
Streaming PCA with Many Missing Entries

Ioannis Mitliagkas
The University of Texas
Austin, TX 78712 USA

ioannis@utexas.edu

Constantine Caramanis
The University of Texas
Austin, TX 78712 USA

constantine@utexas.edu

Prateek Jain
Microsoft Research India

Bangalore, INDIA

prajain@microsoft.com

ABSTRACT

We consider the streaming memory-constrained principal
component analysis (PCA) problem with missing entries,
where the available storage is linear in the dimensionality of
the problem, and each vector has so many missing entries
that matrix completion is not possible. SVD-based meth-
ods cannot work because of the memory constraint, while
imputation-based updates fail when faced with too many
erasures. For this problem, we propose a method based on
a block power update approach introduced in [13]. We show
on synthetic as well as benchmark data sets, that our ap-
proach outperforms existing approaches for streaming PCA
by a significant margin for several interesting problem set-
tings. We also consider the popular spiked covariance model
with randomly missing entries, and obtain the first known
global convergence guarantees for this problem. We show
that our method converges to the true “spike” using a num-
ber of samples that is linear in the dimension of the data.
Moreover, our memory requirement is also linear in the am-
bient dimension. Thus, both memory and sample complex-
ity have optimal scaling with dimension.

Keywords

PCA, erasures, missing entries, streaming, memory-limited,
data discovery

1. INTRODUCTION
Dimensionality reduction is a foundational technique in

statistics and many other fields of science and engineering.
Principal Component Analysis (PCA) searches for a linear
manifold with maximal “explanatory power.” This paper
considers the problem of PCA, under severe memory/storage
constraints, and partial observation – a setting where to the
best of our knowledge, there are no known algorithms with
global performance guarantees. We consider the streaming
setting, where we see data points sequentially, and these are
nowhere stored. We seek to use no more total storage than

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD ’14 New York, NY USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

required for the output. This essentially means that while
our algorithm sees each data point, it can only do so once.

Motivated by many recent applications in preference and
behavior modeling, we focus on the partial observation set-
ting: each data point is not only noisy as in traditional PCA.
It also suffers some – perhaps overwhelming – number of
erasures. Extreme erasures are typical of application areas,
where the data is naturally sparse. Moreover, erasures may
be an introduced feature, e.g. where features are withheld to
protect privacy, while allowing collective learning. This dis-
tinction between extracting principle components and com-
pleting the data, is important in our work.

We consider the following problem: given partial obser-
vations ẋt of vectors xt ∈ R

p, we seek a k-dimensional sub-
space U along which the variance of complete vectors {xi} is
maximized. Matrix completion techniques using either SVD
[10] or nuclear norm optimization approaches (e.g., [5, 14,
16, 11]) have formed the bulk of research into such prob-
lems. Largely, their algorithmic and statistical performance
is quite well understood. Yet these algorithms all have stor-
age complexity on the order of O(p2). Moreover, most of
these results focus on matrix completion – an objective of
less value in the setting where we cannot store points.

In contrast, we focus on recovering a subspace close to U .
If there are enough observations, this is equivalent to matrix
completion, but that is not always the case. Recent work on
memory-restricted PCA has considered this objective, in-
cluding [13, 1, 2, 3]. Of these, [13] is the only one that guar-
antees optimal sample complexity and global convergence,
yet does not consider erasures; [3, 4] is the only one that
can handle erasures, though convergence guarantees there
are only local. The algorithms in [3] (GROUSE) and [15]
(Stochastic Approximation, finally analyzed in [2]) perform
very well in general but they share two important drawbacks:
i) their performance can suffer when the number of erasures
is overwhelming and ii) their success critically depends on
careful individual parametrization for every dataset. These
are discussed in Sections 3 and 6.

Our contributions: We provide a practical, easy-to-
deploy algorithm that does not suffer from the above issues.
To the best of our knowledge, it is the first algorithm for
streaming PCA with erasures, that comes with global con-
vergence guarantees. Specifically:

• Algorithm and Performance: We provide a sim-
ple, fast algorithm that has the form of a block power
method update. We experiment on synthetic and real
data, and demonstrate the performance of our algo-
rithm.

• Implementation and deployability: Perhaps its
most salient quality is the fact that it obviates the
need for“guesswork”when deploying on a new dataset.
That is, unlike other streaming algorithms, the same
exact parametrization, can perform well in different
datasets. See Section 6 for the numbers and discus-
sion.

• Sample Complexity: Under wide assumptions on
the data distribution, we show that our algorithm re-
covers the k principal components with Õ(p/δ2ǫ2) sam-
ples, which is scaling-wise optimal for any algorithm.
Furthermore, we show – in theory and experiments –
that we can recover U even when δp < k. In this
regime, matrix completion is generally not possible.
To do this, we improve on the analysis in [12] giving
tighter bounds for some pertinent cases.

• Memory Complexity: Our algorithm requires mem-
ory O(pk) – this is the best possible. This much mem-
ory is required to store the output alone.

Notation: Unless stated explicitly, ||A|| denotes the spec-
tral norm, i.e., the natural norm induced by the L2 vector
norm. If U is a matrix, U⊥ denotes an orthogonal basis for
the subspace perpendicular to span(U). For x ∈ R

p and
Ω ⊆ [p], we use xΩ to denote the restriction of x to the
elements in the set Ω. Finally, if U is a matrix, we denote
its ith row by U i and its ith column by ui. Similarly for a
vector x, we write xi for its ith entry.
We now introduce the system model in detail in Section 2

and discuss the most relevant pieces of work in Section 3.
We then present our algorithm and analysis in Section 4,
and Section 5, respectively, and conclude with extensive ex-
periments in Section 6.

2. PROBLEM FORMULATION
System Model. Assume that at each time step t, we

receive a point ẋt, which is a partially erased version of
xt ∈ R

p. Our goal is to compute the top k principal compo-
nents of the data: the k-dimensional subspace that offers the
best squared-error estimate for the points. Our total storage
capacity is O(kp) – the storage required to store the output.
The streaming setting means, in particular, that any vector
not explicitly stored can never be revisited.
Our analytical (sample complexity) guarantees are based

on the following generative model for the data: the full sam-
ples are described by

xt = UΛzt +wt, (1)

where each component of zt, i.e., z
i
t, 1 ≤ i ≤ p is sampled

i.i.d. from a fixed distribution D, s.t., E[zit = 0], E[(zit)
2 = 1],

and finally |zit| ≤ M∞ almost surely. Similarly, we assume
that each component of wt is sampled i.i.d. from another
fix distribution D′ which also satisfies the same set of nor-
malization constraints, i.e., E[wi

t = 0], E[(wi
t)

2 = 1], and
|wi

t| ≤ M∞ almost surely. The sequences {zt}t and {wt}t
are mutually independent, U ∈ R

p×k is a matrix with or-
thonormal columns and Λ ∈ R

k×k a diagonal matrix.
Note that, our analysis holds even when zt,wt are sam-

pled from any general fixed sub-Gaussian. We assume bounded
distribution for simplicity of exposition. Finally, we assume
that the observed samples, ẋt, are erased versions of xt,

where for each entry j, independently,

ẋt(j) =

{
xt(j) w.p., δ

0, otherwise
. (2)

Hence, each sample, has δp observed entries in expectation.
Objective and Metric. Given a data stream {x1,x2, . . . },

the standard goal of streaming PCA is to recover the variance-
maximizing subspace, i.e., of maximizing the explained vari-
ance. However, for our generative model, this corresponds
to recovering the subspace spanned by the orthonormal ma-
trix U . Now, we measure the error in estimation of the
required subspace using the largest principle angle based
distance ([19]). That is, given any unitary matrix Q, we use
the following distance:

dist(U,Q) =dist (span(U), span(Q))

=‖U⊤
⊥Q‖2 = ‖Q⊤

⊥U‖2 (3)

The distance is symmetric and takes values in [0, 1]. Given
enough samples, the minimization of (3) is equivalent to
maximizing the explained variance. In our experiments, Sec-
tion 6, we use both metrics.

3. RELATED WORK
The literature contains a vast body of work dealing with

the different aspects of this problem. Most methods are not
applicable in our setup: they are either batch algorithms or
require more than O(kp) memory. Indeed, any algorithm
that involves the computation of the empirical covariance
matrix, including the standard PCA algorithm in the fully
observed case, requires O(p2) storage. This essentially rules
out all optimization-based solutions, including matrix com-
pletion style algorithms that do not explicitly force a low-
rank factorization, such as [14, 5]. Yet algorithms that force
such a factorization, are no longer convex; this is at the core
of the challenge for obtaining global guarantees.

For the complete observation setting, stochastic approx-
imation [15], and related stochastic gradient-based meth-
ods (e.g., [1]) fall into this category, and accordingly are
memory-efficient. While empirically they have been ob-
served to do well, there are no guarantees of their con-
vergence with sample complexity order-wise comparable to
batch PCA algorithms. The impressive recent work in [2]
is the first to provide any convergence rate for stochastic
approximation (there called incremental PCA), though its
dependence to the dimension p is worse than the batch meth-
ods or our earlier work in [13].

For the partially observed setting which is of interest here,
there are two directions stand out: covariance estimation
and imputation-based algorithms. An important line of work,
is the Expectation - Maximization (EM) approach [6]. Un-
fortunately, there are no global guarantees for EM in this
case, nor is it clear how the M -step would be implemented
without violating the memory constraint. We provide de-
tailed discussion of the relevant tools and issues in the re-
mainder of this section. We refer to our earlier work in [13]
and to [1], for a more comprehensive literature review for
the full observation setting.

3.1 Unbiased Covariance Estimation
A critical element of many PCA algorithms is some form

of covariance estimation, be that explicit or implicit. The

former is true for the classic batch PCA algorithm. The
algorithm computes the empirical covariance matrix,

Σn =
1

n

n∑

i=1

xix
T
i , (4)

and then performs a Singular Value Decomposition (SVD)
on Σn to recover the range of U . The statistical limits of
this process are characterized in [9]. Specifically, O(p) sam-
ples are necessary in the full-rank, subgaussian case. This
includes the spiked covariance model.
The introduction of erasures in the data stream, renders

the estimator in (4) biased. The authors in [12] discuss
this issue for the batch setting and provide an alternative
algorithm. It is based on,

Σ̃n = δ−2Σn + (δ−1 − δ−2)diag(Σn), (5)

and employs regularized optimization to make the method
efficient in the high-dimensional case. That algorithm is not
applicable in a streaming setup, however the estimator in (5)
and accompanying concentration analysis, provided therein
is a useful tool for our purposes.

3.2 Imputation-based Algorithms
A line of empirically successful algorithms introduced in

[3] (GROUSE) and studied further in [7] and [4], avoid
covariance estimation. To that end, they use an updates
that resemble stochastic approximation, except they are per-
formed along the Grassmanian manifold. In its general form,
the algorithm first calculates the projection of the latest
sample, ẋt, on the current subspace estimate, say Qt. As
per the model, only a subset Ωt of indices is observed, i.e.
ẋt|Ωt

= xt|Ωt
and ẋt|Ωt

= 0. Restricting ẋt and Qt to the
observed indices, the projection is calculated as follows:

wt = argmin
w∈Rk

∥∥ẋt|Ωt
−Qt|Ωt

w
∥∥
2
. (6)

Then, Qt and the optimal weights in wt are used to impute
the entries missing from ẋt.

ẋt|Ωt
← Qt|Ωt

wt (7)

Finally, the algorithm uses the imputed vector to update Qt,
performing a descent step on the Grassmanian.
This method has proven to perform well in practice. How-

ever, in the regime where the number of observed elements
per vector (|Ωt|) is less than the number of components (k),
the projection in (6) is underdetermined, making the step
ill-defined. Picking the minimum-norm solution is a reason-
able way to deal with this issue and we put this idea to the
test in our experiments (Section 6).
Another natural way to modify these algorithms to deal

with this case, is discarding all samples with an insufficient
number of observed entries (less than k). This makes a
very small difference in experiments – not included here for
brevity – but there is a simple probabilistic argument against
it: Assuming each entry is observed independently, the num-
ber of observed entries is given by a binomial random vari-
able (more generally Poisson trials). For k = (c+1)δp, with
c > 0, a Chernoff bound gives

P (|Ωt| ≥ k) ≤ exp
{
−
(
c2 ∧ c

)
δp/3

}
. (8)

This implies that, for any c > 0, the number of wasted
samples would range from large to overwhelming, depending
on the scaling of δp.

We conclude that methods based on projection-based im-
putation face significant problems in the regime of many
missing entries and set out to provide an alternative.

4. ALGORITHM
We now present our algorithm (see Algorithm 1) for the

problem of streaming PCA. Our algorithm is based on the
block-wise update introduced in [13]. At a high level, the
algorithm essentially leverages concentration of the sample
covariance to the true covariance (see Theorem 2, Theo-
rem 11) to estimate the next iterate.

Algorithm 1, takes in the stream of data vectors xi, the
(known) probability of observation δ, the number of com-
ponents k, and a block size B. It starts with a random
k-dimensional subspace and refines that estimate doing a
single pass over the data. Every subset of B subsequent
samples is considered a block, even though only one sample
is held in memory at any time.

To see why this algorithm works, consider line 7 of the
algorithm and over the course of block τ :

Sτ =
1

B

Bτ∑

t=B(τ−1)+1

[
1

δ2
xtx

⊤
t +

(
1

δ
− 1

δ2

)
Dt

]
Qτ−1

=

 1

B

Bτ∑

t=B(τ−1)+1

1

δ2
xtx

⊤
t +

(
1

δ
− 1

δ2

)
Dt

Qτ−1

=Σ̃BQτ−1,

where Dt = diag(xtx
⊤
t). From the last line, we see that

after every block, the algorithm is equivalent to performing
a power iteration step. That is, the previous subspace es-
timate, Qτ−1, is essentially premultiplied by the estimator
in (5) using all the samples in the block. The complication

is that, with every block, the covariance estimate, Σ̃B , is
different. As we know from [13], this complicates the anal-
ysis requiring more advanced tools when compared to the
simpler analysis of the classic power method.

It should be noted that, even though the algorithm ef-
fectively performs a power iteration per block, Σ̃n is never
formed explicitly – all of the calculations can be performed
in O(kp) memory.

Algorithm 1

Input: X = {xi}ni=1, δ, k, Block size: B
1: Hi ∼ N (0, Ip×p), 1 ≤ i ≤ k (Initialization)
2: H ← Q0R0 (QR-decomposition)
3: for τ = 1, . . . , n/B do
4: Sτ ← 0
5: for t = B(τ − 1) + 1, . . . , Bτ do
6: Dt ← diag(xtx

⊤
t)

7: Sτ ← Sτ +
1
B

[
1
δ2
xtx

⊤
t +

(
1
δ
− 1

δ2

)
Dt

]
Qτ−1

8: end for
9: Sτ = QτRτ (QR-decomposition)
10: end for
11: Return: Qτ

In Section 3 we discuss connections to other recent work,
related to this problem and algorithm and in Section 5 we
provide theoretical guarantees for the convergence of Algo-
rithm 1.

5. CONVERGENCE ANALYSIS
In this section we give theoretical guarantees for the con-

vergence of Algorithm 1. In particular, we can show the
following convergence result for Algorithm 1.

Theorem 1. Consider a data stream, where ẋt ∈ R
p for

every t is generated by (1),(2), and the SVD of A ∈ R
p×k

is given by A = UΛV ⊤. Let, WLOG, λ1 = 1 ≥ λ2 ≥
· · · ≥ λk > 0. Furthermore, let A be µ-incoherent, i.e.,

‖U i‖2 ≤ µ
√
k√
p
, where U i is the i-th row of U . Then for,

T = Ω

(
log(p/kǫ)/ log

(
σ2 + 0.75λ2

k

σ2 + 0.5λ2
k

))
,

B = Ω

M2
∞

(
kµ2

p
+ σ2 + pk2(µ

2

p
+ σ2)2

)
· log(p · T)

log2((σ2 + .75)/(σ2 + .5)) · δ2ǫ2

 .

after T updates with block size B, dist(U,QT) ≤ ǫ, w.p.
0.99. Hence, the sufficient number of samples for ǫ-accurate
recovery of all the top-k principal components is:

n = Ω̃

M2
∞

(
kµ2

p
+ σ2 + pk2(µ

2

p
+ σ2)2

)
· log(p)

λ4
kǫ

2δ2 log
(
σ2+0.75λ2

k

σ2+0.5λ2
k

)

 .

We use Ω̃(·) to suppress the extra log(T) factor.

Note that, the number of samples required by our algorithm
depends on the incoherence parameter µ of U , defined as:

µ =

√
p√
k
max
i
‖U i‖2, (9)

where U i is the i-th row of U . Hence, incoherent matrices,
i.e., ones with small µ, are “spread” out matrices where one
of the rows of U do not dominate the others.
The incoherence parameter plays a critical role in under-

standing the sample complexity of problems with entries
missing at random [5]. The reason being, if the matrix is not
incoherent, then there is a small number of entries that con-
tain most of the energy. Recovering such matrices/principal
components becomes significantly more challenging.
We would like to stress that the main novelty of our anal-

ysis is that it is able to exploit this incoherence condition to
guarantee fast convergence to the covariance matrix, that is
critical in obtaining small sample complexity; see Section 5.1
for more discussion. Moreover, due to our block updates, we
are able to show that each of our updates is incoherent as
well. This property is also critical for obtaining tight sam-
ple complexity bounds. We would also like to highlight that
some of the existing methods [4] struggle to maintain this
property, and hence suffer from relatively worse sample com-
plexity bounds.
To bring out the key ideas in our convergence analysis and

for notational simplicity, we first analyse the special case of
our problem when the goal is to recover only one princi-
pal component, i.e., k = 1. For this special case, we first
state a few lemmas that are useful for the derivation of our
main result. The proofs are deferred to the appendix. Note
that statements of lemmata from other sources have been
adapted to use our own notation, described in Section 1.
Then, in Section 5.2, we present our proof sketch for the

general rank-k case and the details in Appendix C.

5.1 Rank-one Case
Recall that, for the rank-one case, the observed data xt is

sampled from the following generative model:

xt = uzt +wt, ẋt = PΩt(xt), PΩt(xt)
i = δitx

i
t,

δit =

{
1 w.p. δ

0 otherwise
, (10)

where E[zt] = 0, E[z2t] = 1 and |zt| ≤ M∞ (almost surely).
Similarly, each element wit, of the vector wt is also sampled
independently from a zero-mean bounded distribution. That
is, E[wit] = 0, E[(wit)

2] = σ2, and |wit| ≤M∞.
A key component of our proof is to analyze the rate at

which the sample covariance matrix

Σ̃ =
1

δ2
1

B

∑

t

xtx
T
t − (

1

δ2
− 1

δ
)
∑

t

diag(xtx
T
t)

converges to the true covariance matrix Σ. While the result
of [12] directly applies to our model (see Theorem 11), we
will show below that for the specific case of spiked covari-
ance model, their result is sub-optimal and can be improved
upon significantly. In particular, we will provide our bounds
in terms of the incoherence parameter µ (see (9)) and the
noise variance σ2, and then later show that for a large class
of incoherence and noise variance values, our result is signif-
icantly better than that of [12].

Theorem 2. Let Σ̃ = 1
δ2n

∑B

t=1 ẋtẋt
T − 1

n
·
(

1
δ2
− 1

δ

)
·∑n

t=1 diag(ẋtẋt
T) where ẋt is generated using (10). Also,

let Σ = uuT + σ2I, ‖u‖2 = 1, and let,

B ≥
100M2

∞ log(p · T)
(
2µ

2

p
+ 4σ2µ2 + σ4p

)

δ2ǫ2
.

Then, w.p. ≥ 1− 1/T 2:

‖Σ̃− Σ‖2 ≤ ǫ.

The above result shows that if σ or µ as well as the observa-
tion probability δ ≤ log p/p, then we need around O(p3/ǫ2)

samples to bring Σ̃ ǫ-close to Σ. This matches the result of
[12] (see Theorem 11). In other reasonable settings, though,
our results can be significantly better than that of Theo-
rem 11:

Corollary 3. Let the incoherence of u (see (10)) be a
constant and let σ2 ≤ 1√

p
. Also, let δ < log p/p. Then, if

B ≥ Cp log3 p/ǫ for a global constant C > 0 depending only

on M∞, we have (w.p. ≥ 1− 1/T 2): ‖Σ̃− Σ‖2 ≤ ǫ.

In contrast, Theorem 11 requires O(p2) samples even when
σ = 0 while µ and δ are set as above. The incoherence
assumption is fairly standard and it appears in several real-
world scenarios (see [5, 8]). We now present our result for
the rank-one online PCA with missing entries.

Theorem 4. Let x1,x2, . . . ,xn be obtained using the model
in (10). Set the number of iterations to be

T =
100 log(1/ǫ)

log((σ2 + .75)/(σ2 + .5))

and the block size B to

B ≥
C ·M2

∞

(
µ2

p
+ σ2 + p(µ

2

p
+ σ2)2

)
· log(p · T)

log2((σ2 + .75)/(σ2 + .5)) · δ2ǫ2 ,

where C > 0 is a global constant. Then, with probability at
least 0.99, Algorithm 1 outputs iterate qT , s.t., ‖qT −u‖ ≤ ǫ.

The above theorem shows that the sample complexity of our
algorithm grows as

n ≥ C ·M2
∞
(
µ2/p+ σ2 + p(µ2/p+ σ2)2

)
· log p/ǫ

log2((σ2 + .75)/(σ2 + .5)) · δ2ǫ2 .

Our proof critically relies on the following lemma.

Lemma 5. Let qτ ∈ R
p be the iterate obtained after τ

iterations of Algorithm 1. Also, let qτ be 10 · µ incoherent.
Also, let the block size B be as given in Theorem 4. Then,

w.p. ≥ 1− 1/T 2: ‖UT
(
Σ̃− Σ

)
qτ‖2 ≤ 2ǫ 1√

p
.

Note that the above given lemma only holds when each
of the iterate qτ is at most 10 · µ incoherent. Hence, an ad-
ditional challenge here is to show that each of the iterate is
indeed 10 · µ incoherent (w.h.p.). To this end, we provide
Lemma 6. Note that, to prove this lemma we explicitly use
the following fact: the blocks ensure that the update is sim-
ilar to the one obtained by the population covariance, hence
incoherence is maintained. In contrast, existing stochastic
gradient based approaches such as [4] pose difficulty in show-
ing incoherence of each iterate due to large deviations from
the population covariance behavior.

Lemma 6. Let qτ+1 be the (τ+1)-th iterate of Algorithm 1,
and let B, T be as selected in Theorem 4. Also, let the spiked
direction u be µ incoherent and let µτ be the incoherence pa-
rameter (see (9)) of iterate qτ , ∀1 ≤ τ ≤ T . Then, w.p.
≥ 1− 1/T 2, for each τ , qτ+1 is µτ (1+ ǫ)-incoherent. More-
over, qτ+1 is at most 10 · µ incoherent where τ < T .

Now, using the above mentioned lemmas, we can complete
the proof of Theorem 4. Our proof uses arguments similar
to the ones used by the proof of Theorem 1 by [13]. See
Appendix B.

5.2 Rank-k Case
We now discuss proof of our result (Theorem 1) for the

general rank-k case. The details are similar to the rank 1
case, and we defer them to Appendix C. As mentioned in
the previous section, the main tool here again is a strong
concentration bound for the sample covariance matrix. An-
other critical step for our rank-1 analysis was the proof of
incoherence of each iterate, which also can be extended to
the general rank-k case.
After obtaining the above mentioned two key results, we

can then complete the proof using an analysis similar to that
of Theorem 3 in [13]. Note that, WLOG, we can assume that
‖A‖2 = 1.
First, we present our general result for the covariance es-

timation in the spiked covariance model (see Section 2).

Theorem 7. Let Σ̃ = 1
δ2n

∑B

t=1 ẋtẋt
T − 1

n
·
(

1
δ2
− 1

δ

)
·∑n

t=1 diag(ẋtẋt
T) where ẋt is generated using (1),(2). Also,

let Σ = UΛUT + σ2I, ‖u‖2 = 1, and let,

B ≥
100M2

∞ log(p · T) · (k + σ2p) · (µ2k

p
+ σ2)

δ2ǫ2
.

Then, w.p. ≥ 1− 1/T 2:

‖Σ̃− Σ‖2 ≤ ǫ.

Note that, similar to the rank-one case, there is a large class
of problems under the spiked covariance model where the
above given concentration bound is significantly better than
the generic bound obtained by [12]. For example, when µ is
a constant, σ2 = O(1/

√
p), and δ = O(log p

p
).

The above lemma gives the spectral norm bound for Σ̃−Σ,
which is a worst case bound, i.e., ∀v ∈ R

p, ‖Σ̃−Σ‖2 ≤ ǫ‖v‖2.
However, to get tight sample complexity for our algorithm,
we need to use the fact that even though spectral norm of

the error in covariance estimation (Σ̃− Σ) is ǫ, in any fixed
and incoherent direction, the projection of the error matrix

is significantly smaller. That is, |uT (Σ̃− Σ)q| ≤ ǫ√
p
for any

fixed unit vectors u, q with incoherence parameters µu, µq
being at most O(µ), where µ is the incoherence of U (from
(1)).

Lemma 8. Let Qτ ∈ R
p be the iterate obtained after τ

iterations of Algorithm 1. Also, let Qτ be 10 · µ incoherent.
Also, let the block size B be as given in Theorem 4. Then,

w.p. ≥ 1− 1/T 2: ‖UT
(
Σ̃− Σ

)
Qτ‖2 ≤ 2ǫ 1√

p
.

Also, similar to the rank-1 case, we need incoherence of the
intermediate iterates Qτ for the above mentioned result to
hold. Following lemma shows that the incoherence param-
eter of the intermediate iterates can indeed be shown to be
reasonably small:

Lemma 9. Let Qτ+1 be the (τ + 1)-th iterate of Algo-
rithm 1, and let parameters B, T be as selected in The-
orem 4. Also, let the spiked direction U be µ incoherent,

i.e., ‖U i‖ ≤ µ
√
k√
p
, 1 ≤ i ≤ p, where U i is the i-th row

of U . Also, let µτ be the incoherence parameter of iterate
Qτ , ∀1 ≤ τ ≤ T . Then, w.p. ≥ 1− 1/T 2, for each τ , Qτ+1

is µτ (1 + ǫ)-incoherent. Moreover, Qτ+1 is at most 10 · µ
incoherent where τ < T .

Finally, using the above given lemmas with an analysis sim-
ilar to that of Theorem 3 of [13], we can complete the proof
of Theorem 1. See Appendix C.

6. EXPERIMENTS
In this section, we perform a number of experiments that

corroborate our theoretical claims and provide evidence that
Algorithm 1 can perform better than the state of the art in
several important regions. We start with describing the algo-
rithms used in the experiments along with any implementa-
tion considerations. Then we proceed to experiments with
synthesized, artificially sparsified real data, and naturally
sparse data. For all these cases we compare the algorithms
based on several performance metrics and discuss their run-
ning times and robustness to parametrization. Since all the
data sets are, of course, stored, we simulate the streaming
and no-storage aspect for our algorithm.

Algorithm 1: The algorithm we propose. Reworking the
equations on the number and size of blocks from Theorem 1
we can get an expression for T (the number of blocks) as
a function of all given parameters. One important missing
quantity is the ratio of eigenvalues at the cutoff point which
we do not assume we know. For all the experiments that
follow we use the following simplified formula:

T = CAlgo1 log
pnδ

k
. (11)

All of the parameters in the formula, are available before the
start of the experiment, except for the erasure probability
δ which can be very quickly and accurately estimated from
the data stream, much faster than the PCA procedure itself.
For all of our experiments in this manuscript, we use the
constant CAlgo1 = 1

4
(see Section 6.4) and round the result

to the nearest integer to get the number of blocks.

Stochastic Approximation: The most popular manifes-
tation of Stochastic Approximation for PCA is Oja’s rule
([15]). Even though it is not designed to deal with missing
data, we nonetheless include it in our experiments as it is an
industry standard. With every new sample (ẋt) received, the
algorithm updates its estimate based on the following rule.

Ũt = Ut−1 +
CSA
t

ẋtẋ
T
t Ut−1 (12)

After each step, the intermediate estimate, Ũt+1 is orthonor-
malized to give Ut.
TheO(1

t
) rule for the step size is accepted universally – see

[15] and [2] for some discussion. However, to the best of our
knowledge, the only complete characterization of the con-
stant depends on the uknown eigengap at the cut-off point.
For our experiments, we resort to picking a different con-
stant C as suited to different datasets, as summarized in
Section 6.4.

GROUSE: We include GROUSE in our experiments for it
is a lightweight, fast and efficient algorithm, having proven
to do well in most situations. For use in our experiments,
we download the GROUSE Matlab code from the author’s
website. To make the algorithm well-defined in the region
k > δp (see discussion in Section 3), we make sure to use
the pseudo-inverse operator for the projection step in (6).
GROUSE is more complicated than Stochastic Approxima-
tion (see [3], or Section 3 for more references). The two al-
gorithms, however, share a diminishing step-size, C

t
. Again,

we are faced with selecting a constant CGROUSE and, much
like Stochastic Approximation, there is no formula we can
use in all cases. As we discuss in Subsection 6.4, we resort
to using an individually tuned constant for every dataset.

Batch: As a simple – but not necessarily optimal – baseline
for our experiments, we use the unbiased covariance estima-
tor described in (5). This is computed bringing all the sam-
ples in memory at once, hence the characterization “batch.”
We only include it in our first few experiments for valida-
tion purposes. It is ommitted in the larger, real datasets as
it is the most resource intensive of all algorithms considered
here.

6.1 Simulations on the model
We start our experiments in a fully controlled setting. For

that, we synthesize data points based on the model at (2).
While this is a fairly general model, we widen our scope to
real datasets in the remainder on this section.
Figure 1 demonstrates a single example run for a case

when the number of observed entries per sample is smaller
than the target number of principal components.
Figure 2 shows another example run with a single, highly

coherent component. Methods using a single sample to up-
date seem to be having trouble. We see this behaviour again
in Figure 4.

2000 4000 6000 8000
10

-3

10
-2

10
-1

10
0

Number of samples used

S
qu

ar
ed

 e
rr

or
 (

ε2)

Batch
Algorithm 1
GROUSE
SA

Figure 1: Example convergence curve with fewer
observed entries than rank on average (p = 20, k = 5,
δ = 0.2, σ = 0.2).

Single-run convergence figures give us a good understand-
ing of how things look, but are by no means evidence of a
trend. To demonstrate the performance of all algorithms, we
perform many independent runs in several diverse scenaria
and present the averages.

Figure 3 showcases a qualitative difference between the
studied algorithms. We study the transition from the region
where k < δp (more observed entries than components) to
k > δp, or the no-completion region. Notice that the perfor-
mance of Algorithm 1 deteriorates gracefully. On the other
hand, imputation-based algorithms (like GROUSE) are ill-
defined in that region (as discussed in Section 3) and show
rapid deterioration in performance.

In Figure 4 we study the dependence of performance on
the coherence of the signal components (spikes). Most algo-
rithms show a gradual deterioration as the component be-
comes more coherent, with the exception of the Stochastic
Approximation algorithm.

6.2 Gas Sensor Array Data
For our first experiment with real data we use the gas sen-

sor array drift dataset from [18]. It consists of 13910 samples
with 128 entries each, all measurements of gas concentra-
tions. The dataset has no missing entries and we use it as
an intermediate step between synthetic and real data as fol-
lows: First we randomly permute its samples. Then we con-
sider the samples in order, and simulate our erasure model
from Section 2. That is, every entry is observed indepen-
dently with probability δ. Unobserved entries are replaced
with zeros. We do a predetermined number of passes over
the whole dataset before reporting the final performance. To
evaluate performance we use the classic metric of explained
variance. Let X denote a matrix containing all samples,
and let Q ∈ Rp×k denote the subspace estimate provided
by the algorithm. The metric of explained variance, is given
by ||QTX||F , which we normalize with ||X||F to bring into
the [0, 1] range.

In Figure 5, we see that Algorithm 1 is able to achieve

0.5 1 1.5 2

x 10
5

10
-3

10
-2

10
-1

10
0

Number of samples used

S
qu

ar
ed

 e
rr

or
 (

ε2)

Batch
Algorithm 1
GROUSE
SA

Figure 2: Example convergence curves for one
highly coherent component (p = 100, k = 1, δ = 0.05,
µ = 0.95p).

maximal explained variance, while being more robust with
respect to the choice of k. To compare the running times of
the 3 algorithms we calculate the average running time in
seconds per sample and report these times in Table 1.

Table 1: Average running time per processed sample

Experiment Algorithm 1 GROUSE SA
Gas k=1 1.049e-04 1.312e-04 5.274e-05

k=2 1.027e-04 1.306e-04 4.587e-05
k=3 1.094e-04 1.521e-04 5.654e-05
k=4 9.666e-05 1.347e-04 4.870e-05
k=5 1.157e-04 1.681e-04 6.372e-05

ML k=5 4.617e-02 1.796e-01 3.179e-01
k=10 3.854e-02 3.138e-02 3.078e-02
k=15 5.075e-02 3.711e-02 3.210e-01
k=20 5.530e-02 6.148e-02 7.646e-02

6.3 MovieLens
In our last set of experiments, we use the MovieLens

dataset from http://grouplens.org/datasets/movielens/.
It contains about 10 million ratings for 10 thousand movies
by 72 thousand users of the MovieLens service. The dataset
is naturally sparse: every user only rates a tiny fraction of
the movies in the database.
In this case again, there is no access to the“true”principal

components, so instead of the distance metric in (3), we
evaluate based on the explained variance.
To separate training from testing, we adhere to the fol-

lowing procedure: We first split the 10M ratings in the
dataset into training and testing sets, with a 70/30 ratio.
The training ratings are fed into the algorithms; each user
is considered as a sample. Finally, let Mtest denote the test-
ing set in matrix form (movies by users) and let Q ∈ Rp×k

denote the subspace output by the algorithm. We evalu-
ate based on the normalized explained variance, given by
||QTMtest||F /||Mtest||F .

6 8 10 12
10

-2

10
-1

10
0

Number of components (k)

S
qu

ar
ed

 m
ea

n
er

ro
r

(ε
2)

k=
δp

Batch
Algorithm 1
GROUSE
SA

Figure 3: Transition around the boundary k = δp
(p = 100, δ = 0.01, σ = 0.2, average of 134 runs)

In Figure 6 we see that, after only a single pass over the
dataset, our algorithm is able to explain almost as much
variance, as the batch algorithm and achieve a significant
gap over GROUSE and improve over SA. The running times
for this experiment are reported in Table 1.

6.4 Ease of parametrization
As discussed in this section, a common theme for GROUSE

and SA is the choice of the constant used in the step-size se-
quence. This can prove to be a very time-consuming task,
especially in the case when no ground truth information is
available. A “good” constant for one experiment might be
completely unsuitable for another. This forces us to look for
a good parameter in every experiment we run. We went to
great lengths to pick an ideal constant every time – still it
is likely that slightly better choices exist. Such is the nature
of this endeavor.

To demonstrate the complexity we are faced with in our
experiments and to enable reproducibility of our results, we
corral the values that were used in our real-data experiments
and present them in Table 2. An important feature of Algo-
rithm 1 that we want to emphasize here is that we were able
to use a single parameter for all of our experiments. This
makes Algorithm 1 very appealing for deployment on new
datasets.

Table 2: Parametrization for real data

Experiment CAlgo1 CGROUSE CSA
Gas k=1 0.25 2.644e-06 3.944e-06

k=2 0.25 1.261e-05 1.881e-05
k=3 0.25 3.158e-05 4.711e-05
k=4 0.25 1.216e-04 1.813e-04
k=5 0.25 2.861e-04 4.269e-04

ML k=5 0.25 5.265e+00 6.582e+00
k=10 0.25 2.315e+01 2.893e+01
k=15 0.25 2.569e+00 3.854e+00
k=20 0.25 4.652e+00 6.978e+00

0.5 0.6 0.7 0.8 0.9
10

-2

10
-1

10
0

Normalized Component Coherence (µ / p)

S
qu

ar
ed

 m
ea

n
er

ro
r

(ε
2)

Batch
Algorithm 1
GROUSE
SA

Figure 4: Performance vs coherence of the signal
component (p = 100, δ = 0.05, σ = 0.2, average of 56
runs)

7. REFERENCES

[1] R. Arora, A. Cotter, K. Livescu, and N. Srebro.
Stochastic optimization for PCA and PLS. In
Communication, Control, and Computing (Allerton),
2012 50th Annual Allerton Conference on, pages
861–868. IEEE, 2012.

[2] A. Balsubramani, S. Dasgupta, and Y. Freund. The
fast convergence of incremental PCA. In Advances in
Neural Information Processing Systems, pages
3174–3182, 2013.

[3] L. Balzano, R. Nowak, and B. Recht. Online
identification and tracking of subspaces from highly
incomplete information. In Communication, Control,
and Computing (Allerton), 2010 48th Annual Allerton
Conference on, pages 704–711. IEEE, 2010.

[4] L. Balzano and S. J. Wright. Local convergence of an
algorithm for subspace identification from partial
data. arXiv preprint arXiv:1306.3391, 2013.

[5] E. J. Candès and B. Recht. Exact matrix completion
via convex optimization. Foundations of
Computational mathematics, 9(6):717–772, 2009.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), pages 1–38, 1977.

[7] J. He, L. Balzano, and J. Lui. Online robust subspace
tracking from partial information. arXiv preprint
arXiv:1109.3827, 2011.

[8] C.-J. Hsieh, K.-Y. Chiang, and I. S. Dhillon. Low rank
modeling of signed networks. In KDD, pages 507–515,
2012.

[9] I. M. Johnstone. On the distribution of the largest
eigenvalue in principal components analysis. The
Annals of statistics, 29(2):295–327, 2001.

[10] R. H. Keshavan, A. Montanari, and S. Oh. Matrix
completion from noisy entries. Journal of Machine
Learning Research, 11(2057-2078):1, 2010.

1 2 3 4 5
40 %

50 %

60 %

70 %

80 %

90 %

100%

Number of components (k)

E
xp

la
in

ed
 V

ar
ia

nc
e

Algorithm 1
GROUSE
SA

Figure 5: Performance on the gas sensor array
dataset (δ = 0.02, 30 independent passes)

[11] J. D. Lee, B. Recht, R. Salakhutdinov, N. Srebro, and
J. A. Tropp. Practical large-scale optimization for
max-norm regularization. In NIPS, pages 1297–1305,
2010.

[12] K. Lounici. High-dimensional covariance matrix
estimation with missing observations. arXiv preprint
arXiv:1201.2577, 2012.

[13] I. Mitliagkas, C. Caramanis, and P. Jain.
Memory-limited, Streaming PCA. arXiv preprint
arXiv:1307.0032, 2013.

[14] S. Negahban, M. J. Wainwright, et al. Estimation of
(near) low-rank matrices with noise and
high-dimensional scaling. The Annals of Statistics,
39(2):1069–1097, 2011.

[15] E. Oja and J. Karhunen. On stochastic approximation
of the eigenvectors and eigenvalues of the expectation
of a random matrix. Journal of mathematical analysis
and applications, 106(1):69–84, 1985.

[16] J. D. Rennie and N. Srebro. Fast maximum margin
matrix factorization for collaborative prediction. In
Proceedings of the 22nd international conference on
Machine learning, pages 713–719. ACM, 2005.

[17] J. A. Tropp. User-friendly tail bounds for sums of
random matrices. Foundations of Computational
Mathematics, 12(4):389–434, 2012.

[18] A. Vergara, S. Vembu, T. Ayhan, M. A. Ryan, M. L.
Homer, and R. Huerta. Chemical gas sensor drift
compensation using classifier ensembles. Sensors and
Actuators B: Chemical, 166:320–329, 2012.

[19] P. Å. Wedin. On angles between subspaces of a finite
dimensional inner product space. In Matrix Pencils,
pages 263–285. Springer, 1983.

APPENDIX

A. PRELIMINARIES

Assumption 10 (Sub-gaussian observations [12]).
The random vector x ∈ R

p is sub-gaussian, that is ‖x‖ψ2
<

5 10 15 20
0 %

5 %

10%

15%

20%

Number of components (k)

E
xp

la
in

ed
 V

ar
ia

nc
e

Batch
Algorithm 1
GROUSE
SA

Figure 6: Performance on the MovieLens dataset

∞. In addition, there exists a numerical constant c1 >
0, such that: E(〈x,u〉)2 ≥ c1‖〈x,u〉‖2ψ2

, ∀u ∈ R
p, where

‖x‖ψ2
= inf

{
u > 0 : E exp

(
|x|2/u2

)
≤ 2
}
.

Theorem 11 (Prop. 3, [12]). Let x1, . . . ,xn ∈ R
p be

i.i.d. random vectors satisfying Assumption 10. Let y1, . . . ,yn
be the corresponding observed vectors with δ ∈ (0, 1]. Then,
for any t > 0, we have with probability at least 1− e−t,

‖Σ̃n − Σ‖2 ≤ C
‖Σ‖2
c1
·max

{√
r(Σ) (t+ log(2p))

δ2n
,

r(Σ) (t+ log(2p))

δ2n
(c1δ + t+ log n)

}
,

where C > 0 is an absolute constant and r(Σ) = tr(Σ)
‖Σ‖2 .

Theorem 12 (Theorem 1.4 of [17]). Consider a finite
sequence Xk of independent, random, self-adjoint matrices
with dimension d. Assume that each random matrix satis-
fies E[Xk] = 0 and ‖Xk‖2 ≤ R almost surely. Then, for all
t ≥ 0,

Pr(‖
∑

k

Xk‖2 ≥ t) ≤ d · exp
(−t2/2
σ2 +Rt/3

)
,

where σ2 = ‖∑k E[XkX
T
k]‖2.

B. PROOFS RANK-ONE CASE
We first state the following lemma that is repeatedly used

throughout our proof.

Lemma 13. Let xt be sampled from the generative model
(10). Then, the following holds:

E[xit] = 0, E[xit · xjt] = uiuj + σ2
I[i = j],

E[(xit)
2 · (xjt)2] = (ui)2 · (uj)2 ·M4 + σ2(uj)2 + σ2(ui)2

+ σ4(I[i 6= j] +M4I[i = j]) + 4uiujσ2
I[i = j],

where M4 = E[z4t] = E[(wit)
4].

Proof. Clearly, E[xit] = uiE[zt] + E[wit] = 0. Next,

E[xit · xjt] = uiujE[z2t] + E[witw
j
t] = uiuj + σ2

I[i = j].

Finally,

E[(xit)
2 · (xjt)2] = E[(ui · ui · zt · zt + wit · wit + 2uiztw

i
t)

(uj · uj · zt · zt + wjt · wjt + 2ujztw
j
t)],

= (ui)2 · (uj)2 ·M4 + σ2(uj)2 + σ2(ui)2

+ σ4(I[i 6= j] +M4I[i = j]) + 4uiujσ2
I[i = j].

Proof of Theorem 2. Let Σ̃−Σ = Σ̃N−ΣN+Σ̃D−ΣD,
where Σ̃N − ΣN is the non-diagonal part of Σ̃ − Σ, and

Σ̃D − ΣD is the diagonal part of Σ̃− Σ.
Then, using triangular inequality:

‖Σ̃− Σ‖2 ≤ ‖Σ̃N − ΣN‖2 + ‖Σ̃D − ΣD‖2. (13)

We now consider the non-diagonal part of the covariance
matrices:

Σ̃N − ΣN =
∑

t

∑

i 6=j

1

B
(
δitδ

j
t

δ2
xitx

j
t − uiuj)eie

T
j =

∑

t,i 6=j
Htij .

‖Htij‖2 ≤ 4

δ2B
(
µ2

p
+ σ2)M2

∞. (14)

∑

t,i 6=j
E[HtijH

T
tij] =

1

B2

∑

t,i 6=j
E

[
δitδ

j
t

δ4
(xitx

j
t)

2 − (uiuj)2
]
eie

T
i ,

=
1

B

∑

i 6=j
eie

T
i (

1

δ2
((uiuj)2 ·M4 + σ2(uj)2

+ σ2(ui)2 + σ4)− (uiuj)2),

= DN ,

where, DN (i, i) ≤ M2
∞

δ2B

(
µ2

p
+ 2σ2µ2 + σ4p

)
.

That is,

‖
∑

t,i 6=j
E[HtijH

T
tij]‖2 ≤

M2
∞

δ2B

(
µ2

p
+ 2σ2µ2 + σ4p

)
. (15)

Now, using matrix Bernstein’s inequality (see Theorem 12)
with (14), (15) and by setting B as given in Theorem 4, we
get:

‖Σ̃N − ΣN‖2 ≤ ǫ/2. (16)

Now, lets consider the diagonal part of Σ, i.e., :

Σ̃D(i, i)−ΣD(i, i) = 1

B

∑

t

(
δit
δ
(xit)

2 − (ui)2 − σ2

)
=
∑

t

ht,

where |ht| ≤ 4
δB

(µ
2

p
+ σ2)M2

∞. Also,

E[
∑

t

h2
t] =

1

B

(
1

δ
E[(xit)

4]− ((ui)2 + σ2)2
)
,

≤ 6

δ2B
(
µ4

p2
M4 + σ2 µ

2

p
+ σ4M4) ≤ 6M2

∞
δ2B

(
µ2

p
+ σ2)2.

Again, by using Bernstein’s inequality and setting B as de-
fined in Theorem 4, we have:

‖Σ̃D − ΣD‖2 ≤ ǫ/2. (17)

Theorem now follows by using (13), (16), (17).

Proof of Lemma 5. Note that,

|uT (Σ̃− Σ)q| ≤ |uT (Σ̃N − ΣN)q|+ |uT (Σ̃D − ΣD)q|, (18)

where, Σ̃N − ΣN is the non-diagonal part of Σ̃ − Σ, and

Σ̃D − ΣD is the diagonal part of Σ̃− Σ.
We first bound the non-diagonal part:

uT
(
Σ̃N − ΣN

)
q =

1

n

∑

t,i 6=j
(
δitδ

j
t

δ2
xitx

j
t − uiuj)uiqj =

∑

t,i 6=j
Htij .

Note that, |Htij | ≤ 1600
δ2B

(µ
2

p
+ σ2)µ

2

p
M2

∞. Also,

E[
∑

t,i 6=j
H2
tij] =

1

B

∑

i 6=j

(
1

δ2

(
(ui)2 · (uj)2 ·M4 + σ2(uj)2

+σ2(ui)2 + σ4
)
− (uiuj)2

)
(ui)2(qj)2,

≤ M2
∞

δ2B

(
µ4

p2
M4 + 2σ2 µ

2

p
+ σ4

)
.

Hence, using Bernstein’s inequality, w.p. ≥ 1− 1/T 2:

|uT (Σ̃N − ΣN)q| ≤ ǫ

2
√
p
. (19)

Now, consider the diagonal part:

uT
(
Σ̃D − ΣD

)
q =

1

B

∑

t,i

(
δit
δ
(xit)

2 − (ui)2 − σ2)uiqi =
∑

ti

hti.

Here again, we bound the two quantities:

|hti| ≤ 2

B
(
µ2

p
+ σ2)

µ2

p
M2

∞,

E[h2
ti] =

1

B

(
∑

i

1

δ
· ((ui)4M4 + 2σ2(ui)2 + σ4M4

+4(ui)2σ2)− ((ui)2 + σ2)2)(uiqi)2
)

≤ M2
∞

δB

µ2

p
(
µ4

p2
+ 6σ2 µ

2

p
+ σ4).

Hence, setting B appropriately, we get (w.p. ≥ 1− 2/T 2):

|uT
(
Σ̃− Σ

)
q| ≤ ǫ

1

2
√
p
. (20)

Lemma now follows by using (18), (19), (20).

Proof of Lemma 6. We prove the lemma using mathe-
matical induction. That is, we assume that µτ ≤ 10µ.

Recall that sτ+1 = Σ̃qτ and qτ+1 = sτ+1/‖sτ+1‖2.
Using Theorem 2, we have ‖sτ+1‖2 ≥ (1 + σ2)− ǫ. Also,

eTi (s− Σqτ) =
1

B

∑

t,j 6=i
htj +

1

B

∑

t

ht,

where htj =
1
B
(
δitδ

j
t

δ2
xitx

j
t−uiuj)qjτ and ht = (

δit
δ
xitx

i
t−uiui−

σ2)qiτ . Note that, |htj | ≤ 1
δ2B

(µ
2

p
+ σ2) µτ√

p
M2

∞. Using argu-

ments similar to the proof of the previous lemma:

E[
∑

tj

h2
tj] ≤

M2
∞

δ2B

(
µ4

p2
+ 2σ2 µ

2

p
+ σ4

)
.

Hence, using induction hypothesis and by using B as given
in Theorem 4, we have (w.p. ≥ 1− 1/T 2):

| 1
B

∑

t,j 6=i
(
δitδ

j
t

δ2
xitx

j
t − uiuj)qjτ | ≤ ǫ/

√
p

We can bound
∑
t ht also in a similar manner.

Hence,
siτ+1√
p‖sτ+1‖2 ≤

µτ (1+σ2)+ǫ

(1+σ2)−ǫ ≤ (µτ+
ǫ

(1+σ2)
+2µτ

ǫ
1+σ2+

2 ǫ2

(1+σ2)2
≤ µτ (1 + 4ǫ/(1 + σ2)).

Moreover, since maxi |qi0| ≤ 5/
√
p with at least a constant

probability, and,

τ + 1 ≤ T = O(
log(1/ǫ)

log(σ2 + .75)/(σ2 + .5)
),

we have µτ+1 ≤ 10 · µ.
Proof of Theorem 4. As mentioned earlier, our proof

uses arguments similar to that of Theorem 1 of [13], along
with the above mentioned lemmas.

That is, let qτ =
√
1− δτu+

√
δτu

τ
⊥ where u⊥ is the com-

ponent of q that is orthogonal to u. Now, using Lemma 5,
as well as the fact that with high probability uT q0 ≥ 1√

p
, we

have w.p. at least 0.99:

uT sτ+1 = uTΣqτ ≥
√
1− δτ (1 + σ2)

(
1− ǫ

4(1 + σ2)

)
.

Similarly, using Theorem 2, we have: (uτ⊥)
T sτ+1 ≤ σ2

√
δτ +

ǫ. Also, δτ+1 =
((uτ

⊥
)T sτ+1)

2

(uτ
⊥
)T sτ+1+(uT sτ+1)2

. Now, using the bounds

on both the quantities on RHS, we have:

√
1− (uT qτ+1)2 = δτ+1

≤ δτ (σ
2 + .5)2

(1− δτ)(σ2 + .75)2 + δτ (σ2 + .5)2
≤ γ2τδ0

1− δ0
,

where γ = σ2+.5
σ2+.75

. Above, the second inequality follows

from Lemma 2 of [13]. Now, using the fact that uT q0 ≥ 1√
p

(w.h.p.), we have:

√
1− (uT qτ+1)2 ≤ C

(
σ2 + .5

σ2 + .75

)2τ

p.

Theorem now follows by setting τ + 1 = T .

C. PROOFS RANK-K CASE

Proof of Theorem 7. Similar to the rank-1 case, we
decompose Σ into its diagonal part (ΣD) and off-diagonal
part (ΣN). That is,

‖Σ̃− Σ‖2 ≤ ‖Σ̃N − ΣN‖2 + ‖Σ̃D − ΣD‖2. (21)

First we consider the off-diagonal part:

Σ̃N −ΣN =
∑

t

∑

i 6=j

1

B
(
δitδ

j
t

δ2
eTi xtx

T
t ej−eTi UΛ2UT ej)eie

T
j

=
∑

t,i 6=j
Htij .

Now,

‖Htij‖2 ≤ 2

δ2B
(
µ2k

p
k + σ2)M2

∞. (22)

Also, note that ‖xt‖2 ≤ ‖A‖2‖zt‖2+‖wt‖2 ≤ (
√
k+σ
√
p)M∞.

Now,

‖E[
∑

t,i 6=j
HtijH

T
tij]‖2 ≤

1

δ2B
‖E[
∑

i,j

(eTi xtx
T
t eje

T
j xtx

T
t ei)eie

T
i]‖2,

≤ 1

δ2B
max
i

E[(eTi xtx
T
t xtx

T
t ei)],

≤ 2

δ2B
(k + σ2p)M2

∞(
µ2k

p
+ σ2). (23)

Using (22), (23) with Theorem 12, we get (w.p. ≥ 1−1/T 2)

‖Σ̃N − ΣN‖2 ≤ ǫ/2.

Next, consider the diagonal part:

Σ̃D−ΣD =
∑

t

∑

i

1

B
(
δit
δ2

eTi xtx
T
t ei−eTi UΛ2UT ei−σ2)eie

T
i

=
∑

t,i

Hti.

Here again, ‖Hti‖2 ≤ 2
δ2B

(zTt V ΛUT ei+wTt ei)
2 ≤ 4

δ2B
(µ

2k

p
k+

σ2)M2
∞. Also,

‖E[
∑

t,i

HtiH
T
ti]‖2 ≤

1

δ2B
max
i

E[eTi xtx
T
t eie

T
i xtx

T
t ei],

≤ 2

δ2B
(
µ2k

p
k + σ2)(

µ2k

p
+ σ2)M2

∞

Using the above two observations with Theorem 12, we get

(w.p. ≥ 1 − 1/T 2): ‖Σ̃D − ΣD‖2 ≤ ǫ/2. Theorem now
follows by adding the bound over the diagonal term and the
off-diagonal term.

Proof of Lemma 8. Here again, we divide the entries
into off-diagonal and diagonal part:

‖UT (Σ̃−Σ)Qτ‖2 ≤ ‖UT (Σ̃N−ΣN)Qτ‖2+‖UT (Σ̃D−ΣD)Qτ‖2.
(24)

Now, consider the off-diagonal part:

UT (Σ̃N − ΣN)Qτ

=
∑

t

∑

i 6=j

1

B
(
δitδ

j
t

δ2
eTi xtx

T
t ej − eTi UΛ2UT ej)U

T eie
T
j Qτ

=
∑

t,i 6=j
Htij .

Now, ‖Htij‖2 ≤ 1600
δ2B

(µ
2k

p
k + σ2)µ

2k

p
M2

∞. Also,

‖E[
∑

t,i 6=j
HtijH

T
tij]‖2 ≤

1

δ2B
‖E[
∑

i,j

(eTi xtx
T
t eje

T
j xtx

T
t ei)U

T eie
T
j QτQ

T
τ eje

T
i U]‖2,

≤ 1

δ2B
max
i,j

(eTi xtx
T
t ej) ·max

i,j
E[(eTi xtx

T
t ej)],

≤ 2M2
∞

δ2B
(
µ2k

p
k + σ2)(

µ2k

p
+ σ2). (25)

The bound ‖UT (Σ̃N − ΣN)Qτ ≤ ǫ/2‖2 follows using the
above two observations. We can use similar argument to
show the bound for the diagonal part as well, which com-
pletes the proof of the lemma.

