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1. Introduction Robust Optimization (RO) considers deterministic (set-based) uncertainty models
in optimization, where a (potentially malicious) adversary has a bounded capability to change the pa-
rameters of the function the decision-maker seeks to optimize. Thus, the standard optimization problem1

max
v

: f(v), (1)

becomes

max
v

: min
x∈Z

: f(v,x), (2)

where the vector x denotes some uncertain parameters of the objective function f , and may take any
value in the set Z. This approach to uncertainty has a long history in control; in optimization it traces
back several decades to the early work in Soyster [37]. Particularly in the last decade since the work of
Ben-Tal and Nemirovski [4, 5], Bertsimas and Sim [9], and El Ghaoui and Lebret [18], it has become a
common approach in operations research, computer science, engineering, and many other related fields
(e.g., Shivaswamy et al. [36], Lanckriet et al. [23], El Ghaoui and Lebret [18], Ben-Tal et al. [6, 7], and
Boyd et al. [12]); see the recent monograph by Ben-Tal and co-authors [2] for a detailed survey. A
key reason for its success has been its computational tractability and the fact that robustified versions of

1We give the unconstrained version here without loss of generality, since one can let the objective function be −∞ for

infeasible solutions.
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many common optimization classes (linear programming, second order cone programming, among others)
remain relatively easy to solve.

A much-researched alternative to RO’s set-based uncertainty, is to represent the uncertain parameter
in a probabilistic way, i.e., assume that the parameter x is a random variable with distribution µ∗. If
we assume the generating distribution, µ∗, is known, the result is the standard stochastic programming
paradigm (e.g., Birge and Louveaux [10], Prékopa [27], and Shapiro [33]). If µ∗ is not precisely known,
and instead µ∗ is only known to lie in some set of distributions, D, the resulting optimization formulation
is the so-called Distributionally Robust Stochastic Program (DRSP), initially proposed in Scarf [30],
almost two decades before the first appearance of RO. In DRSP, the decision maker solves the following
problem

max
v

: min
µ∈D

: Ex∼µf(v,x). (3)

Since its introduction, DRSP has attracted extensive research (e.g., Kall [21], Dupacová [17], Popescu [26],
Shapiro [34], Goh and Sim [19], Delage and Ye [14]).

The main focus of this paper is the relationship of these two paradigms. In particular, we show in
Section 2 that RO can be reformulated as a DRSP with respect to a particular class of distributions.
For the special case where each uncertain parameter belongs to a different space, such a re-interpretation
is a well known folk theorem (see Delage and Ye [14]). Yet as we discuss below, in data-driven (or
sample-based) optimization problems such as those appearing in stochastic optimization and machine
learning, the uncertain parameters belong to the same space. To develop a framework for these problems,
we generalize the equivalence of RO and DRSP to the setting where multiple uncertain parameters
x1, . . . ,xn belong to the same space Rm. Instead of formulating the RO problem for such a problem as a
DRSP with respect to a class of distributions supported on the product space R

m×n, as techniques from
the standard literature would require, we seek to find a DRSP interpretation with respect to a class of
distributions supported on R

m. We now elaborate on this, explaining in particular the significance of this
generalized equivalence.

Relationship to Optimization from Samples The setup we consider is motivated by sampling
problems. In solving

min
v

: Ex∼µ∗f(v,x),

a sampled distribution (1/n)
∑n

i=1 δxi
is often used instead of the true (potentially continuous) distri-

bution µ∗. This is often done in machine learning because the true distribution is unknown, and the
decision-maker has only access to a finite set of samples generated from that distribution. In stochastic
programming this is widely applied, either when the distribution is unknown, or when it is known but too
complicated to manipulate directly within an optimization problem, and hence the empirical distribution
is used instead.

It is well known that such a sampling approach may not always be consistent — that is, even as the
number of samples goes to infinity, the solution recovered may remain a bounded distance away from the
true optimal solution. A DRSP interpretation of RO with respect to a class of distributions supported on
the same fixed dimensional space would enable us to examine how well or poorly elements of this class of
distributions approximate the true (potentially unknown) distribution as the sample size, n, increases. In
Section 3, we explore how such an approach can be used to prove that a robust optimization formulation
is asymptotically statistically consistent. Moreover, we show how, given a sampled optimization problem,
one can design a robustified formulation that is guaranteed to be consistent, even if the original sampled
problem fails to be consistent. As an important byproduct, we obtain a systematic way to tune the
uncertainty set to guarantee consistency.

In Section 4, we investigate other implications of the equivalence between RO and DRSP. We start
from discussing optimization in a stochastic programming setup, and particularly in machine learning in
Section 4.1. In Section 4.2, we provide an explanation for the shrinkage heuristic in RO where instead of
using the original uncertainty set one uses a shrunken version to obtain better performance in practice.
In Section 5 we further illustrate some possible extensions of the equivalence relationship.

Notation: Throughout the paper, without loss of generality, we assume the unknown parameters
belong to R

m. We use P to denote the set of probability distributions on R
m (with respect to the Borel
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set). We use [1 : n] to denote the set {1, 2, · · · , n}. A Euclidean ball centered at x with a radius r is
denoted by B(x, r).

2. Distributional interpretation for robust optimization In this section, we turn our attention
to the relationship between RO and DRSP. We consider a general case whenmultiple uncertain parameters
lie in the same space, as opposed to the Cartesian product of the space of each parameter. As discussed
above, this setting arises naturally in data-driven problems. We prove a statement that is slightly stronger
than the equivalence of RO and DRSP: fixing a candidate solution, the worst case reward of RO is
equivalent to the minimal expected reward of DRSP. That is, the inner minimization of RO is equivalent
to the inner minimization of DRSP. Hence, in Theorem 2.1 and the proof, we suppress the decision
variable v, in order to reduce unnecessary notation.

Theorem 2.1 Given a measurable function f : Rm → R
⋃

{−∞}, c1, . . . , cn > 0 such that
∑n

i=1 ci = 1,
and non-empty Borel sets Z1, . . . ,Zn ⊆ R

m, let

Pn , {µ ∈ P | ∀S ⊆ [1 : n] : µ(
⋃

i∈S

Zi) ≥
∑

i∈S

ci}.

Then the following holds:
n
∑

i=1

ci inf
xi∈Zi

f(xi) = inf
µ∈Pn

∫

Rm

f(x)dµ(x). (4)

Note that the uncertainty sets Z1, · · · ,Zn can have nonempty intersection, or even be identical, as is the
case when the points are sampled from the same space.

Proof. We can assume without loss of generality that infxi∈Zi
f(xi) > −∞ for i = 1, 2, . . . , n,

since otherwise both sides equal −∞ and the theorem holds trivially. By shifting, we can further assume
without loss of generality that infxi∈Zi

f(xi) ≥ 1 for i = 1, 2, . . . , n.

For simplicity, denote ZS ,
⋃

i∈S Zi, fi = infxi∈Zi
f(xi), and N = [1 : n]. Without loss of generality,

we assume that f1 ≥ f2 ≥ · · · ≥ fn. Observe that
∫

Rm f(x)dµ(x) =
∫

ZN

f(x)dµ(x). The dual problem of

infµ∈Pn

∫

ZN

f(x)dµ(x) is the following

Maximize:α∈R2n

∑

S⊆N

αS

∑

i∈S

ci =
∑

i∈N

ci
∑

S⊆N

αS1(i ∈ S)

Subject to:
∑

S

αS1(x ∈ ZS) ≤ f(x); ∀x ∈ ZN

αS ≥ 0; ∀S 6= N.

Recall that f(x) ≥ 1 for all x ∈ ZN . The dual problem is a semi-infinite linear program, and the Slater
condition holds, i.e, there exists a dual solution (e.g., αS = 1/2n+1 for all S) such that all constraints are
satisfied as strict inequality. It is known that this guarantees the strong duality holds [20].

Therefore, it suffices to show that the optimal value of the dual problem equals
∑

i∈N cifi. Notice
that for any dual feasible solution α, any i ∈ N and any x ∈ Zi, we have

∑

S⊆N

αS1(i ∈ S) ≤
∑

S⊆N

αS1(x ∈ ZS) ≤ f(x),

taking infimum over x ∈ Zi on both sides, we have
∑

S⊆N αS1(i ∈ S) ≤ fi which implies that

∑

i∈N

ci
∑

S⊆N

αS1(i ∈ S) ≤
∑

i∈N

cifi.

To show the reverse inequality, we construct a dual solution such that αS = 0 for all S except for n nested
sets

α{1} = f1 − f2, · · · , α{1,2,··· ,i} = fi − fi+1, · · · , αN = fn.

Observe that for each i,
∑

S⊂N αS1(i ∈ S) = fi. Thus the object value corresponding to this solution is
∑

i∈N cifi.
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To check the feasibility of this constructed solution, notice that αS ≥ 0 for all S. Also, for any x ∈ ZN ,
let i∗ be the smallest index such that x ∈ Zi∗ . Then

∑

S αS1(x ∈ ZS) = fi ≤ f(x). This completes the
proof. �

We observe that if the Zi are disjoint, then the equivalent distributional set Pn has the following form:

Pn = {µ ∈ P|µ(Zi) = ci, i = 1, · · · , n}.

Taking n = 1, this reduces to the following theorem, well known in the literature (e.g., Delage and
Ye [14]), stating that the solution to a robust optimization problem is the solution to a special DRSP
problem, where the distributional set is the one that contains all distributions whose support is contained
in the uncertainty set, in the Cartesian product of the space of each parameter.

Corollary 2.1 Given a measurable function f : Rm → R
⋃

{−∞}, and a non-empty Borel set Z ⊆ R
m,

the following holds:

inf
x′∈Z

f(x′) = inf
µ∈P|µ(Z)=1

∫

Rm

f(x)dµ(x). (5)

3. Consistency of robust optimization The theoretical equivalence established in Theorem 2.1
has algorithmic consequences as well. In this section, we consider sampled stochastic optimization prob-
lems. As discussed above, it is well-known that these problems may fail to be asymptotically consistent,
i.e., even as the number of samples goes to infinite, we may not recover the optimal solution. We use the
equivalence relationship stated in Theorem 2.1 to construct a sequence of robust optimization problems
that are asymptotically consistent in a statistical sense, even if the original sampled problem fails con-
sistency. En route, this construction provides a systematic approach to choosing the appropriate size of
the uncertainty set.

The main theorem of the section states that as long as the utility function f(·, ·) is bounded, and
satisfies a mild continuity condition, then an explicitly stated robust optimization formulation for the
sampled stochastic optimization is asymptotically consistent. That is, it recovers the optimal solution to

max : Ex∼µ[f(v,x)],

where µ is given only through a sequence of i.i.d. samples. We note that these conditions are weaker
than those required for consistency of sampled stochastic programs, e.g., as in King and Wets [22]. Thus,
Theorem 3.1 provides a computationally tractable avenue for developing algorithms for the solution of
stochastic programming with stronger consistency guarantees (that is, they require weaker assumptions
on the problem). We provide several examples of this in the next section.

Theorem 3.1 Suppose that x1, . . . ,xn, . . . are i.i.d. samples of a distribution h∗ on R
m, the feasible set

F is known, and the utility function f(·, ·) satisfies

(i) Boundedness: maxv,x |f(v, x)| ≤ C.

(ii) Equicontinuity: d(ǫ) ↓ 0 where

d(ǫ) , max
v,x,‖δ‖∞≤ǫ

|f(v,x)− f(v,x+ δ)| .

If {ǫ(n)} satisfies
ǫ(n) ↓ 0; nǫ(n)m ↑ ∞,

then the sequence of optimal solutions to the RO formulation

v(n) , argmax
v∈F

1

n

n
∑

i=1

inf
‖δi‖∞≤ǫ(n)

f(v,xi + δi)

satisfies the following with probability one:

lim
n

∫

Rm

f(v(n),x)h∗(x)dx = sup
v∈F

∫

Rm

f(v,x)h∗(x)dx.

That is, the RO formulation is consistent.
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Proof. The key to the proof rests on the equivalence established in Theorem 2.1. This equivalence
then allows us to show that the RO formulation given in the theorem statement, is equivalent to a DSRP,
whose distribution set contains a Kernel Density Estimator (KDE). From here, the proof is essentially
immediate: exploiting the fact that a KDE converges to the generating distribution in the ℓ1 sense,
one can easily conclude that the sequence of solutions to the RO problems given, are consistent. For
completeness, we include a brief introduction to KDEs in the appendix.

Consider a fixed n. Define the sets

Zi ,
{

xi + δ
∣

∣ ‖δi‖∞ ≤ ǫ(n)
}

.

Thus, the RO formulation is to maximize
∑n

i=1
1
n infx′

i
∈Zi

f(v,x′
i). By Theorem 2.1, we know that for

any v, the following holds:
n
∑

i=1

1

n
inf

x′

i
∈Zi

f(v,x′
i) = inf

µ̃∈Pn

∫

Rm

f(v,x)dµ̃(x);

where: Pn = {µ ∈ P|∀S ⊆ [1 : n] : µ(
⋃

i∈S

Zi) ≥ |S|/n}.

(6)

Next we show that the set of distributions, Pn, contains a kernel density estimator. Consider a
distribution hn defined as

hn(x) = (nǫ(n)m)−1
n
∑

i=1

K

(

x− xi

ǫ

)

;

where: K(z) =
1(‖z‖∞ ≤ 1)

2m
.

Indeed, observe that hn is a kernel density estimator. Now, for any S ⊆ [1 : n], we have
∫

Rm

1(x ∈
⋃

j∈S

Zj)hn(x)dx

=

∫

Rm

1(x ∈
⋃

j∈S

Zj)(nǫ(n)
m)−1

n
∑

i=1

K

(

x− xi

ǫ(n)

)

dx

≥

∫

Rm

1(x ∈
⋃

j∈S

Zj)(nǫ(n)
m)−1

∑

i∈S

K

(

x− xi

ǫ(n)

)

dx

=
∑

i∈S

∫

Rm

1(x ∈
⋃

j∈S

Zj)(nǫ(n)
m)−1K

(

x− xi

ǫ(n)

)

dx

≥
∑

i∈S

∫

Rm

1(x ∈ Zi)(nǫ(n)
m)−1K

(

x− xi

ǫ(n)

)

dx

(a)
=

∑

i∈S

∫

Rm

(nǫ(n)m)−1K

(

x− xi

ǫ(n)

)

dx = |S|/n.

Here, the second-to-last equality, (a), holds because, due to the definition of K and Zi, K((x−xi)/ǫ(n))
is non-zero only when x ∈ Zi. Hence, hn ∈ Pn,

2 which by Equation (6) implies
n
∑

i=1

1

n
inf

x′

i
∈Zi

f(v,x′
i) ≤

∫

Rm

f(v,x)hn(x)dx.

Since hn is a kernel density estimator, it is well-known (e.g., see Devroye and Györfi [15]) that under
the condition that ǫ(n) → 0 and nǫ(n)m → ∞ the following holds with probability 1,

∫

Rm

∣

∣hn(x)− h∗(x)
∣

∣dx
n
→ 0.

Therefore, since |f(v,x)| ≤ C, there exists {Mn} → 0 w.p. 1, such that the following holds for all v,
∫

Rm

f(v,x)hn(x)dx ≤

∫

Rm

f(v,x)h∗(x)dx +Mn,

2More precisely, hn is the density function of a probability measure that belongs to Pn.
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which implies that for all v,

n
∑

i=1

1

n
inf

x′

i
∈Zi

f(v,x′
i)−Mn ≤

∫

Rm

f(v,x)h∗(x)dx.

By symmetry, we also have

∫

Rm

f(v,x)h∗(x)dx ≤

n
∑

i=1

1

n
sup

x′

i
∈Zi

f(v,x′
i) +Mn.

Further note that

sup
x∈Zi

f(v,x)− inf
x∈Zi

f(v,x) ≤ d(2ǫ(n)).

Thus we have for all v
n
∑

i=1

1

n
inf

x′

i
∈Zi

f(v,x′
i)−Mn ≤

∫

Rm

f(v,x)h∗(x)dx ≤

n
∑

i=1

1

n
inf

x′

i
∈Zi

f(v,x′
i) +Mn + d(2ǫ(n)). (7)

Since both Mn and d(2ǫ(n)) go to zero, the theorem follows easily. �

Remark 3.1 Observe from the proof that if we relax the requirement of equicontinuity of {f(v, ·)}, then
the RO problem is essentially maximizing an asymptotic lower bound of the true expected reward. Fur-
thermore, if we instead only require the equicontinuity of {f(v(n), ·)|n = 1, 2, · · · }, then the consistency
result still holds. In fact, as v(n) is the optimal solution of a robust optimization, this condition is much
easier to satisfy than the equicontinuity of {f(v, ·)}.

Remark 3.2 For convenience of exposition we assume that f(·, ·) is uniformly bounded. This can be
relaxed to the assumption that there exists an integrable envelope function, i.e., ∃F (·) such that |f(v,x)| ≤
F (x) for all v ∈ F and x ∈ R

m, and
∫

F (x)h∗(x)dx < +∞. The proof follows a standard approach,
truncating f(·, ·) with respect to a large constant C, and then showing that the impact of this truncation
diminishes as C goes to infinity. For completeness, we provide a detailed proof in the appendix.

Remark 3.3 In Theorem 3.1 we assume that the feasible set F is known. This can model the case that
the constraints are not subject to uncertainty (i.e., the nominal case), or that the constraints must be
satisfied if the uncertain parameter takes the value of any element of a known uncertainty-set, a standard
formulation in the RO literature.

Remark 3.4 A closer examination of the proof reveals that the convergence rate is the slower of two
terms: Mn which is the rate of convergence of the KDE, and d(2ǫ(n)) which depends on the cost function
f(·, ·) and how fast ǫn goes to zero. It is known that in general, the mini-max convergence rate of any
estimator, including KDE, is arbitrarily slow (often known as the slow convergence theorem, e.g., Theorem
1 of Chapter 4 of [15]). Thus, it is not possible to bound Mn without further assumption on h∗. However,
if Mn is bounded by further restricting possible h∗, then the rate d(ǫ(n)) can be easily computed. For
example, if ǫ(n) ∼ n1/m logn, and f(·, ·) is Lipschitz continuous, then d(ǫ(n)) ∼ n1/m logn.

Remark 3.5 Theorem 3.1 suggests a methodology for choosing an appropriate size ǫ(n) of the uncer-
tainty set. Previous work on RO (e.g., Bertsimas and Sim [9]) considers the setting where the observed
parameter is the result of corruption of the true parameter (via additive noise). Consequently, the deci-
sion maker tunes the size of the uncertainty set used in the RO formulation, to satisfy some probabilistic
bounds or risk measure constraints, given a priori information of the noise and in particular the noise
magnitude. Theorem 3.1 provides a different paradigm for the design of the uncertainty set: when the
uncertainty is due to inherent randomness of the parameters, then to approximately solve the stochastic
program, the decision maker can use RO, with the size of uncertainty set slowly decreasing in the number
of samples. To be more specific, the theorem shows that if the size scales with a rate upper bounded by
o(1) and lower bounded by ω(n−1/m), then we achieve asymptotic consistency. Finally, also note that it
is straightforward to modify the uncertainty set from a ℓ∞ ball to other parameterized uncertainty sets.
Indeed, the only requirement is that the family of distributions obtained using Theorem 2.1, contains a
kernel density estimator.
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Remark 3.6 We finally discuss the computational aspect of the proposed robust sampled problem,

maximize:v∈F :
1

n

n
∑

i=1

inf
xi∈Zi

f(v,xi).

Observe that if f(·,x) is concave in the first argument for any x, then the objective function
1
n

∑n
i=1 infxi∈Zi

f(v,xi) is concave. In addition, by the envelope theorem (e.g., [28]), its subgradient
can be efficiently computed if argminxi∈Zi

f(v,xi) can be computed efficiently. This is possible in the
following two cases, assuming F and Zi are convex sets:

(i) f(v, ·) is convex in the second argument. In this case, the objective function is indeed a saddle
point problem, which can be solved using, for example, the primal-dual subgradient method [24].

(ii) f(v, ·) is concave in the second argument, and Zi are polytopes with a small number of vertices,
for example ℓ1 balls. When f(v, ·) is concave, argminxi∈Zi

f(v,xi) belongs to the set of vertices
of Zi. Since Zi has a small number of vertices, we can solve argminxi∈Zi

f(v,xi) by checking all
vertices.

For more detailed discussions on the computational aspects for RO, we refer the readers to the text-
book [2], the survey paper [8], and references therein.

4. Implications of Main Theorems In this section, we describe the applications of results es-
tablished in previous sections. We first apply Theorem 3.1 to show consistency of sampled optimization
problems in machine learning (Support Vector Machines, and also Lasso, or ℓ1-regularized regression).
We then apply Theorem 2.1 to explain the success of the popular but as-of-yet not well-understood
technique known as shrinkage, used, e.g., in Chapter 2 of [2] and [3].

4.1 Sampled Optimization. Many decision problems have the form

max
v

: Ex∼P{f(v,x)}, (8)

where the expectation is difficult or impossible to optimize, or even evaluate exactly. In machine learning
problems, the typical set up is that the distribution P is unknown, and the decision-maker has knowledge
of P only through a set of samples (cf. textbooks such as Anthony and Bartlett [1]). As mentioned above,
one often sees the same setting in SP, where even if the distribution is known, it may be too complicated
to evaluate (cf textbooks such as Birge and Louveaux [10]). A sampling approach is often used instead
(Shapiro and de Mello [35]), i.e., to make a decision simply by solving the sampled optimization problem:

v∗n , argmax
v

1

n

n
∑

i=1

f(v,xi).

One would hope that the solution to such a problem is a good approximation of the solution of Problem (8).
However, due to the fact that the decision obtained is dependent on the samples, the empirical utility for
v∗n is a biased estimate of its expected utility. Thus, the sampling technique often yields overly optimistic
solutions. Even worse, it may be the case that as n ↑ ∞, the sequence {v∗n} does not converge to
the optimal decision. This is often termed “over-fitting” in the machine learning literature (Vapnik and
Chervonenkis [41]), and has attracted extensive research (see textbooks such as Anthony and Bartlett [1],
Devroye et al. [16], and many others). There are various approaches, often custom-tailored to the problem
at hand, to try to control the problem of overfitting, with regularization being one of the foremost such
tools.

Theorem 3.1 provides a unified approach to mitigate this unjustified optimism: one may assume
some set-based uncertainty in the samples observed, and subsequently solve the corresponding robust
counterpart. If the uncertainty sets are chosen properly (i.e., as in Theorem 3.1), then the corresponding
class Pn to this robust optimization problem “approximately” contains the true distribution P, i.e., it
contains a sequence of distributions that converges to P uniformly with respect to v. The theorem then
guarantees that the sequence of min-max decisions converges to the optimal solution.

It turns out that this property is in fact exploited implicitly by many widely used learning algorithms,
and hence one can show (post hoc) that this serves as an explanation for their success. We now give
two examples which we adapt from our work in [42] and [43]. We show that the classical and much used



8 Xu, Caramanis and Mannor.: Distributional Interpretation of Robust Optimization
Mathematics of Operations Research 00(0), pp. xxx–xxx, c©20xx INFORMS

technique of regularization, is in fact a special case of the more general approach outlined in Theorem
3.1.

Example 4.1 (Support Vector Machines) Classification is a fundamental problem in machine
learning. Here, a decision maker observes a set of training samples {xi}

n
i=1 (each sample is assumed

in R
m) and their labels {yi}

n
i=1 (each label is in {−1, 1}). The goal is to learn the labeling rule, so as

to be able to label future points x ∈ R
m. The Support Vector Machine (SVM) approach searches for a

linear classification rule, of the form (w⊤x + b), to separate the space into points labeled +1 and −1.
The linear rule given by (w, b) is selected by attempting to solve the expected classification loss on future
samples, i.e., the testing loss:

min
w,b

: Ey,x∼µ∗ [1− y
(

〈w, x〉〉+ b
)]+

. (9)

Since the distribution, µ∗ is unknown, instead the decision-maker minimizes the loss on the observed
samples, i.e., minimizes the training error,

min
w,b

:
1

n

n
∑

i=1

[

1− yi
(

〈w, xi〉+ b
)]+

. (10)

While we do not go into details here (see Schölkopf and Smola [31] for details) this problem in fact is often
very high-dimensional, possibly infinite-dimensional, because one may use a so-called kernel mapping to
non-linearly map the data into a higher dimensional space, and look for a linear classifier in that space.
Because of this, it has long been known that the empirical optimization as formulated in (10) is not
consistent in general. To correct for this fact, a long-standing technique in machine learning has been
to add an ℓ2-norm regularizer on w, as a so-called complexity penalty. The resulting problem is the
norm-regularized SVM (Boser et al. [11], and Vapnik and Chervonenkis [40]):

min
w,b

: c‖w‖2 +
1

n

n
∑

i=1

[

1− yi
(

〈w, xi〉+ b
)]+

. (11)

If the training samples {xi, yi}
n
i=1 are non-separable, then we have shown in [42] that this regularized

SVM is equivalent (i.e., has the same set of solutions) to the robust optimization problem

min
w,b

: max
(ŷ1,x̂1,...,ŷn,x̂n)∈Tn

1

n

n
∑

i=1

[

1− ŷi
(

〈w, x̂i〉+ b
)]+

,

where the uncertainty set is given by

Tn ,

{

(ŷ1, x̂1, . . . , ŷn, x̂n) : ŷj ≡ yj ;
n
∑

i=1

‖xi − x̂i‖2 ≤ cn
}

.

Then, using Theorem 3.1 (see below for detail), one can show that regularized SVMs are consistent in
a much more direct fashion than previous equivalent results (e.g., Steinwart [38]), that rely on concepts
such as algorithmic stability or VC-dimension.

Corollary 4.1 Let (xi, yi) be i.i.d. samples following µ. Let F and S be bounded sets, such that xi ∈ S
for all i. If cn satisfies that cn → 0 and n(cn)

m ↑ +∞, then the following sequence of optimization
problem

Minimize:
1

n

n
∑

i=1

[1− yi(〈w,xi〉+ b)]+ + cn‖w‖2

Subject to: (w, b) ∈ F ,

is consistent. That is, the sequence of optimal solutions, denoted {wn, bn}, satisfies the following with
probability 1,

lim
n

E(xi,yi)∼µ

{

[1− y(〈wn,x〉+ bn)]
+
}

= inf
(w,b)∈F

E(xi,yi)∼µ

{

[1− y(〈w,x〉+ b)]+
}

.
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Proof. To apply Theorem 3.1, we have to take care of the following two issues. First, while both x and
y are random parameters, the uncertainty set only considers perturbation on x. Second, Theorem 3.1
considers the case that each δi belongs to a norm ball independently, in this example we have joint
constraints over δi.

To handle the first issue, we de-randomize y. More specifically, note that both x and (w, b) are
bounded, which implies [1− y(〈w,x〉+ b)]+ are uniformly bounded. Thus, there exists {ǫn} ↓ 0 such that
uniformly for all w, we have

Ey,x

{

[1− y(〈w,x〉+ b)]+
}

− ǫn

=Ex

{

[1− y(〈w,x〉 + b)]+|y = 1
}

Pr(y = 1) + Ex

{

[1− y(〈w,x〉 + b)]+|y = −1
}

Pr(y = −1)− ǫn

≤Ex

{

[1− y(〈w,x〉 + b)]+|y = 1
}

∑n
i=1 1(yi = 1)

n
+ Ex

{

[1− y(〈w,x〉+ b)]+|y = −1
}

∑n
i=1 1(yi = −1)

n

≤Ey,x

{

[1− y(〈w,x〉+ b)]+
}

+ ǫn.

To handle the second issue, let

T̂n ,

{

(ŷ1, x̂1, . . . , ŷn, x̂n) | ∀i : ŷj = yj , ‖xi − x̂i‖2 ≤ c
}

.

Observe that T̂n ⊆ Tn, and since both x and (w, b) are bounded, the objective function f(y,x,w, b) ,
[1− y(〈w,x〉+ b)]+ is bounded, and satisfies equicontinuity. Thus, we apply Theorem 3.1 (more precisely
Equation (7)), to get

Ey,x

{

[1− y(〈w,x〉 + b)]+
}

− ǫn

≤
n+

n
Ex

{

[1− y(〈w,x〉+ b)]+|y = 1
}

+
n−

n
Ex

{

[1− y(〈w,x〉 + b)]+|y = −1
}

(a)

≤
n+

n

{

1

n+

∑

i∈I+

max
‖x̂i−xi‖2≤c

[1− (〈w, x̂i〉+ b)]+ +Mn+

}

+
n−

n

{

1

n−

∑

i∈I−

max
‖x̂i−xi‖2≤c

[1− (〈w, x̂i〉+ b)]+ +Mn−

}

(b)
=

1

n

n
∑

i=1

max
(ŷ1,x̂1,...,ŷn,x̂n)∈T̂n

[1− yi(〈w, x̂i〉+ b)]+ +
n+

n
Mn+ +

n−

n
Mn−

(c)

≤
1

n

n
∑

i=1

max
(ŷ1,x̂1,...,ŷn,x̂n)∈Tn

[1− yi(〈w, x̂i〉+ b)]+ +
n+

n
Mn+ +

n−

n
Mn− .

Here (a) holds by Equation (7) (note a change from inf to max), (b) and (c) holds by the definition of
T̂n and Tn, respectively. On the other hand we have

Ey,x

{

[1− y(〈w,x〉 + b)]+
}

+ ǫn

≥
n+

n
Ex

{

[1− y(〈w,x〉 + b)]+|y = 1
}

+
n−

n
Ex

{

[1− y(〈w,x〉 + b)]+|y = −1
}

≥
n+

n

{

1

n+

∑

i∈I+

max
‖x̂i−xi‖2≤c

[1− (〈w, x̂i〉+ b)]+ −Mn+ − d(2ǫ(n+))

}

+
n−

n

{

1

n−

∑

i∈I−

max
‖x̂i−xi‖2≤c

[1− (〈w, x̂i〉+ b)]+ −Mn− − d(2ǫ(n−))

}

=
1

n

n
∑

i=1

max
‖x̂i−xi‖2≤c

[1− (〈w, x̂i〉+ b)]−
n+

n
Mn+ −

n+

n
d(2ǫ(n+))−

n−

n
Mn− −

n−

n
d(2ǫ(n−))

≥
1

n

n
∑

i=1

[1− (〈w,xi〉+ b)]+ −
n+

n
Mn+ −

n+

n
d(2ǫ(n+))−

n−

n
Mn− −

n−

n
d(2ǫ(n−))

≥
1

n

n
∑

i=1

max
(ŷ1,x̂1,...,ŷn,x̂n)∈Tn

[1− yi(〈w, x̂i〉+ b)]+ − cn‖w‖2

−
n+

n
Mn+ −

n+

n
d(2ǫ(n+))−

n−

n
Mn− −

n−

n
d(2ǫ(n−)).
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Where the last inequality holds by the definition of Tn and triangle inequality. Note that Mn, d(ǫ(n))
and ǫn converges to zero, and that since F is bounded, cn‖w‖2 also converges to zero uniformly. Thus,
grouping them together we have that there exists {Di} ↓ 0, such that for all w:

1

n

n
∑

i=1

max
(ŷ1,x̂1,...,ŷn,x̂n)∈Tn

[1− yi(〈w, x̂i〉+ b)]+ −Dn

≤ Ey,x

{

[1− y(〈w,x〉 + b)]+
}

≤
1

n

n
∑

i=1

max
(ŷ1,x̂1,...,ŷn,x̂n)∈Tn

[1− yi(〈w, x̂i〉+ b)]+ +Dn.

By definition (wn, bn) minimizes 1
n

∑n
i=1 max(ŷ1,x̂1,...,ŷn,x̂n)∈Tn

[1− yi(〈w, x̂i〉+ b)]+, and hence

lim
n

E(xi,yi)∼µ

{

[1− y(〈wn,x〉+ bn)]
+
}

= inf
(w,b)∈F

E(xi,yi)∼µ

{

[1− y(〈w,x〉+ b)]+
}

,

which establishes the corollary. �

We note that in Corollary 4.1 we require that F is bounded. Indeed using a more refined (and somewhat
tedious) analysis, one can remove this assumption. See [42] for details.

Example 4.2 (Lasso) The next example considers regression. In this setup we are given m vectors in
R

k denoted by {xi}
m
i=1 and m associated real values {bi}

m
i=1. We are looking for a k dimensional linear

regressor v such that the expected regression error for a new testing sample is minimized, i.e., we want
to solve

min
v

: Eb,x∼µ∗(b − x⊤v)2. (12)

As in the previous example, the distribution is unknown except through the given training samples that
are i.i.d. realizations of µ∗. There are many ways to solve this regression problem and we consider a
specific popular framework known as Lasso (Tibshirani [39]). Let b denote the vector form of b1, . . . , bm
and X denote a m× k matrix such that its ith row is x⊤

i .

In [43], we show that the l1 regularized regression problem (also known as Lasso)

min
v

: ‖b−Xv‖2 + c‖v‖1,

is equivalent to a robust regression

min
v

: max
∆∈Um

‖b− (X +∆)v‖2,

with the uncertainty set

Um ,

{

[

δ1, · · · , δk
]

∣

∣

∣
‖δj‖2 ≤ c, j = 1, · · · , k

}

.

Similarly to the previous example, the uncertainty set U considers joint constraints on different samples
(corresponding to different rows of X). Thus, to apply Theorem 3.1, we use the same technique that
considers a new, sample-wise uncertainty set Ûm, and then show that robust solutions to these two
uncertainty sets are essentially the same. Consequently, we can establish that the robust formulation
above, and hence the well-known Lasso procedure, is statistically consistent.

4.2 Uncertainty Set Shrinkage When parameter deviation is not adversarial in nature, the stan-
dard RO formulation

max
v

min
xδ∈∆

f(v,x0 + xδ),

where ∆ is the set of all possible deviation, often leads to conservative solutions (cf Xu and Mannor [44],
and Delage and Mannor [13]). A natural remedy is to shrink the uncertainty set, i.e., fix α ∈ (0, 1) and
solve

max
v

min
xδ∈α∆

f(v,x0 + xδ).

This method, though intuitively appealing, easily implemented and hence widely used in application,
lacks justification. Specifically, the physical meaning of the set α∆ is unclear.
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Based on the probabilistic interpretation of RO, we provide a justification for such an approach: indeed,
the shrinkage approach approximately solves (see Theorem 4.1 for the precise statement) the following
DRSP

inf
µ∈P̂′

∫

Rm

f(v,x)dµ(x),

where P̂ ′ = {µ ∈ P |µ({x0}) ≥ 1 − α, µ(x0 + ∆) = 1}. Thus, the uncertainty set shrinkage method
indeed describes a system having a two-scenario setup: with probability at least 1− α the system is in a
“normal state,” where the parameters take the nominal value x0; otherwise the system is in an “abnormal
state,” where the parameter has a deviation that belongs to ∆.

Let us first consider the important special case where f(·, ·) is linear w.r.t. to the second argument. For
example, linear programs with uncertain cost, or MDPs with uncertain reward fall into this setting. In
this case, the shrinkage approach exactly solves the DRSP. We formalize this statement in the following
corollary. The corollary follows immediately from Theorem 4.1, which we provide below.

Corollary 4.2 If for all v, f(v, ·) is linear, then

min
xδ∈α∆

f(v,x0 + xδ) = inf
µ∈P̂′

∫

Rm

f(v,x)dµ(x),

where, as above,
P̂ ′ = {µ ∈ P |µ({x0}) ≥ 1− α, µ(x0 +∆) = 1}.

In general, when f(·, ·) is not linear w.r.t. the second argument, such an equivalence relationship does
not hold exactly. For example, let x0 = 0, ∆ = [−1 : 1] and take f : R× R → R to be given by

f(v, x) = v · 1(v − x ≤ 1).

Then the optimal solution to the α-shrinkage problem maxv minxδ∈α∆ f(v, x0 + xδ) is 1−α, whereas the
solution to the distributionally robust problem remains 1. Nevertheless, under some assumptions on the
curvature of f(·, ·), the equivalence continues to approximately hold in much greater generality. This is
the content of the following theorem.

Theorem 4.1 Suppose for any v, f(v, ·) is twice differentiable with a uniformly bounded Hessian. That
is, there exists h ≥ 0 such that for all v, x

−hI � Hv(x) � hI,

where Hv(x) is the Hessian of f(v, ·) evaluated at x. Then for all v

inf
µ∈P̂′

∫

Rm

f(v,x)dµ(x) − αD2h ≤ min
xδ∈α∆

f(v,x0 + xδ) ≤ inf
µ∈P̂′

∫

Rm

f(v,x)dµ(x) + αD2h,

where D = maxx∈∆ ‖x‖2 and P̂ ′ = {µ ∈ P |µ({x0}) ≥ 1− α, µ(x0 +∆) = 1}.

Proof. Denote the gradient of f(v, ·) by gv(·). Fix v and x1 ∈ ∆, and let x′
1 = αx1, which by

definition belongs to α∆. Since f(v, ·) is twice differentiable, then there exists β ∈ [0, 1] such that

f(v,x0 + x1) = f(v,x0) + gv((1 − β)x0 + β(x0 + x1))x1 = f(v,x0) + gv(x0 + βx1)x1.

Similarly, there exists β′ ∈ [0, 1] such that

f(v,x0 + x′
1) = f(v,x0) + gv((1 − β′)x0 + β′(x0 + x′

1))x
′
1 = f(v,x0) + αgv(x0 + αβ′x1)x1.

Due to the boundedness of Hessian we have

‖gv(x0 + βx1)− gv(x0 + αβ′x1)‖ ≤ h‖βx1 − αβ′x1‖ ≤ h‖x1‖ ≤ hD,

which implies that

f(v,x0 + x′
1) ≤ f(v,x0) + αgv(x0 + βx1)x1 + αhD‖x1‖ = (1− α)f(v,x0) + αf(v,x0 + x1) + αhD2,

and similarly
f(v,x0 + x′

1) ≥ (1 − α)f(v,x0) + αf(v,x0 + x1)− αhD2.



12 Xu, Caramanis and Mannor.: Distributional Interpretation of Robust Optimization
Mathematics of Operations Research 00(0), pp. xxx–xxx, c©20xx INFORMS

Thus,

(1 − α)f(v,x0) + αf(v,x0 + x1)− αD2h ≤ f(v,x0 + x′
1) ≤ (1− α)f(v,x0) + αf(v,x0 + x1) + αD2h.

Since this holds for all x1 ∈ ∆, and recall that x′
1 = αx1, by definition of α∆ we have

(1−α)f(v,x0)+α min
xδ∈∆

f(v,x0+xδ)−αD2h ≤ min
x′

δ
∈α∆

f(v,x0+x′
δ) ≤ (1−α)f(v,x0)+α min

xδ∈∆
f(v,x0+xδ)+αD2h.

The theorem thus holds due to the following equality implied by Corollary 5.2,

(1− α)f(v,x0) + α min
xδ∈∆

f(v,x0 + xδ) = inf
µ∈P̂′

∫

Rm

f(v,x)dµ(x).

�

The following corollary considers shrinkage in the general case where f(v, ·) is not linear and where
the uncertainty set is star-shaped. Instead of additive upper and lower bounds as in Theorem 4.1 we
provide a probabilistic interpretation for both the upper bound and the lower bound.

Corollary 4.3 Let ∆ be star shaped, i.e., if x ∈ ∆, then γx ∈ ∆ for all γ ∈ [0, 1]. If for all v, f(v, ·)
is convex, f(v,x0) − minxδ∈∆ f(v,x0 + xδ) ≥ 1 (this can be achieved by normalization), and is twice
differentiable with a bounded Hessian, then

inf
µ∈P̂′′

∫

Rm

f(v,x)dµ(x) ≤ min
xδ∈α∆

f(v,x0 + xδ) ≤ inf
µ∈P̂′

∫

Rm

f(v,x)dµ(x);

where D, h, and P̂ ′ are the same as in Theorem 4.1, and

P̂ ′′ = {µ ∈ P |µ({x0}) ≥ max(0, 1− α− αD2h), µ(x0 +∆) = 1}.

Proof. The right hand side holds due to the following equation implied by convexity of f(v, ·),

f(v,x0 + αx1) ≤ (1− α)f(v,x0) + αf(v,x1); ∀x1 ∈ ∆.

By Theorem 4.1 we have

(1− α)f(v,x0) + α min
xδ∈∆

f(v,x0 + xδ)− αD2h ≤ min
x′

δ
∈α∆

f(v,x0 + x′
δ).

Since f(v,x0)−minxδ∈∆ f(v,x0 + xδ) ≥ 1, this implies

(1− α− αD2h)f(v,x0) + (α+ αD2h) min
xδ∈∆

f(v,x0 + xδ) ≤ min
x′

δ
∈α∆

f(v,x0 + x′
δ).

We thus establish the left hand side by combining with the following inequality implied by ∆ is star
shaped,

min
xδ∈∆

f(v,x0 + xδ) ≤ min
x′

δ
∈α∆

f(v,x0 + x′
δ).

�

Corollary 4.3 shows that for convex functions, the shrinkage method indeed solves a problem that is
bounded by two DRSPs, both having a two-scenario setup: with a certain probability the system is in a
“normal state,” where the parameters take the nominal value x0; otherwise the system is in an “abnormal
state,” where the parameter has a deviation that belongs to ∆. The difference of the “normal state”
probability of these two DRSPs depends on the curvature of the function, and diminishes to zero when
the function f(v, ·) is linear.

5. Extensions: Correlated Uncertainty and Computation In this section we show two ex-
tensions of Theorem 2.1 that address situations that arise naturally in practice. First, we show that
it is possible to consider uncertainty sets (of different samples) that are coupled, and derive the set of
distributions of the equivalent DRSP. This is useful in settings where the samples are not generated in an
independent manner, but also when they are generated i.i.d., and one seeks to reduce the conservativeness
of the robust formulation by modeling them as satisfying some joint constraints. Note that as stated,
Theorem 2.1 cannot capture this, as it implicitly assumes that the realization of each parameter does not
depend on that of others. In practice it is often the case that the uncertain parameters need to satisfy
some joint constraints (e.g., Bertsimas and Sim [9]).
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In particular, we consider the setting where each sample is subject to some perturbations, and the
total perturbation is bounded. This would be a sensible constraint to place on a robust optimization
formulation, if the perturbations of each sample are generated independently according to some unknown
distribution, in which case one would expect the total variation of the perturbations to be small.

Note that uncertain parameters of Example 4.1 (SVM) essentially satisfy such a joint constraint. We
omit the proof of Corollary 5.1 since it is a straightforward extension of Theorem 2.1.

Corollary 5.1 (Bounded Total Perturbation) The RO formulation of the bounded total pertur-
bation is equivalent to DRSP, i.e., the following holds

min∑
i
‖xi−x∗

i
‖2≤r(n)

n
∑

i=1

cif(xi) = inf
µ∈P

∫

Rm

f(x)dµ(x),

where the set of distributions are given by

P =
⋃

r1,··· ,rn≥0,
∑

i
ri=r(n).

{

µ ∈ P | ∀S ⊆ [1 : n] : µ
(

⋃

i∈S

B(x∗
i , ri)

)

≥
∑

i∈S

ci

}

.

Corollary 5.1 shows that Theorem 2.1 can be generalized to joint constraints on uncertain parameters.
Indeed, it is straightforward to adapt Corollary 5.1 to accommodate other types of joint constraints – the
main limitation simply being that the resulting robust optimization problem remains computationally
tractable.

As demonstrated in Corollary 4.1, Theorem 3.1 can also be extended to this setup with perturbations
satisfying joint-constraints. More specifically, put ǫ(n) = r(n)/n, if f(·, ·) and ǫ(n) satisfy the conditions
of Theorem 3.1, and in addition,

sup
v

∣

∣

∣

∣

∣

1

n
min∑

i
‖xi−x∗

i
‖2≤r(n)

n
∑

i=1

f(xi, v)−
1

n

n
∑

i=1

min
‖xi−x∗

i
‖2≤ǫ(n)

f(xi, v)

∣

∣

∣

∣

∣

→ 0,

then the robust optimization formulation

Maximize:v max∑
i
‖xi−x∗

i
‖2≤r(n)

1

n

n
∑

i=1

f(xi, v),

is consistent. The proof follows a similar line as that of Corollary 4.1.

The next corollary demonstrates that the equivalence relationship of Theorem 2.1 has computational
consequences for solving DRSP. Generically, solving a DRSP can be more difficult than solving a (de-
terministic) RO problem, since the former involves computing the worst distribution. However, we show
that certain DRSPs that arise naturally in practice can be solved by relating them to their equivalent
RO formulation, for which the optimal solution is often easy to obtain.

To illustrate this point, consider the setting where the admissible distributions have a nested-set
structure. That is, given sets Z1 ⊆ Z2 ⊆ · · · ⊆ Zn, and p1 < p2 < · · · < pn = 1, suppose each of the
admissible distributions satisfies µ(Zi) ≥ pi. This nested structure is natural; it comes from the setting
where a distribution is estimated from samples. A common technique in such settings is to consider
modeling the uncertainty using probabilistic confidence, which naturally decreases in the number of
samples, hence yielding a nested structure.

Corollary 5.2 (Nested distributions) Let Z1 ⊆ Z2 ⊆ · · · ⊆ Zn, and 0 = p0 < p1 < p2 < · · · <
pn = 1. Consider the set of nested distributions

P̂ = {µ ∈ P |µ(Zi) ≥ pi, ∀i = 1, · · · , n}.

Then the DRSP is equivalent to the RO:

inf
µ∈P̂

∫

Rm

f(x)dµ(x) =

n
∑

i=1

(pn − pn−1) inf
xi∈Zi

f(xi).
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Proof. Let ci = pi − pi−1, and define

P̂ ′ = {µ ∈ P|∀S ⊆ [1 : n] : µ(
⋃

i∈S

Zi) ≥
∑

i∈S

ci}.

Since Zi ⊆ Zj for i < j, we have
⋃

i∈S

Zi = Zi∗(S), where i∗(S) , max
i∈S

i,

and
∑

i∈S

ci ≤
∑

i≤i∗(S)

ci = pi∗(S).

Thus, P̂ = P̂ ′. By Theorem 2.1 we have

inf
µ∈P̂′

∫

Rm

f(x)dµ(x) =

n
∑

i=1

(pn − pn−1) inf
xi∈Zi

f(xi),

which implies the corollary. �

6. Conclusion We show that robust optimization problems can be re-formulated as distributionally
robust stochastic problems. That is, robust optimization is equivalent to maximizing the worst-case
expected value over a class of distributions. While such an equivalence is well known in the special
case where each uncertain parameter belongs to a different space, we generalize it to the case where
multiple parameters belong to the same fixed dimensional space. This setting arises naturally in stochastic
problems that are attacked via sampling (as in machine learning or stochastic programming). Using this
reformulation, we show how to construct robust optimization problems that are statistically consistent,
even when the original empirical optimization is not. Our approach further provides a probabilistic
interpretation to the common practice of shrinking the uncertainty set in robust optimization to avoid
over conservativeness.

Acknowledgements We thank the referee and the associate editor for providing helpful comments
that led to improvements of the manuscript. In particular, we thank the AE for pointing out a simple and
elegant proof of Theorem 2.1. We thank Prof. Aharon Ben-Tal for useful discussions and for pointing
us to the shrinkage heuristic. The research of H. Xu was supported partially by NUS startup grant
R-265-000-384-133. The research of C. Caramanis was partially supported by NSF grants EFRI-0735905,
CNS-0721532, CNS-0831580, and DTRA grant HDTRA 1-08-0029. The research of S. Mannor was
partially supported by the Israel Science Foundation (contract 890015).

Appendix A. Kernel Density Estimation The kernel density estimator for a density ĥ in R
d,

originally proposed in Rosenblatt [29] and Parzen [25], is defined by

hn(x) = (ncdn)
−1

n
∑

i=1

K

(

x− x̂i

cn

)

,

where {cn} is a sequence of positive numbers, x̂i are i.i.d. samples generated according to ĥ, and K is a
Borel measurable function (kernel) satisfying K ≥ 0,

∫

K = 1. See Devroye and Györfi [15], Scott [32],
and the reference therein for detailed discussions. Figure 1 illustrates a kernel density estimator using
Gaussian kernel for a randomly generated sample-set. A celebrated property of a kernel density estimator
is that it converges in ℓ1 to ĥ, i.e.,

∫

Rd |hn(x) − ĥ(x)|dx → 0, when cn ↓ 0 and ncdn ↑ ∞ (Devroye and
Györfi [15]).

Appendix B. Proof of Remark 3.2 We define the following truncation of f(·, ·) with respect to
C > 0 as

fC(v,x) , max
(

− C,min(f(v,x), C)
)

,

and the residue of truncation as
fC(v,x) , f(v,x)− fC(v,x).

Similarly, we define truncation of F (·), and the residue

FC(x) , min
(

F (x), C
)

; FC(x) , F (x)− FC(x) = [F (x)− C]1(F (x) ≥ C)
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Figure 1: Illustration of Kernel Density Estimation.

We first show that with probability 1,

lim sup
n

sup
v∈F

n
∑

i=1

sup
x′

i
∈Zi

∣

∣fC(v,x
′
i)
∣

∣ ≤

∫

[F (x) − C]1(F (x) ≥ C)h∗(x)dx. (13)

Notice that we have the following holds uniformly over v
n
∑

i=1

1

n
sup

x′

i
∈Zi

∣

∣fC(v,x
′
i)
∣

∣ ≤
1

n

n
∑

i=1

|fC(v,xi)|+ d(ǫ(n))

≤
1

n

n
∑

i=1

FC(xi) + d(ǫ(n)) ≤
1

n

n
∑

i=1

(F (xi)− C)1(F (xi) ≥ C) + d(ǫ(n)).

Strong law of large number gives that

lim sup
n

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(F (xi)− C)1(F (xi) ≥ C)−

∫

[F (x)− C]1(F (x) ≥ C)h∗(x)dx

∣

∣

∣

∣

∣

= 0.

Equation (13) hence holds, since d(ǫ(n)) ↓ 0. Further notice that fC(·, ·) is uniformly bounded, then for
any fixed C, by Equation (7) we have with probability 1,

lim sup
n

sup
v∈F

∣

∣

∣

∣

∣

1

n

n
∑

i=1

inf
x′

i
∈Zi

fC(v,x
′
i)−

∫

fC(v,x)h
∗(x)dx

∣

∣

∣

∣

∣

= 0.

Notice that with probability 1

lim sup
n

sup
v∈F

∣

∣

∣

∣

∣

1

n

n
∑

i=1

inf
x′

i
∈Zi

f(v,x′
i)−

∫

f(v,x)h∗(x)dx

∣

∣

∣

∣

∣

≤ lim sup
n

sup
v∈F

∣

∣

∣

∣

∣

1

n

n
∑

i=1

inf
x′

i
∈Zi

fC(v,x
′
i)−

∫

fC(v,x)h
∗(x)dx

∣

∣

∣

∣

∣

+ lim sup
n

sup
v∈F

∣

∣

∣

∣

∣

1

n

n
∑

i=1

inf
x′′

i
∈Zi

f(v,x′′
i )−

1

n

n
∑

i=1

inf
x′

i
∈Zi

fC(v,x
′
i)

∣

∣

∣

∣

∣

+ sup
v∈F

∣

∣

∣

∣

∫

f(v,x)h∗(x)dx −

∫

fC(v,x)h
∗(x)dx

∣

∣

∣

∣

≤0 + lim sup
n

sup
v∈F

n
∑

i=1

sup
x′

i
∈Zi

∣

∣fC(v,x
′
i)
∣

∣+

∣

∣

∣

∣

∫

FC(x)h
∗(x)dx

∣

∣

∣

∣

≤2

∫

[F (x)− C]1(F (x) ≥ C)h∗(x)dx.

Since
∫

F (x)h∗(x)dx < +∞, we have that

lim
C↑+∞

∫

[F (x) − C]1(F (x) ≥ C)h∗(x)dx = 0.
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Thus we have with probability 1

lim sup
n

sup
v∈F

∣

∣

∣

∣

∣

1

n

n
∑

i=1

inf
x′

i
∈Zi

f(v,x′
i)−

∫

f(v,x)h∗(x)dx

∣

∣

∣

∣

∣

= 0,

which implies the consistency holds, even if f(·, ·) is not uniformly bounded.
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