
Streaming, Memory-limited PCA

Ioannis Mitliagkast, Constantine Caramanist, Prateek Jainm ∗

t The University of Texas at Austin

m Microsoft Research India, Bangalore

April 12, 2013

Abstract

In this paper, we consider a streaming one-pass-over-the-data model for Principal Component
Analysis (PCA). The input, in this case, is a stream of p-dimensional vectors, and the output is a
collection of k, p-dimensional principal components that span the best approximating subspace.
Consequently, the minimum memory requirement for such problems is O(kp). Yet the standard
PCA algorithm requires us to form the empirical covariance matrix, typically a dense p × p
matrix, hence requiring O(p2) memory. Although there exist several incremental algorithms
that require O(kp) memory, to the best of our understanding, these methods currently do not
have known finite-sample performance bounds. That is, in the high-dimensional setting where
the number of samples and dimensionality scale together, there is no known provably correct
algorithm. This paper considers this simple but important problem. We give what is to the
best of our knowledge, the first streaming algorithm requiring only O(kp) memory, that makes
a single pass over the data, and whose performance matches the standard batch algorithm up
to logarithmic factors.

1 Introduction

Principal Component Analysis is a fundamental tool for dimensionality reduction, clustering, clas-
sification, and indeed many learning tasks. Various recent works (e.g., see Vershynin (2010a))
have explored the power of PCA in the high dimensional batch setting with sub-Gaussian noise,
demonstrating that SVD of the empirical covariance matrix recovers the principal components
(equivalently, covariance estimation) when the number of samples scales as n = O(p log p), where p
is the dimension of the ambient space. In the noisy setting (which is of most interest) the empirical
covariance matrix is a dense p× p matrix, and hence requires O(p2) memory to store.

The quadratic (in p) memory requirement is prohibitive in several important settings where
the data points could be high resolution photographs, sound recordings, biometrics, or video.
Massive storage systems, in particular the cloud, offer the promise of essentially limitless storage
and distributed computing power. Still, for many real systems, the quadratic storage requirement is
simply not an option. Interestingly, many devices have processors and available RAM that permit
computations manipulating vectors of length p, but do not have hard drive space even approaching
p2. A typical desktop may have 10-20 Gb of RAM, but typically will not have more than a few Tb
of total storage. A smart-phone may have a few Mb of RAM, but has Gb not Tb of storage. That

∗Email: {ioannis,constantine}@utexas.edu;pjain9@gmail.com

1

is, at multiple computing scales, manipulating vectors of length O(p) is possible when storage of
O(p2) is not.

This regime is of particular interest in the streaming data setting. Here, data are generated
sequentially, and hence nowhere stored. If an algorithm does not explicitly call for storing a given
data point, it can never be revisited; hence, only one pass over the data is possible. In this case, the
input data each take O(p) to store, and the desired output requires O(kp). Do we fundamentally
need O(p2) storage? This paper proves that the answer is no; we provide an algorithm that requires
no more than O(kp) storage, yet exhibits the same sample-complexity performance as the full-blown
Batch-SVD algorithm. For this problem, we consider the basic generative model for PCA; that
is, we assume that points xi ∈ Rp are generated according to xi = Azi + wi, where A is a p × k
matrix defining the principal components and zi is a multivariate normal random variable, and wi

is a Gaussian noise vector with σ2 variance along each direction. Note that this setting provides
for samples xi that have poor SNR as ‖Azi‖2/‖wi‖2 ≈ 1/

√
p.

For this problem, we provide a stochastic algorithm that divides the data into blocks and updates
its estimate only once in every block. We also provide finite sample analysis of our algorithm that
shows, in particular, that in the case when k � p, our algorithm has the same sample complexity
as the batch algorithm, up to an additional log factor in p. On the other hand, our algorithm never
requires storage of more than k+1 p-length vectors, where k is the number of principal components
requested. Finally, the amount of computation required per data point is also O(p).

Our contribution: To the best of our knowledge, our finite sample analysis is the first for an
algorithm for PCA in the memory-limited setting. Furthermore, our analysis highlights several key
aspects of the problem. One being, dependence on the initial guess for the principal components. In
the batch setting, algorithms either do not require initialization (SVD), or the initial guess simply
needs to have some non-zero component along the right direction. There, the extent of overlap
between the true components and initial components only affects the computational time but not
the sample complexity. On the other hand, in the streaming setting, initialization becomes more
critical as a very poor initial point leads to a penalty in sample complexity. Our analysis also
demonstrates the interplay between the ambient dimension and noise variance and their relative
effect to the scaling off sample complexity.

Finally, to corroborate our theoretical analysis, we provide extensive empirical evaluation of
our methods on synthetic datasets sampled from the assumed generative model. As expected our
method performs competitively with the popular stochastic approximation method Oja & Karhunen
(1985), which despite widespread empirical success has still eluded rigorous finite sample analysis.

2 Related Work

Computing principal components quickly and iteratively with controlled computation and con-
trolled memory costs has long been recognized as an important problem. Memory- and computation-
efficient algorithms that operate on streaming data are plentiful in the literature. Yet, while there
are algorithms that empirically seem to do well, there is no algorithm that provably recovers the
principal components in the same noise and sample-complexity regime that the batch PCA algo-
rithm is able to do. Indeed, there has been renewed interest recently in this problem, and the fact
that this is an important unresolved issue has been pointed out in numerous places, e.g., Arora
et al. (2012).

There has been more work than possible to list. We survey some of the most relevant work
here. In particular, we discuss the relationship to EM-based methods, online-PCA, incremental
models for SVD and PCA and stochastic-approximation-based methods.

2

In a Bayesian mindset, some researchers have come up with expectation maximization ap-
proaches Roweis (1998); Tipping & Bishop (1999), that can arguably be used in an incremental
fashion. Unfortunately, in this body of literature one can only find consistency results at best, and
the finite sample behavior is not known.

Online-PCA with the objective of regret minimization has been considered in several papers,
most recently in Warmuth & Kuzmin (2008), where the multiplicative weights approach is adapted
for this problem (now experts correspond to subspaces). The goal there is to control the regret,
improving on the natural follow-the-leader algorithm that performs batch-PCA at each step. How-
ever, the algorithm can require O(p2) memory, in order to store the multiplicative weights and even
the memory-light variant described in Arora et al. (2012) comes with no guarantee for less than
that.

Algorithms focused on sequential SVD (e.g., Brand (2002, 2006), Comon & Golub (1990),Li
(2004)) seek to have the best subspace estimate at every time (i.e., each time a new data sample
arrives) but without performing full-blown SVD at each step. While these algorithms indeed reduce
both the computational and memory burden of batch-PCA, there are no rigorous guarantees on
the quality of the principal components or on the statistical performance of these methods. More
recent approaches Balzano et al. (2010); He et al. (2011) obviate the need for re-orthogonalization
by taking into consideration the geodesics of the Grassmanian manifold, but also fail to come up
with sample complexity bounds, or even guarantees of universal consistency.

A very interesting class of algorithms, start by left-multiplying the data matrix with a sub-
sampling or sketching matrix. Then those algorithms perform SVD on the resulting, smaller,
matrix giving some guarantees on the quality of the results; see Clarkson & Woodruff (2009) for
an overview of the state of the art. The one disadvantage is that in those results, the memory
requirement also scales with respect to the desired precision, ε, unlike the kind of results we are
providing. Also, sketching results seem to inherently require a Frobenius norm of the tail in the
error bounds. It is not clear how these can be easily adapted for bounds on the top principal
components.

Another line of work, that is also closely related to the sequential SVD approach, is stochastic
algorithms that are derived from a stochastic approximation perspective. Such methods go under
a variety of names, including Incremental PCA (though the term Incremental has been used in the
online setting as well Herbster & Warmuth (2001)). There have been several algorithms proposed
in the spirit of stochastic approximation, that have O(p) storage requirements, e.g., Weng et al.
(2003); Arora et al. (2012). The basic algorithms are some version of the following: upon receiving
data point xt at time t, update the estimate of the top k principal components via:

U (t+1) = Proj(U (t) + ηtxtx
>
t U

(t)), (1)

where Proj(·) denotes the “projection” that takes the SVD of the argument, and sets the top k
singular values to 1 and the rest to zero (see Arora et al. (2012) for further discussion).

From a time/space complexity standpoint, stochastic approximation-style algorithms are ap-
pealing, as they require O(p) complexity per iteration – just enough for vector inner products
and additions. Several studies have shown that these algorithms perform well empirically and our
simulations, in Section 5, support this.

However, to the best of our knowledge (and efforts) there does not exist any rigorous finite
sample guarantee for these algorithms. Most of the studies that analyze these algorithms have
asymptotic, consistency type of results and do not offer finite sample bounds. For instance, analysis
in Weng et al. (2003) depends on the standard Robbins-Monro type analysis Robbins & Monro
(1951) which does not scale to high dimensional regime, where the ambient dimension (and thus

3

noise magnitude) and the number of samples scale together. A related work by Zhao et al. (2006)
(also Zha & Simon (1999)) considers problems where dimensionality is significantly higher than
the number of samples available, but requires O(n2) storage and hence is not feasible in a more
realistic streaming setting.

A key difficulty in the analysis of stochastic methods for PCA has been the fact that the variance
at each step of the algorithm may be large and hence the standard concentration inequalities will
give vacuous bounds. In this work, we instead ensure that the variance at each step of the algorithm
is controlled and hence finite sample analysis can be performed. Our algorithm is very simple and
easy to implement, but still allows for sharp bounds and matches the performance of the batch
methods (up to a logarithmic factor in the number of samples required).

3 Problem Formulation and Notation

We consider a streaming model, where at each time step t, we receive a point xt ∈ Rp. Furthermore,
any vector that is not explicitly stored can never be revisited. Now, our goal is to compute the
top k principal components of the data: the k-dimensional subspace that offers the best squared-
error estimate for the points. We assume a probabilistic generative model, from which the data is
sampled at each step t. Specifically, we assume,

xt = Azt + wt, (2)

where A ∈ Rp×k is a fixed matrix, zt ∈ Rk×1 is a multivariate normal random variable, i.e.,

zt ∼ N (0k×1, Ik×k),

and vector wt ∈ Rp×1 is the “noise” vector and is also sampled from a multivariate normal distri-
bution, i.e.,

wt ∼ N (0p×1, σ
2Ip×p).

Furthermore, we assume that all 2n random vectors (zt,wt,∀1 ≤ t ≤ n) are mutually independent.
In this regime, it is well-known that batch-PCA is asymptotically consistent (hence recovering A

up to unitary transformations) with number of samples scaling as n = O(p) Vershynin (2010b). It is
interesting to note that in this high-dimensional regime, the signal-to-noise ratio quickly approaches
zero, as the signal, or “elongation” of the major axis, ‖Az‖2, is O(1), while the noise magnitude,
‖w‖2, scales as O(

√
p). The central goal of this paper is to provide finite sample guarantees for a

streaming algorithm that requires memory no more than O(kp) and matches the consistency results
of batch PCA in the sampling regime n = O(p) (possibly with additional log factors, or factors
depending on σ and k).

We denote matrices by capital letters (e.g. A) and vectors by lower-case bold-face letters (x).
‖x‖q denotes the `q norm of x; ‖x‖ denotes the `2 norm of x. ‖A‖ or ‖A‖2 denotes the spectral
norm of A while ‖A‖F denotes the Frobenius norm of A. Without loss of generality (WLOG), we
assume that: ‖A‖2 = 1, where ‖A‖2 = max‖x‖2=1 ‖Ax‖2 denotes the spectral norm of A. Finally,

we write 〈a,b〉 = a>b for the inner product between a, b. In proofs the constant C is used loosely
and its value may vary from line to line.

4 Algorithm and Main Results

In this section, we present our proposed algorithm and its finite sample analysis. It is a block-
wise stochastic variant of the classical power-method. Stochastic versions of the power method are

4

Algorithm 1 Block-Stochastic Power Method

input X = {x1, . . . ,xn}, Block size: B
1: q0 ∼ N (0, Ip×p) (Initialization)
2: q0 = q0/‖q0‖2
3: for τ = 0, . . . , n/B − 1 do
4: sτ+1 ← 0
5: for t = Bτ + 1, . . . , B(τ + 1) do
6: sτ+1 ← sτ+1 + 1

B 〈qτ ,xt〉xt
7: end for
8: qτ+1 ← sτ+1/‖sτ+1‖2
9: end for

output

already popular in the literature and are known to have good empirical performance; see Arora
et al. (2012) for a nice review of such methods. However, as discussed above, a main impediment
to the analysis of such stochastic algorithms (as in (1)) is the potentially large variance of each
step, due primarily to the high-dimensional regime we consider, and the vanishing SNR.

This motivated us to consider a modified stochastic power method algorithm, that has a variance
reduction step built in. At a high-level, our method updates only once in a “block” and within one
block we average out noise to reduce the variance.

Below, we first illustrate the main ideas of our method as well as our sample complexity proof
for the simpler rank-1 case. We then describe our general rank-k algorithm and provide its analysis
in Section 4.2. We note that, while our algorithm describes {x1, . . . ,xn} as “input,” we mean
this in the streaming sense: the data are no-where stored, and can never be revisited unless the
algorithm explicitly stores them.

4.1 Rank-One Case

We first consider the rank-1 case for which each sample xt is generated using: xt = uzt + wt

where u ∈ Rp is the principal component that we wish to recover. Our algorithm is a block-wise
method where all the n samples are divided in n/B blocks (for simplicity we assume that n/B is
an integer). In the (τ + 1)-st block, we compute

sτ+1 =

 1

B

B(τ+1)∑
t=Bτ+1

xtx
>
t

qτ . (3)

Then, the iterate qτ is updated using qτ+1 = sτ+1/‖sτ+1‖2. Note that, sτ+1 can be easily com-
puted in an online manner where O(p) operations are required per step. Furthermore, storage
requirements are also linear in p.

4.1.1 Analysis

We now present the sample complexity analysis of our proposed method (Algorithm 1). At a high-
level, we show that, using Ω(σ4p log(p)/ε2) samples, Algorithm 1 obtains a solution qT of accuracy
ε, i.e. ‖qT − u‖2 ≤ ε.

Theorem 1. Let X = {x1, . . . ,xn} where xt ∈ Rp, ∀t is generated by (2). Set the total number of

iterations T = Ω(log(p/ε)
log((σ2+.75)/(σ2+.5))

) and the block size B = Ω(
(1+3(σ+σ2)

√
p)2 log(T)

ε2
). Then, with

5

probability 0.99, ‖qT − u‖2 ≤ ε, where qT is the T -th iterate of Algorithm 1. That is, Algorithm 1
obtains an ε-accurate solution with number of samples (n) given by:

n = Ω̃

(
(1 + 3(σ + σ2)

√
p)2 log(p/ε)

ε2 log((σ2 + .75)/(σ2 + .5))

)
.

Note that in the total sample complexity, we use the notation Ω̃(·) to suppress the extra log(T)
factor for clarity of exposition, as T already appears in the expression linearly.

Proof. Our proof of the theorem has three critical components: (a) we show that for large enough

B, the empirical covariance matrix Fτ+1 = 1
B

∑B(τ+1)
t=Bτ+1 xtx

>
t is close to the true covariance matrix

M = uu> + σ2I, i.e. ‖Fτ+1 − M‖2 is small. In the process, we obtain “tighter” bounds for
‖u>(Fτ+1 − M)u‖ for fixed u; (b) we show that, with probability 0.99 (or any other constant
probability), the initial point q0 has a component of at least O(1/

√
p) magnitude along the true

direction u; (c) we then use these concentration bounds and the bound on the “goodness” of the
initial step to show that after τ iterations, the error in estimation is at most O(γτ) where γ < 1
is a constant. Step (a) is proved in Lemmas 2 and 3, while Lemma 4 provides the required result
for the initial vector q0. Using these lemmas, we next complete the proof of the theorem. We note
that both (a) and (b) follow from well-known results; we provide them for completeness.

Let qτ =
√

1− δτu+
√
δτgτ , 1 ≤ τ ≤ n/B, where gτ is the component of qτ that is perpendicular

to u and
√

1− δτ is the magnitude of the component of qτ along u. Note that gτ may well change
at each iteration; the important thing for us is to track the magnitude of the component in the
direction of u.

Now, using Lemma 3 and assuming B, T as given in the theorem, with probability at least
1− C/T , where C > 0 is an arbitrary constant, the following holds,

u>sτ+1 ≥
√

1− δτ (1 + σ2)

(
1− ε

4(1 + σ2)

)
. (4)

Next, we consider the component of sτ+1 that is perpendicular to u:

g>τ+1sτ+1 = g>τ+1

 1

B

B(τ+1)∑
t=Bτ+1

xtx
>
t

qτ

= g>τ+1(M + Eτ)qτ ,

where M = uu> + σ2I and Eτ is the error matrix: Eτ = M − 1
B

∑B(τ+1)
t=Bτ+1 xtx

>
t .Using Lemma 2,

‖Eτ‖2 ≤ ε (w.p. ≥ 1− C/T). Hence, w.p. ≥ 1− C/T :

g>τ+1sτ+1 = σ2g>τ+1qτ + ‖gτ+1‖2‖Eτ‖2‖qτ‖2,

≤ σ2g>τ+1(
√

1− δτu +
√
δτgτ) + ε,

≤ σ2
√
δτ + ε. (5)

Now, since qτ+1 = sτ+1/‖sτ+1‖2,

δτ+1 = (g>τ+1qτ+1)
2 =

(g>τ+1sτ+1)
2

(u>sτ+1)2 + (g>τ+1sτ+1)2
,

(i)

≤
(g>τ+1sτ+1)

2

(1− δτ)
(
1 + σ2 − ε

4

)2
+ (g>τ+1sτ+1)2

,

(ii)

≤ (σ2
√
δτ + ε)2

(1− δτ)
(
1 + σ2 − ε

4

)2
+ (σ2

√
δτ + ε)2

, (6)

6

where, (i) follows from (4) and (ii) follows from (5) along with the fact that x
c+x is an increasing

function in x for c, x ≥ 0.
Assuming

√
δτ ≥ 2ε and using (6) and bounding the failure probability with a union bound, we

get (w.p. ≥ 1− τ · C/T)

δτ+1 ≤
δτ (σ2 + 1/2)2

(1− δτ)(σ2 + 3/4)2 + δτ (σ2 + 1/2)2
,

(i)

≤ γ2τδ0
1− (1− γ2τ)δ0

,

(ii)

≤ C1γ
2τp, (7)

where γ = σ2+1/2
σ2+3/4

and C1 > 0 is a global constant. (i) follows from Lemma 5 and (ii) follows from
Lemma 4.

Hence, using the above equation after T = Ω (log(p/ε)/ log (1/γ)) updates, with probability at
least 1− C,

√
δT ≤ 2ε. The result now follows by noting that ‖u− qT ‖2 ≤ 2

√
δT and by selecting

constant C to be small enough, say ≈ 0.001.

Remark: Note that in Theorem 1, the probability of accurate principal component recovery is
a constant and does not decay with p. However, by running O(log p) instances of Algorithm 1 in
parallel, at least one of the instances should correctly recover the true component (within ε error)
with probability at least 1− 1

pO(1) . Note that this does not increase the sample complexity, it only

increases the computation time and storage requirements by a factor of O(log p). Alternatively, we
can run Algorihm 1 O(log p) times on fresh data each time, using the next block of data to evaluate
the old solutions, always keeping the best one. At a cost of an additional O(log p) factor in sample
complexity, we again guarantee a success probability of at least 1− 1

pO(1) .

We now present the lemmas used by our proof given above. For the more technical results the
proofs are deferred to the appendix.

The following lemma is used to bound the difference between 1
B

∑
Bτ<t≤B(τ+1) xtx

>
t and M .

It provides a concentration on the spectral norm of the covariance estimate error using recent
statistical results.

Lemma 2. Let X , B, T be as defined in Theorem 1. Then, w.p. 1− C/T we have:∥∥∥∥∥ 1

B

∑
t

xtx
>
t − uu> − σ2I

∥∥∥∥∥
2

≤ ε.

The full proof is provided in Appendix B.
The following lemma provides a probabilistic lower bound on the magnitude of the new estimate

along the real principal component, u.

Lemma 3. Let X , B, T be as defined in Theorem 1. Then, w.p. 1− C/T we have:

u>sτ+1 ≥ u>qτ (1 + σ2)

(
1− ε

4(1 + σ2)

)
,

where st = 1
B

∑
Bτ<t≤B(τ+1) xtx

>
t qτ .

For the full proof, please refer to Appendix C.

7

Lemma 4. Let q0 be the initial guess for u, given by Steps 1 and 2 of Algorithm 1. Then, w.p.
0.99: 〈q0,u〉 ≥ C0√

p , where C0 > 0 is a universal constant.

Proof. Using standard tail bounds for Gaussians (see Lemma 13), ‖q0‖2 ≤ 2
√
p with probability

1−exp(−C1p), where C1 > 0 is a universal constant. Furthermore, (‖q0‖2q0)
>u ∼ N(0, 1). Hence,

there exists C0 > 0, s.t., with probability 0.99, (‖q0‖2q0)
Tu ≥ C0. Hence, q>0 u ≥ C0

2
√
p .

Finally, we present the following lemma that shows that the recursion given by (7) decreases
δτ at a fast rate. Interestingly, the rate of decrease in error δτ initially (for small τ) might be
sub-linear but for large enough τ the rate turns out to be linear.

Lemma 5. If for any τ ≥ 0 and 0 < γ < 1, we have δτ+1 ≤ γ2δτ
1−δτ+γ2δτ , then,

δτ+1 ≤
γ2t+2δ0

1− (1− γ2t+2)δ0
.

Proof. We prove the lemma using induction. The base case (for τ = 0) follows trivially.

Now, by the inductive hypothesis, δτ ≤ γ2tδ0
1−(1−γ2t)δ0 . That is,

1

δτ
≥ 1− (1− γ2t)δ0

γ2tδ0
.

Finally, by assumption,

δτ+1 ≤
γ2

1
δτ
− (1− γ2)

≤ γ2

1−(1−γ2t)δ0
γ2tδ0

− (1− γ2)
.

The lemma follows after simplification of the above given expression.

4.2 General Rank-k Case

In this section, we consider the general rank-k PCA problem where each sample is assumed to be
generated using the model of equation (2), where A ∈ Rp×k represents the k principal components
that need to be recovered. Let A = UΛV > be the SVD of A where U ∈ Rp×k, Λ, V ∈ Rk×k.
The matrices U and V are orthogonal, i.e. U>U = I, V >V = I, and Σ is a diagonal matrix with
diagonal elements λ1 ≥ λ2 · · · ≥ λk. Then, the goal is to recover the space spanned by A, i.e.
span(U). Without loss of generality, we can assume that ‖A‖2 = λ1 = 1.

Similar to the rank-1 problem, our algorithm for the rank-k problem (see Algorithm 2) can be
viewed as a streaming variant of the classical orthogonal iteration used for SVD. Our algorithm
proceeds in a blockwise manner; for each block of samples, we compute

Sτ+1 =

 1

B

B(τ+1)∑
t=Bτ+1

xtx
>
t

Qτ , (8)

where Qτ ∈ Rp×k is the τ -th block iterate and is an orthogonal matrix, i.e., Q>τ Qτ = Ik×k. Given
Sτ+1, the next iterate, Qτ+1, is computed by the QR-decomposition of Sτ+1. That is,

Sτ+1 = Qτ+1Rτ+1, (9)

where Rτ+1 ∈ Rk×k is an upper-triangular matrix. Note that Sτ+1 can be computed in a streaming
fashion, i.e., none of the points need to be stored. The computational complexity is O(pk) for “with-
in” block updates (step 6 of Algorithm 2) and O(pk2) for updating Qτ (step 8 of Algorithm 2).
The space required by our method is O(pk).

8

Algorithm 2 Block-Stochastic Orthogonal Iteration

input X = {x1, . . . ,xn}, Block size: B
1: H i ∼ N (0, Ip×p), 1 ≤ i ≤ k (Initialization)
2: H = Q0R0 (QR-decomposition)
3: for τ = 0, . . . , n/B − 1 do
4: Sτ+1 ← 0
5: for t = Bτ + 1, . . . , B(τ + 1) do
6: Sτ+1 ← Sτ+1 + 1

Bxtx
>
t Qτ

7: end for
8: Sτ+1 = Qτ+1Rτ+1 (QR-decomposition)
9: end for

output

4.2.1 Analysis

We now present our analysis for the general rank-k problem and provide sharp sample complexity
bounds. Unlike the rank-1 case, where the choice of distance between vectors u and v is clear, there
are several natural distance functions in the rank-k case. We use the following largest-principal-
angle-based distance function between any two given subspaces:

Definition 6. Let U, V ∈ Rp×k represent the orthogonal basis of subspaces span(U) and span(V),
respectively. Then, the distance between span(U) and span(V) is given by

dist (span(U), span(V)) = dist(U, V)

= ‖U>⊥V ‖2 = ‖V >⊥ U‖2,

where U⊥ and V⊥ represents an orthogonal basis of the perpendicular subspace to span(U) and
span(V), respectively.

We now present our main theorem which shows that using Ω(Cσ,λkp log(p/ε)/ε2) samples, Al-
gorithm 2 produces a subspace basis Qτ , which with high probability satisfies dist(Qτ , U) ≤ ε.
Cσ,λk > 0 is a constant depending only on σ, λk.

Theorem 7. Let X = {x1, . . . ,xn} where xt ∈ Rp for every t is generated by (2), and the SVD of
A ∈ Rp×k is given by A = UΛV >. Let, wlog, λ1 = 1 ≥ λ2 ≥ · · · ≥ λk > 0. Let,

T = Ω

(
log(p/kε)/ log

(
σ2 + 0.75λ2k
σ2 + 0.5λ2k

))
.

Also, let the block size be,

B = Ω


(

(1 + σ)2
√
k + σ

√
1 + σ2k

√
p
)2

log(T)

λ4kε
2

 .

Then, after T block-updates, w.p. 0.99, dist(U,QT) ≤ ε. Hence, the sufficient number of samples
for ε-accurate recovery of all the top-k principal components is:

n = Ω̃


(

(1 + σ)2
√
k + σ

√
1 + σ2k

√
p
)2

log(p/kε)

λ4kε
2 log

(
σ2+0.75λ2k
σ2+0.5λ2k

)
 .

9

Again, for the total sample complexity, we use the notation Ω̃(·) to suppress the extra log(T) factor
for clarity of exposition, as T already appears in the expression linearly.

Please refer to the Remark after Algorithm 1 for a couple of ways to get the same result with
high probability.

As in the proof for the rank-1 problem, we first show that in each block, Fτ+1 = 1
B

∑B(τ+1)
t=Bτ+1 xtx

>
t

is close to the true “covariance” matrix M = AA> + σ2I, and that the initial iterate Q0 has large
enough component along the true subspace, span(U). Finally, we combine these two components
to provide a recursion that ensures that dist(U,Qτ) decreases at a fast rate.

Compared to the rank-1 case, we require a more careful analysis as we need to bound spectral
norms of various quantities in intermediate steps and simple, crude analysis can lead to significantly
worse bounds. Interestingly, the analysis is entirely different from the standard analysis of the
orthogonal iteration as there, the empirical estimate of the covariance matrix is fixed while in our
case it varies with each block.

Proof. By using update for Qτ+1 (see (8), (9)):

Qτ+1Rτ+1 = Fτ+1Qτ , (10)

where Fτ+1 = 1
B

∑
Bτ<t≤B(τ+1) xtx

>
t . That is,

U>⊥Qτ+1Rτ+1v = U>⊥Fτ+1Qτv, ∀v ∈ Rk, (11)

where U⊥ is an orthogonal basis of the subspace orthogonal to span(U). Now, let v1 be the singular
vector corresponding to the largest singular value, then:

‖U>⊥Qτ+1‖22 =
‖U>⊥Qτ+1v1‖22
‖v1‖22

=
‖U>⊥Qτ+1Rτ+1ṽ1‖22
‖Rτ+1ṽ1‖22

(i)
=

‖U>⊥Qτ+1Rτ+1ṽ1‖22
‖U>Qτ+1Rτ+1ṽ1‖22 + ‖U>⊥Qτ+1Rτ+1ṽ1‖22

(ii)
=

‖U>⊥Fτ+1Qτ ṽ1‖22
‖U>Fτ+1Qτ ṽ1‖22 + ‖U>⊥Fτ+1Qτ ṽ1‖22

. (12)

where ṽ1 =
R−1
τ+1v1

‖R−1
τ+1v1‖2

. (i) follows as Qτ+1 is an orthogonal matrix and [U U⊥] form a complete

orthogonal basis; (ii) follows by using (10). The existence of R−1τ+1 follows using Lemma 8 along
with the fact that σk(Rτ+1) = ‖Rτ+1ζ0‖2 ≥ ‖U>Qτ+1Rτ+1ζ0‖2 = ‖U>Fτ+1Qτζ0‖2 > 0, where ζ0
is the singular vector of Rτ+1 corresponding to its smallest singular value, σk(Rτ+1).

Now, using (12) with Lemmas 8, 9 and using the fact that x/(x + c) is an increasing function
of x, for all x > 0, we get (w.p. ≥ 1− 2C/T):

‖U>
⊥Qτ+1‖22 ≤

(σ2‖U>
⊥Qτ‖2 + λ2kε/2)2

(λ2k + σ2 − λ2
kε

4)2(1− ‖U>
⊥Qτ‖22) + (σ2‖U>

⊥Qτ‖2 + 0.5λ2kε)
2
.

Now, assuming ε ≤ ‖U>⊥Qτ‖22, using the above equation and by using union bound, we get (w.p.
≥ 1− 2τC/T):

‖U>⊥Qτ+1‖22 ≤
γ2‖U>⊥Qτ‖22

1− ‖U>⊥Qτ‖22 + γ2‖U>⊥Qτ‖22
, (13)

10

where γ =
σ2+λ2k/2

σ2+3λ2k/4
< 1 for λk > 0. Using Lemma 5 along with the above equation, we get (w.p.

≥ 1− 2τC/T):

‖U>⊥Qτ+1‖22 ≤ γ2τ
‖U>⊥Q0‖22

1− ‖U>⊥Q0‖22
.

Now, using Lemma 10 we know that ‖U>⊥Q0‖22 is at most 1−Ω(1/(kp)). Hence, for T = Ω(log(p/ε)/ log(1/γ),
we get: ‖U>⊥QT ‖22 ≤ ε. Furthermore, we require B (as mentioned in the Theorem) samples per
block. Hence, the total sample complexity bound is given by Ω(BT), concluding the proof.

The following lemma provides a probabilistic lower bound on the “energy” of U along the
updated Sτ+1 = Fτ+1Qτ .

Lemma 8. Let X , A, B, and T be as defined in Theorem 7. Also, let σ be the variance of noise,
Fτ+1 = 1

B

∑
Bτ<t≤B(τ+1) xtx

>
t and Qτ be the τ -th iterate of Algorithm 2. Then, ∀ v ∈ Rk and

‖v‖2 = 1, w.p. 1− 5C/T we have:

‖U>Fτ+1Qτv‖2 ≥ (λ2k + σ2 −
λ2kε

4
)
√

1− ‖U>⊥Qτ‖22.

Our proof of the above lemma uses concentration techniques similar to the ones used to prove
Lemma 3 and critically uses “goodness” of the initial Q0 given by Lemma 10.

The following lemma complements the above lemma by providing a probabilistic upper bound
on the “energy” of U⊥ along the updated Sτ+1 = Fτ+1Qτ .

Lemma 9. Let X , A, B, Fτ+1, Qτ be as defined in Lemma 8. Then, w.p. 1−4C/T , ‖U>⊥Fτ+1Qτ‖2 ≤
σ2‖U>⊥Qτ‖2 + λ2kε/2.

See Appendix E for a detailed proof.
The following lemma guarantees that the initial guess Q0 which is a uniformly random subspace

of dimension k in a space of ambient dimension p is guaranteed to have Ω(1/
√
kp) total energy

along an arbitrary, fixed subspace span(U).

Lemma 10. Let Q0 ∈ Rp×k be sampled uniformly at random from the set of all k-dimensional

subspaces (see Initialization Steps of Algorithm 2). Then, w.p. at least 0.99: σk(U
>Q0) ≥ C

√
1
kp ,

where C > 0 is a global constant.
Proof. Using Step 2 of Algorithm 2: H = Q0R0. Let vk be the singular vector of U>Q0 corre-
sponding to the smallest singular value. Then,

σk(U
>Q0) =

‖U>Q0R0R
−1
0 vk‖2

‖R−10 vk‖2
‖R−10 vk‖2

≥ σk(U>Q0R0)σk(R
−1
0). (14)

Now, σk(R
−1
0) = 1

‖R0‖2 = 1
‖Q0R0‖2 = 1

‖H‖2 . Note that ‖H‖2 is the spectral norm of a random
matrix with i.i.d. Gaussian entries and hence can be easily bounded using standard results. In
particular, using Lemma 13, we get: ‖H‖2 ≤ C1

√
p w.p. ≥ 1− e−C2p, where C1, C2 > 0 are global

constants.
By Theorem 1.1 of Rudelson & Vershynin (2009) (see Lemma 14), w.p. ≥ 0.99, σk(U

>Q0R0) =
σk(H) ≥ C/

√
k. The lemma now follows using the above two bounds with (14).

11

10
1

10
210

0

10
5

p (dimension)

n
(#

 s
am

pl
es

)
Samples Required for Recovery (σ=1, ε=0.05)

Batch SVD
Stochastic Approximation
BSPM

10
−2

10
−1

10
010

1

10
2

10
3

10
4

BSPM: Fraction of successful trials (n=1000, ε=0.05).

Noise standard deviation (σ).

N
um

be
r

of
 d

im
en

si
on

s
(p

)

0

0.5

1

(a) (b)

10
−2

10
−1

10
010

1

10
2

10
3

10
4

SA: Fraction of successful trials (n=1000, ε=0.05).

Noise standard deviation (σ).

 N
um

be
r

of
 d

im
en

si
on

s
(p

)

0

0.2

0.4

0.6

0.8

1

10
1

10
210

0

10
5

p (dimension)

n
(#

 s
am

pl
es

)

Samples Required for top 10 Recovery (σ=1, ε=0.05)

Stochastic Approximation
BSIO

(c) (d)

Figure 1: (a): Number of samples required for recovery of the top PC (k = 1) with noise standard
deviation σ = 1 and desired accuracy ε = 0.05. The figure compares batch SVD, SA and BSPM,
(b): Fraction of trials in which BSPM successfully recovers the principal component (k = 1) with
ε = 0.05 and n = 1000 samples, (c): Fraction of trials in which SA successfully recovers the top
PC (k = 1) with ε = 0.05 and n = 1000, (d): Number of samples required for the recovery of the
k = 10 top components with σ = 1, ε = 0.05. The figure compares the stochastic approximation
and block-stochastic orthogonal iteration algorithms.

5 Empirical Results

It has long been observed empirically that Stochastic Approximation (SA) performs similarly to
the Batch-SVD method. Yet no finite-sample analysis of SA is available. In this section, we show
that, as predicted by our theoretical results (Sections 4.1 and 4.2), our modified SA-type algorithm,
Block-Stochastic Power Method (BSPM), also performs similarly to Batch-SVD (and hence to SA).

We provide phase-transition-type figures to show that for a large fraction of problems, SA and
BSPM require a similar number of samples.

In all the experiments, we draw our data from the generative model of (2), and report results
averaged over at least 500 independent runs. We provide all algorithms that need random initial-
ization with the exact same random initial estimate. The BSPM algorithm uses the block size
prescribed in Theorem 7, with the empirically tuned constant of 0.2. Similarly, for SA we used the
popular ηt = C/t step size, where C = 10 is also empirically tuned.

Rank-1 case: We first study scaling of the number of samples required by different methods as
the dimensionality of the data (p) increases. Figure 1 (a) As indicated by our Theorem 1, BSPM
exhibits a linear scaling of number of samples with p.

Next, we present phase-transition type of plots to demonstrate recovery properties of both
BSPM and SA under a variety of problem settings. Here, we fix number of samples n = 1000
while varying the two problem parameters, i.e., p, σ. In all cases we count the fraction of trials in

12

which each algorithm came up with a solution with accuracy ε = 0.05. Figures 1 (b), (c) show the
phase-transition behavior exhibited by the two stochastic algorithms; white indicates 100% success
rate while black represents 0% rate of success. Note that, here again the behavior of both the
methods is similar, with SA being marginally better.

Rank-k case: Finally, to cover the full extent of the cases solved by the analysed algorithms,
we also present simulation results for the rank-k case. We used the BSOI algorithm from Section 4.2
and the orthogonalized (via QR decomposition) version of the stochastic approximation algorithm
for our simulations. Figure 1 (d) compares the sample complexity of different methods for k = 10
in the model of (2). Here again we notice that the curves for BSOI follow the scaling behaviour of
the curves for SA and differ just by a small constant.

6 Conclusion

We consider the streaming one-pass-over-the-data model for PCA. Where as the classical PCA
algorithm requires forming the covariance matrix, and hence requires storage O(p2), our algorithm
uses only O(kp) storage; this is the best possible memory requirement, since that is needed just to
store the k principal components. The computational effort per step is also O(p), like other stochas-
tic analysis approaches. Yet, unlike other covariance-free approaches that have been proposed, we
provide finite sample bounds that demonstrate, in particular, that our algorithm exhibits essen-
tially (up to log and constant factors) the same convergence rates as batch PCA. This theoretical
agreement is also illustrated in our experiments section.

13

References

Arora, R., Cotter, A., Livescu, K., and Srebro, N. Stochastic optimization for PCA and PLS. In
50th Allerton Conference on Communication, Control, and Computing, Monticello, IL, 2012.

Balzano, L., Nowak, R., and Recht, B. Online identification and tracking of subspaces from highly
incomplete information. In Communication, Control, and Computing (Allerton), 2010 48th An-
nual Allerton Conference on, pp. 704–711, 2010.

Brand, M. Fast low-rank modifications of the thin singular value decomposition. Linear algebra
and its applications, 415(1):20–30, 2006.

Brand, Matthew. Incremental singular value decomposition of uncertain data with missing values.
Computer Vision—ECCV 2002, pp. 707–720, 2002.

Clarkson, Kenneth L. and Woodruff, David P. Numerical linear algebra in the streaming model.
In Proceedings of the 41st annual ACM symposium on Theory of computing, pp. 205214, 2009.

Comon, P. and Golub, G. H. Tracking a few extreme singular values and vectors in signal processing.
Proceedings of the IEEE, 78(8):1327–1343, 1990.

He, J., Balzano, L., and Lui, J. Online robust subspace tracking from partial information. arXiv
preprint arXiv:1109.3827, 2011.

Herbster, Mark and Warmuth, Manfred K. Tracking the best linear predictor. The Journal of
Machine Learning Research, 1:281–309, 2001.

Li, Y. On incremental and robust subspace learning. Pattern recognition, 37(7):1509–1518, 2004.

Oja, E. and Karhunen, J. On stochastic approximation of the eigenvectors and eigenvalues of
the expectation of a random matrix. Journal of mathematical analysis and applications, 106(1):
69–84, 1985.

Robbins, Herbert and Monro, Sutton. A stochastic approximation method. The Annals of Mathe-
matical Statistics, pp. 400–407, 1951.

Roweis, Sam. EM algorithms for PCA and SPCA. Advances in neural information processing
systems, pp. 626–632, 1998.

Rudelson, Mark and Vershynin, Roman. The Littlewood-Offord Problem and invertibility of random
matrices. ArXiv Mathematics e-prints, 2007.

Rudelson, Mark and Vershynin, Roman. Smallest singular value of a random rectangular matrix.
Communications on Pure and Applied Mathematics, 62(12):1707–1739, 2009.

Tipping, Michael E. and Bishop, Christopher M. Probabilistic principal component analysis. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3):611–622, 1999.

Vershynin, R. How close is the sample covariance matrix to the actual covariance matrix? Journal
of Theoretical Probability, pp. 1–32, 2010a.

Vershynin, Roman. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010b.

14

Warmuth, Manfred K. and Kuzmin, Dima. Randomized online PCA algorithms with regret bounds
that are logarithmic in the dimension. Journal of Machine Learning Research, 9:2287–2320, 2008.

Weng, J., Zhang, Y., and Hwang, W.S. Candid covariance-free incremental principal component
analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(8):1034–1040,
2003.

Zha, H. and Simon, H. D. On updating problems in latent semantic indexing. SIAM Journal on
Scientific Computing, 21(2):782–791, 1999.

Zhao, H., Yuen, P. C., and Kwok, J. T. A novel incremental principal component analysis and
its application for face recognition. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, 36(4):873–886, 2006.

15

A Preliminaries

Lemma 11 (Lemma 5.4 of Vershynin (2010b)). Let A be a symmetric k× k matrix, and let Nε be
an ε-net of Sk−1 for some ε ∈ [0, 1). Then,

‖A‖2 ≤
1

(1− 2ε)
sup
x∈Nε

|〈Ax,x〉|.

Lemma 12 (Proposition 2.1 of Vershynin (2010a)). Consider independent random vectors x1, . . . ,xn
in Rp, n ≥ p, which have sub-Gaussian distribution with parameter 1. Then for every δ > 0 with
probability at least 1− δ one has,

‖ 1

n

n∑
i=1

xix
T
i − E[xix

T
i]‖2 ≤ C

√
log(2/δ)

√
p

n
.

Lemma 13 (Corollary 3.5 of Vershynin (2010b)). Let A be an N × n matrix whose entries are
independent standard normal random variables. Then for every t ≥ 0, with probability at least
1− 2 exp(−t2/2) one has,

√
N −

√
n− t ≤ σk(A) ≤ σ1(A) ≤

√
N +

√
n+ t.

Lemma 14 (Theorem 1.2 of Rudelson & Vershynin (2007)). Let ζ1, . . . , ζn be independent centered
real random variables with variances at least 1 and subgaussian moments bounded by B. Let A be
an k × k matrix whose rows are independent copies of the random vector (ζ1, . . . , ζn). Then for
every ε ≥ 0 one has

Pr(σmin(A) ≤ ε/
√
k) ≤ Cε+ cn,

where C > 0 and c ∈ (0, 1) depend only on B. Note that B = 1 for the standard Gaussian variables.

Lemma 15. Let xi ∈ Rm, 1 ≤ i ≤ B be i.i.d. standard multivariate normal variables. Also,
yi ∈ Rn are also i.i.d. normal variables and are independent of xi, ∀i. Then, w.p. 1− δ,∥∥∥∥∥ 1

B

∑
i

xiy
>
i

∥∥∥∥∥
2

≤
√
C max(m,n) log(2/δ)

B
.

Proof. Let M =
∑

i xiy
T
i and let m > n. Then, the goal is to show that, the following holds w.p.

1− δ: 1
B‖Mv‖2 ≤

√
Cm log(2/δ)

B for all v ∈ Rn s.t. ‖v‖2 = 1.
We prove the lemma by first showing that the above mentioned result holds for any fixed vector

v and then use standard epsilon-net argument to prove it for all v.
Let N be the 1/4-net of Sn−1. Then, using Lemma 5.4 of Vershynin (2010b) (see Lemma 11),

‖ 1

Bm
MTM‖2 ≤ 2 max

v∈N

1

Bm
‖Mv‖22. (15)

Now, for any fixed v: Mv =
∑

i xiy
T
i v =

∑
i xici, where ci = yTi v ∼ N(0, 1). Hence,

‖Mv‖22 =

m∑
`=1

(

B∑
i=1

xi`ci)
2.

Now,
∑B

i=1 xi`ci ∼ N(0, ‖c‖22) where cT = [c1 c2 · · · cB]. Hence,
∑B

i=1 xi`ci = ‖c‖2h` where h` ∼
N(0, 1).

16

Therefore, ‖Mv‖22 = ‖c‖22‖h‖22 where hT = [h1 h2 · · ·hB]. Now,

Pr(
‖c‖22‖h‖22
Bm

≥ 1 + γ) ≤ Pr(‖c‖
2
2

B
≥
√

1 + γ) + Pr(
‖h‖22
m
≥
√

1 + γ)

ζ1
≤ 2 exp(−Bγ

2

32
) + 2 exp(−mγ

2

32
) ≤ 4 exp(−mγ

2

32
), (16)

where 0 < γ < 3 and ζ1 follows from Lemma 13.

Using (15), (16), the following holds with probability (1− 9n+1e−
mγ2

32):

‖M‖22
Bm

≤ 1 + 2γ. (17)

The result now follows by setting γ appropriately and assuming n < Cm for small enough C.

B Proof of Lemma 2

Proof. Note that,

1

B

∑
t

xtx
>
t − uu> − σ2I = uu>

1

B

∑
t

(z2t − 1)+

1

B

∑
t

(wtw
>
t − σ2I) +

1

B

∑
t

ztwtu
> +

1

B
u
∑
t

ztw
>
t . (18)

We now individually bound each of the above given terms in the RHS. Using standard tail bounds
for covariance estimation (see Lemma 12), we can bound the first two terms (w.p. 1− 2C/T):

1

B

∣∣∣∣∣∑
t

(z2t − 1)

∣∣∣∣∣ ≤
√
C log(T)

B
,

‖ 1

B

∑
t

(wtw
>
t − σ2I)‖2 ≤ σ2

√
C1p log(T)

B
. (19)

Similarly, using Lemma 15, we can bound the last two terms in (18) (w.p. 1− 2C/T):

‖ 1

B

∑
t

ztwtu
>‖2 = ‖ 1

B
u
∑
t

ztw
>
t ‖2 ≤ σ

√
C1p log(T)

B
. (20)

The lemma now follows by using (18), (19), (20) along with B as given by Theorem 1.

C Proof of Lemma 3

Proof. Let qτ =
√

1− δτu +
√
δτu

⊥
τ , where u⊥τ is the component of qτ that is orthogonal to u.

Now,

u>sτ+1 =
1

B

∑
t

(u>xt)(x
>
t qt)

=
1

B

∑
t

(zt + u>wt)(
√

1− δτ (zt + u>wt) +
√
δτw

>
t u⊥

τ)

=

√
1− δτ
B

∑
t

(zt + u>wt)
2 +

√
δτ
B

∑
t

(zt + u>wt)w
>
t u⊥

τ . (21)

17

Now, the first term above is a summation of B i.i.d. chi-square variables and hence using standard
results (see Lemma 13), w.p. (1− C/T):

1

B

∑
t

(zt + u>wt)
2 ≥ (1 + σ2)(1−

√
C log(2T)

B
). (22)

Also, w>t u and w>t u⊥τ are independent random variables, as both w>t u, w>t u⊥τ are Gaussians and
E[w>t u⊥τ u>wt] = 0. Hence, using Lemma 15, the following holds with probability ≥ 1− 4C/T :

‖ 1

B

∑
t

(zt + u>wt)w
>
t u⊥τ ‖2 ≤ σ

√
1 + σ2

√
C log(T)

B

(i)

≤ σ
√

1 + σ2

√
C1p log(T)

B(1− δ0)
√

1− δτ , (23)

where (i) follows by using inductive hypothesis (i.e.,
√

1− δτ >
√

1− δτ−1, induction step follows
as we show that the error decreases at each step) and Lemma 4.

The lemma now follows by using (21), (22), (23) and by setting B, T appropriately.

D Proof of Lemma 8

Proof. Using the generative model (2), we get:

U>Fτ+1Qτv = Λ

(
1

B

∑
t

ztz
>
t

)
ΛU>Qτv +

(
1

B

∑
t

U>wtw
>
t U

)
U>Qτv

+(
1

B

∑
t

U>wtz
>
t)ΛU>Qτv+Λ(

1

B

∑
t

ztw
>
t U)U>Qτv+

(
1

B

∑
t

(Λzt + U>wt)w
>
t U⊥U

>
⊥Qτ

)
v.

(24)

Note that in the equation and rest of the proof, t varies from Bτ < t ≤ B(τ + 1).
We now show that each of the five terms in the above given equation concentrate around their

respective means. Also, let yt = U>wt and y⊥t = U>⊥wt. Note that, yt ∼ N(0, σ2Ik×k) and
y⊥t ∼ N(0, σ2I(p−k)×(p−k)).
(a): Consider the first term in (24). Using ‖Av‖2 ≤ ‖A‖2‖v‖2 and the assumption that λ1 = 1, we
get: ‖Λ

(
1
B

∑
t ztz

>
t − I

)
ΛU>Qτv‖2 ≤ ‖

(
1
B

∑
t ztz

>
t − I

)
‖2‖U>Qτv‖2. Using Lemma 12 we get

(w.p. 1− C/T):

‖ 1

B

∑
t

ztz
>
t − I‖2 ≤

√
C1k log(T)

B
.

That is,

‖Λ(
1

B

∑
t

ztz
>
t − I)ΛU>Qτv‖2 ≤

√
C1k log(T)

B
‖U>Qτv‖2. (25)

(b): Similarly, the second term in (24) can be bounded as (w.p. 1− C/T):

‖

(
1

B

∑
t

U>wtw
>
t U − σ2I

)
U>Qτv‖2 ≤ σ2

√
C1k log(T)

B
‖U>Qτv‖2. (26)

18

(c): Now consider the third and the fourth term. Now wt and zt are independent 0-mean Gaussians,

hence using Lemma 15, we get: ‖ 1
B

∑
t U
>wtz

>
t ‖2 ≤ σ

√
C1k log(T)

B . Hence, w.p. 1− 2C/T ,

‖Λ(
1

B

∑
t

ztw
>
t U)U>Qτv‖+ ‖(1

B

∑
t

U>wtzt)ΛU
>Qτv‖ ≤ 2σ

√
C1k log(T)

B
‖U>Qτv‖2. (27)

(d): Finally, we consider the last term in (24). Note that, (Λzt + U>wt) ∼ N(0, D) where D is a
diagonal matrix with Dii = λ2i + σ2. Also, Q>U⊥U

>
⊥wt ∼ N(0, σ2I(p−k)×(p−k)) and is independent

of (Λzt + U>wt) as E[Q>U⊥U
>
⊥wtw

>
t U] = 0; recall that for Gaussian RVs, covariance is zero iff

RVs are independent. Hence, using Lemma 15, w.p. ≥ 1− C/T :

‖(1

B

∑
t

(Λzt + U>wt)w
>
t U⊥U

>
⊥Qτ)v‖2 ≤

√
1 + σ2σ

√
C1k log(T)

B
. (28)

Now, using (24), (25), (26), (27), (28) (w.p. ≥ 1− 5C/T)

‖U>Fτ+1Qτv‖2 ≥ ‖(Λ2 +σ2I)U>Qτv‖2−
√
C1k log(T)

B
‖U>Qτv‖2

(
(1 + σ)2 +

σ
√

1 + σ2

‖U>Qτv‖2

)
.

(29)

Now, ‖U>Qτv‖2 ≥ σk(U
>Qτv). Next, by using the inductive hypothesis (i.e., σk(U

TQτ) ≥
σk(U

TQτ−1), induction step follows as we show that the error decreases at each step) and Lemma 10,
we have ‖U>Qτv‖2 ≥ σk(U>Q0) ≥ C√

pk
with probability ≥ 0.99.

Also, ‖(Λ2+σ2I)U>Qτv‖2 ≥ (λ2k+σ2)‖U>Qτv‖2. Additionally, ‖U>Qτv‖2 ≥
√

1− ‖U>⊥Qτ‖22.
Hence, lemma follows by using these facts with (29) and by selecting B as given in Theorem 7.

E Proof of Lemma 9

Proof. Similar to our proof for Lemma 8, we separate out the “error” or deviation terms in
‖U>⊥Fτ+1Qτ‖2 and bound them using concentration bounds. Now,

‖U>⊥Fτ+1Qτv‖2 = ‖U>⊥ (UΛ2U> + σ2I + Eτ)Qτv‖2
≤ ‖σ2U>⊥Qτv‖2 + ‖U>⊥EτQτv‖2
≤ σ2‖U>⊥Qτv‖2 + ‖Eτ‖2, (30)

where Eτ is the error matrix representing deviation of the estimate Fτ+1 from its mean. That is,

E =
1

B

∑
t

xtx
>
t − UΛ2U> − σ2I

= UΛ(
1

B

∑
t

ztz
>
t − I)ΛU> + (

1

B

∑
t

wtw
>
t − σ2I)

+ UΛ
1

B

∑
t

ztw
>
t +

1

B

∑
t

wtz
>
t ΛU. (31)

Note that the above given four terms correspond to similar four terms in (24) and hence can be
bounded in similar fashion. In particular, the following holds with probability 1− 4C/T :

‖E‖2 ≤
√
C1k log(T)

B
+ σ2

√
C1p log(T)

B
+ 2σ

√
C1p log(T)

B
≤ λ2kε/2, (32)

19

where the second inequality follows by setting B as required by Theorem 7. The lemma now follows
using (30), (31), (32).

20

	Introduction
	Related Work
	Problem Formulation and Notation
	Algorithm and Main Results
	Rank-One Case
	Analysis

	General Rank-k Case
	Analysis

	Empirical Results
	Conclusion
	Preliminaries
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 8
	Proof of Lemma 9

