theory states
that it is possible to recover anyS-sparse vector if and only
if the sensing matrixH satisfies theNull Space Property
(NSP) [25] of orderS. This property will be defined in
the next section. Furthermore, the choice of subsetI is not
important (only the size) for this special class of matrices. In
the following section, we will show that path-loss matricesas
defined in (1) do indeed satisfy the NSP and hence facilitate
compressed sensing. In our setting, this means that we can

6`1-norm minimization can be written as a linear program.

exploit the sparsity structure induced by our wireless appli-
cation and use compressed sensing techniques to conserve
feedback bandwidth. We note that in our application, the
sensing matrix is provided by the channel as opposed to
traditional compressed sensing where the designer is allowed
to choose a convenient sensing mechanism.

Before we conclude this section, we note that a host of
other algorithms such as the greedy correlation approach
[20], and the least absolute shrinkage and selection operator
(LASSO) [22] have all been shown to work well as recovery
tools. The LASSO, given by

minimize 1
2 ||HI,rx− zI(t)||2 + λ||x||1, (3)

is method of recovery that we will use for the purposes of
our simulations in Section IV. The theoretical connections
between LASSO and Basis Pursuit have been well-analysed
by authors such as Tropp [21].

III. NSP OF PATH-LOSS MATRICES

In this section, we establish that path-loss matricesH

satisfy the NSP (which will be defined shortly) when the
feedback bandwidth obeysk = O(Slog N). Theorem 4
constitutes the main result in this section.

A. Preliminaries

We define the null space property from Gribonval et al.
[26]. Given a matrixM, let N (M) denote its null space.
Definition (Null space Property): A matrix M satisfies the
null space property of orderS if for all subsetsS ⊆
{1, 2, . . . , N} with |S| ≤ S, the following holds

||vS ||1 ≤ ||vSc ||1, ∀v ∈ N (M) \ 0.
whereSc = {1, 2, . . . , N} \ S. Based on this property, the
following recovery result [26] has appeared both implicitly
and explicitly in works such as [25], [27]. Let the support
set of s(t) be denoted byS with |S| ≤ S. A vector s(t) is
S-sparse ifS| ≤ S.

Theorem 1. LetM ∈ R
k×N . EveryS-sparse vectors ∈ R

N

is the solution to thè 1-norm minimization problem in (2)
with y = Ms iff M satisfies the NSP of orderS.

2

The NSP is typically quite difficult to prove directly leading
to the development of sufficient conditions that are easier
to establish. One such sufficient condition is therestricted
isometry property[28] that has become quite popular in
recent years and is defined below.
Definition (Restricted Isometry Property): A matrix M sat-
isfies the Restricted Isometry Property (RIP) of orderp if
there existsεp(M) ∈ (0, 1) such that

(1 − εp(M))||vT ||22 ≤ ||MT ,cvT ||22 ≤ (1 + εp(M))||vT ||22
(4)

holds for all setsT with |T | ≤ p.
Here,εp(M) is called therestricted isometric constantof

M. The RIP essentially requires that allk×|T | sub-matrices
of M be well-conditioned. The following result that connects
the RIP and NSP.



Theorem 2. Suppose the restricted isometric constant
ε2p(M) satisfies

ε2p <
1

3
,

thenM satisfies the NSP of orderp.

2

The approach we use to prove “goodness” of path-loss
matricesH is motivated by the following observation. In
general, the null space of a product of two matricesNM

contains the null space ofM and therefore ifNM satisfies
the NSP, so doesM. This allows us to study the class of
effectivepath-loss matricesA = BG = BWH where

W = [WT
1 WT

2 . . .W
T
q ]
T

WT
i = [wi|0 wi|1 . . .wi|N

q
−2]

wT
i =




0 0 . . . 0
︸ ︷︷ ︸

(i−1)N
q

1 − 1 0 . . . 0






(5)

and wi|l denotes the vectorwi cyclically shifted to the
right by l positions; B is defined in (6) with βi ∼
Bernoulli

(
1
2

)
, ∀i and independent acrossi. D = diag{d}

is a diagonal matrix withd on its diagonal. The Bernoulli
random variables have support{±1}. We focus our attention
on establishing the recovery properties ofA rather thanH.
We will show thatA satisfies the RIP withk = O(Slog N)
observations and then invoke the result in Theorem 2 above.
The transformationW essentially subtracts adjacent rows of
H corresponding to users that belong to thesamepartition.
Thus, the dimension ofG is (k− q)×k. The transformation
B weights and adds adjacent rows ofG.

According to our spatial distribution model, when condi-
tioned on the positions of the cognitive users, the columns
of H become stochastically independent since each primary
transmitter is independently thrown. We will rely heavily
on recent results from Vershyin [29] and Adamcyzk et al.
[30] that deal with sensing matrices containing independent
columns. Before we reproduce the RIP result [29], [30] for
matrices with independent columns, we present a primer
on sub-gaussian and sub-exponential random variables along
with some useful results from non-asymptotic matrix theory.

B. Useful concentration inequalities

We refer the reader to the tutorial paper by Vershynin
[29] for a great introduction to non-asymptotic matrix theory.
Lemmas 1-6 below are well-known past results that are
summarized in this paper [29]. The proofs are not reproduced
due to lack of space.

Lemma 1. Let z be random variable. The following prop-
erties are equivalent with parametersKi > 0 differing from
each other by at most an absolute constant factor.
(i) Tails: Pr(|z| > t) ≤ exp(1− t2

K2
) for all t > 0,

(ii) Moments:(E [|z|p]) 1
p ≤ K2

√
p for all p ≥ 1,

(iii) Super-exponential moment:E
[

exp
(
z2

K3

)]

≤ e.

Moreover, if E[z] = 0 then properties (i)-(iii) are also

equivalent to the following one:
(iv) Moment generating function:E [exp(tz)] ≤ exp(t2K4)
for all t ∈ R.

2

A random variable that satisfies the above property is called
a sub-gaussianrandom variable. Such random variables are
often characterized by theψ2-norm7, which is defined as

||z||ψ2 = supp≥1

(E [|z|p]) 1
p

√
p

. (6)

It follows that if theψ2-norm of z is finite, thenz is a sub-
gaussian random variable with||z||ψ2 = K2. This is the case
for bounded random variables with symmetric distributions.

Lemma 2. Let z be a symmetrically distributed, bounded
random variable with|z| ≤ M, M > 0. Then,z is a sub-
gaussian random variable with||z||ψ2 ≤ cM2, c > 0.

2

In higher dimensions, a random vectorz of dimension
N is called sub-gaussian ifzTx is sub-gaussian for every
x ∈ R

N .

Lemma 3. Let {zi}Mi=1 be a collection of independent, zero-
mean, sub-gaussian random variables. Then,z is a sub-
gaussian random vector with||z||ψ2 = Cmaxi ||zi||ψ2 .

2

One can make a similar characterization of sub-exponential
random variables through the following lemma.

Lemma 4. Let z be random variable. The following prop-
erties are equivalent with parametersKi > 0 differing from
each other by at most an absolute constant factor.
(i) Tails: Pr(|z| > t) ≤ exp(1− t

K2
) for all t > 0,

(ii) Moments:(E [|z|p]) 1
p ≤ K2p for all p ≥ 1,

(iii) Super-exponential moment:E
[

exp
(
z
K3

)]

≤ e.

2

A random variable that satisfies the above property is called
a sub-exponentialrandom variable. Theψ1-norm of z is
defined as

||z||ψ1 = supp≥1

(E [|z|p]) 1
p

p
. (7)

This immediately brings us to the next two lemmas which
explore the connection between sub-gaussian and sub-
exponential random variables.

Lemma 5. z is a sub-gaussian random variable if and only
if z2 is a sub-exponential random variable. Furthermore, we
have that||z||2ψ2

≤ ||z2||ψ1 ≤ 2||z||2ψ2
.

2

The following lemma contains a large-deviations result fora
weighted sum of sub-exponential random variables.

7Alternate definitions of this norm have been adopted (such asin [30])
that are all equivalent to within a constant factor.



B = diag







1
√

Var{g11}+ Var{g21}
. . .

1
√

Var{g(k−q)1}+ Var{g11}
















β1 β2 0 0 · · 0 0 0
0 β3 β4 0 · · 0 0 0
· · · · · · · · ·
· · · · · · · · ·
0 0 0 0 · · 0 β2(k−q)−3 β2(k−q−1)

β2(k−q) 0 0 0 · · 0 0 β2(k−q)−1










(6)

Lemma 6. Let {z1, z2, . . . , zM} be a collection of indepen-
dent, zero-mean, sub-exponential random variables and let
ψmax,z = maxi ||zi||ψ1 . Then,

Pr

(∣

∣

∣

∣

∣

M
∑

i=1

zi

∣

∣

∣

∣

∣

> Mt

)

≤ exp

(

−cMmin

{

t2

ψ2
max,z

,
t

ψmax,z

})

.

2

We are now ready to prove a concentration bound on the
event

{
k(1− ε)||x||22 ≤ ||Ax||2 ≤ k(1 + ε)||x||22

}
in order

to establish the RIP (hence NSP) for matrixA. Before we
move on to this task, we require one more definition. A
random vectorm of dimensionM is called isotropic if
E[|mTx|2] = ||x||2 for all x ∈ R

M .

C. NSP of effective path-loss matricesA

We reproduce the recent RIP (hence NSP) result [29], [30]
concerning matrices with independent columns. We refer the
reader to [29], [30] for the proof.

Theorem 3. Let M be an k × N random matrix whose
columns are independent, isotropic and sub-gaussian with
ψmax,m = maxi ||mi||ψ2 . Furthermore, let the columns
satisfy ||mi||2 = k almost surely. Then, the normalized
matrix 1√

k
M is such that ifk ≥ Cψmax,m

ε−2Slog
(
eN
S

)
,

then

εp

(
1√
k
M

)

≤ ε (8)

with probability at least 1 − 2exp(−cψmax,m
ε2k). Here,

cψmax,m
and Cψmax,m

depend only the worst-case sub-
gaussian normψmax,m.

2

As mentioned earlier, the channel matrixH contains inde-
pendent columns since the positions of the cognitive users
are fixed. However, each column contains entries that are
not centered, not isotropic and that are highly coupled. This
is because all entries inhi are completely determined by
the position of the primary transmitteri. Hence, it is not
immediately clear whether the column is sub-gaussian due
to this strong coupling.

To prove the NSP ofH, our approach will be to suitably
left-multiply the channel matrixH by carefully-chosen ma-
trices so as to meet the sufficient conditions in Theorem 3.
The following theorem constitutes the main result of this
paper. The proof is involved and hence deferred to a longer
version of this paper [31] due to lack of space. Instead, we
provide a sketch of the proof.

Theorem 4. The effective path-loss matrixA = BWH of
size(k − q) × N contains independent, isotropic, centered,
sub-gaussian columns. Furthermore, we have that||ai||2 = 1
almost surely.

Proof sketch: The channel matrixH contains elements that
are identically distributed by the symmetry of primary trans-
mitters’ placement on a disc and the circular placement of
the cognitive receivers. Thus, the matrixG obtained after
left multiplication by W contains zero-mean entries while
preserving column independence. A fact that is less obvious
is that the entries ofG are symmetric. This follows from
the definition ofG in (5), where we have droppeddifference
rows corresponding to users from different partitions, and
from the notion of exchangeable random variables. Recall
thatG is of size(k − q)×N .

Next, we multiplyG by the random matrixB. SinceG
contains entries with symmetric distributions, we will show
that the multiplication byB does not destroy the stochastic
independence across the columns ofG. In addition, the
columns ofA are identically distributed allowing us to focus
on the properties of the first columna1. a1 is isotropic
since the presence of the i.i.d. Bernoulli random variables
βi successfully nulls the pairwise cross-correlation amongst
the elements ofa1. The constants in the diagonal matrix

diag

{

1√
Var{g11}+Var{g21}

. . . 1
√

Var{g(k−q)1}+Var{g11}

}

are

chosen to make the variance of eachai1, i = 1, ..., (k− d),
unity.

The column a1 can be shown to be sub-gaussian as
follows. We observe that when conditioned on the location of
primary transmitter1, the only randomness ina1 resides in
the Bernoulli random variablesβi. Thus, when conditioned
on the location of primary transmitter1, a1 contains symmet-
rically distributed, bounded, independent random variables
bringing into effect the result in Lemma 3.

Similarly, norm-concentration is proved by alluding to the
same observation. Again, when conditioned on the location
of primary transmitter1, from Lemma 5,{a2i1}k−qi=1 is a
collection of independent sub-exponential random variables
bringing into effect the result in Lemma 6. 2

From Theorems 3 and 4,A satisfies the RIP and in turn,
the NSP for a sufficiently small isometric constant when(k−
q) = O(SlogN). This implies thatH satisfies the NSP when
k = O(SlogN). Note that the number of circles containing
the cognitive receivers appears as an additive constant and
hence does not affect the order of the result.

We conclude this section with a comment on some imple-
mentation aspects of the proposed limited feedback protocol.
We observe almost immediately that the proposed protocol
admits a distributed implementation. This would involve each
cognitive receiver flipping a coin with a certain probability
which guarantees that the number of observations received by
the base station is greater than the lower bound in Theorem 4



with high probability. However, such a protocol would work
only if we are operating in the setting where the absolute
power profile vectors are sparse. This is because, to operate
in the sparse dynamics mode, we would require the query
set I to remain constant over all time, which would not be
guaranteed under a distributed coin-flipping protocol.

IV. STUDY OF ROBUSTNESS

Thus far in this paper, we have studied sparse recovery in
the context of path-loss sensing matrices assuming that the
cognitive base station has perfect knowledge of the sensing
matrix H. In reality though, this is seldom true since the
system is subject to errors that could stem from the channel
estimation process, quantization, the fact that node mobility
that is faster than the tracking ability of channel estimation
algorithm, shadowing and other small-scale fading effects.
This motivates us to analyse numerically the performance of
sparse recovery under imperfect channel knowledge, which
forms the subject of this section.

We consider two perturbation models in our simulations:
(i) (E1) Small error introduced into all entries of the sensing
matrix (ii) (E2) Large error introduced into a small fraction
of entries, sayf ∈ [0, 1], chosen uniformly at random.
Under both models E1 and E2, the error is multiplicative and
random, i.e. the perturbed matrix entry isĥij = (1+ eij)hij
whereeij ∼ U [−p, p] for somep ∈ [0, 1]. This multiplicative
per-entry perturbation allows us to introduce error in a
systematic fashion since the parameterp now represents
the maximum percentage error per entry. Under both per-
turbation models E1 and E2, the performance metric is
average distortion per channel measurement. More formally,
let ŝ represent the output of̀1 minimization under channel
imperfections ands denote the true vector. Then, average dis-
tortion per channel measurement whenfkN entries, chosen
uniformly at random, are corrupted by multiplicative noise
with a maximum magnitude of100p% while consuming a
feedback bandwidth ofk observations is given by

Dk(p, f) =
1

N
EE(p),H,L(f) [||y − ŷ||1] (9)

where ŷ = Ĥŝ, y = Hs and L(f) ∈ {0, 1}k×N is a
random matrix that models the locations of the error. This
matrix containsfkN ones chosen uniformly at random. The
remainingkN − fkN entries are zero.

Under the first error model E1, we conduct experiments
in order to measureD

θSlogN (p, 1) for p ∈ [0, 1] and
θ ∈ {1, 1.25, 1.5, 1.75, 2}. The results are presented in
Fig. 3(a). Under the second error model E2, we measure
D
θSlogN (1, f) for f ∈ [0, 1] and θ ∈ {1, 1.25, 1.5, 1.75, 2}

and present the results in Fig. 3(b). The recovery algorithm
of choice is the LASSO as defined in (3). Primary user
activity is modelled as ON-OFF for the sake of simplicity.
This means that if primary useri is ON, thenpi(t) = 10;
else pi(t) = 0. This models scenarios where the primary
users’ packet arrivals are bursty thus requiring intermittent
transmissions followed by periods of inactivity. Note that
in this scenario, the power vectorp(t) at each instant is

sparse (which of course automatically implies thats(t), the
difference in powers, is sparse). Hence, we can focus on
recoveringp(t) instead ofs(t). We further assume that the
cognitive base station knowsa priori the value of the primary
transmit power thereby requiring only support recovery. The
simulation parameters are provided below in Table I.

TABLE I

SIMULATION PARAMETERS

Description Associated Simulation
of parameter variable Value

Cell size d 2000 metres
Critical distance δ 100 metres
No. of users N 100
(cognitive and
primary)
Sparsity S 5
LASSO penalty λ 0.0005
parameter

Primary transmit p(t)



10 . . . 10
︸ ︷︷ ︸

5

0 0 . . . 0
︸ ︷︷ ︸

95





T

Watts

power vector
Iterations to 500
estimate distortion

We make a few remarks on the simulation results. Note
that each figure contains four curves corresponding to
k ∈ {24, 29, 35, 41, 47}.

Remarks:
(i) Under both error models, we see from Fig. 3 that the
system is significantly robust to imperfect channel knowledge
given the range of the distortion values.
(ii) Under error model E1, when all entries are corrupted by
factor of 15%, we see from Fig. 3(a) that a25% increase
in the number of observations or feedback bandwidth results
in a 30% decrease in distortion. As we move fromk =
Slog N to k = 1.25Slog N however, the reduction in
distortion is now less than30%. This leads to believe that
the distortion exhibitsdiminishing returnsin the feedback
bandwidth, which is a reasonable in the context of wireless
systems.
(iii) Under error model E1, if we keep the distortion fixed at
0.6, we see from Fig. 3(a) that a60% increase in feedback
bandwidth fromk = 1.25Slog N to k = 2Slog N results
in a 230% increase in error tolerance.
(iv) Under error model E2, when10% of the entries are
corrupted by an error of magnitude at most100%, we see that
a 25% increase in the number of observations or feedback
bandwidth results in a27% decrease in distortion. As in the
earlier case, we also see evidence of diminishing returns.
(v) Under error model E2, if we keep the distortion fixed at
0.6, we see from Fig. 3(a) that a30% increase in feedback
bandwidth fromk = 1.5Slog N to k = 2Slog N results in
a 150% increase in error tolerance.
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