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Abstract

We consider robust least-squares regression with featise-disturbance. We
show that this formulation leads to tractable convex omation problems, and
we exhibit a particular uncertainty set for which the robustblem is equivalent
to ¢, regularized regression (Lasso). This provides an int&piom of Lasso from
a robust optimization perspective. We generalize this sblarmulation to con-
sider more general uncertainty sets, which all lead toatdetconvex optimization
problems. Therefore, we provide a new methodology for desggregression al-
gorithms, which generalize known formulations. The adagatis that robustness
to disturbance is a physical property that can be exploitedddition to obtaining
new formulations, we use it directly to show sparsity prdpsrof Lasso, as well
as to prove a general consistency result for robust regmegsoblems, including
Lasso, from a unified robustness perspective.

1 Introduction

In this paper we consider linear regression problems wahtlsquare error. The problem is to find
a vectorx so that theZs norm of the residuab — Ax is minimized, for a given matrixl € R"*™
and vectorb € R™. From a learning/regression perspective, each row ean be regarded as a
training sample, and the corresponding elemenk aé the target value of this observed sample.
Each column ofA corresponds to a feature, and the objective is to find a seewfhis so that the
weighted sum of the feature values approximates the taahe¢yv

It is well known that minimizing the least squared error oaad to sensitive solutions [1, 2]. Many
regularization methods have been proposed to decreaseettmdtivity. Among them, Tikhonov
regularization [3] and Lasso [4, 5] are two widely known arigat algorithms. These methods
minimize a weighted sum of the residual norm and a certainlaggation term||x||» for Tikhonov
regularization and|x||; for Lasso. In addition to providing regularity, Lasso isaaknown for



the tendency to select sparse solutions. Recently this thastad much attention for its ability
to reconstruct sparse solutions when sampling occurs fantile Nyquist rate, and also for its
ability to recover the sparsity pattern exactly with proligbone, asymptotically as the number of
observations increases (there is an extensive literaturthie subject, and we refer the reader to
[6, 7, 8, 9, 10] and references therein). In many of theseagmbres, the choice of regularization
parameters often has no fundamental connection to an yirderioise model [2].

In [11], the authors propose an alternative approach tociagwsensitivity of linear regression, by
considering aobust versiorof the regression problem: they minimize the worst-casielwes for

the observations under some unknown but bounded distugbafitiey show that their robust least
squares formulation is equivalent fg-regularized least squares, and they explore computtiona
aspects of the problem. In that paper, and in most of the gulese research in this area and the
more general area of Robust Optimization (see [12, 13] afedenreces therein) the disturbance is
taken to be either row-wise and uncorrelated [14], or giveibdunding the Frobenius norm of the
disturbance matrix [11].

In this paper we investigate the robust regression probledeumore general uncertainty sets,
focusing in particular on the case where the uncertaintysseé¢fined by feature-wise constraints,
and also the case where features are meaningfully cordeldthis is of interest when values of
features are obtained with some noisy pre-processing,stepsthe magnitudes of such noises are
known or bounded. We prove that all our formulations are aatatjionally tractable. Unlike much
of the previous literature, we provide a focus stnuctural propertiesof the robust solution. In
addition to giving new formulations, and new propertiesha solutions to these robust problems,
we focus on the inherent importance of robustness, and iiiygb prove from scratch important
properties such as sparseness, and asymptotic consisfdrasso in the statistical learning context.
In particular, our main contributions in this paper are dio¥es.

o We formulate the robust regression problem with featurgevimdependent disturbances,
and show that this formulation is equivalent to a least-sgpaoblem with a weighted,
norm regularization term. Hence, we provide an interpi@teor Lasso from a robustness
perspective. This can be helpful in choosing the reguldamgparameter. We generalize
the robust regression formulation to loss functions givgmt arbitrary norm, and uncer-
tainty sets that allow correlation between disturbancatftdrent features.

e We investigate the sparsity properties for the robust ssgoa problem with feature-wise
independent disturbances, showing that such formulaénosurage sparsity. We thus eas-
ily recover standard sparsity results for Lasso using aswiass argument. This also im-
plies a fundamental connection between fisgture-wise independencoé the disturbance
and the sparsity.

o Next, we relate Lasso to kernel density estimation. Thisnadlus to re-prove consistency
in a statistical learning setup, using the new robustness émd formulation we introduce.

Notation. We use capital letters to represent matrices, and boldé&itars to represent column
vectors. For a vectat, we letz; denote the'” element. Throughout the paper;, andrjT denote

thei" column and thg'‘" row of the observation matrix, respectivelyy;; is theij element of4,

hence itis thgi** element ofr;, andi*" element of;. For a convex functioif(-), df(z) represents
any of its sub-gradients evaluatedzat

2 Robust Regression with Feature-wise Disturbance

We show that our robust regression formulation recoversd as a special case. The regression
formulation we consider differs from the standard Lassonidation, as we minimize the norm of
the error, rather than the squared norm. It is known thatthes coincide up to a change of the reg-
ularization coefficient. Yet our results amount to more thaapresentation or equivalence theorem.
In addition to more flexible and potentially powerful robé@mtmulations, we prove new results, and
give new insight into known results. In Section 3, we showrtitist formulation gives rise to new
sparsity results. Some of our results there (e.g. Theorefundlamentally depend on (and follow
from) the robustness argument, which is not found elsewimetige literature. Then in Section 4,
we establish consistency of Lasso directly from the rotesdrproperties of our formulation, thus
explaining consistency from a more physically motivated parhaps more general perspective.



2.1 Formulation

Robust linear regression considers the case that the @useratrixA is corrupted by some distur-
bance. We seek the optimal weight for the uncorrupted (ylehonn) sample matrix. We consider
the following min-max formulation:

Robust Linear Regression: min {ﬁaéa b —(A+ AA)x|2} . 1)

Herel{ is the set of admissible disturbances of the matrixn this section, we consider the specific
setup where the disturbance is feature-wise uncorrelatetinorm-bounded for each feature:

U {@ 8)|lblle < ey i =1, m}, @

for givenc; > 0. This formulation recovers the well-known Lasso:

Theorem 1. The robust regression problem (1) with the uncertainty 2gti§ equivalent to the
following ¢, regularized regression problem:

min {[Ib— Ax|lo + Y cilail}. @3)

i=1

Proof. We defer the full details to [15], and give only an outline loé foroof here. Showing that the
robust regression is a lower bound for the regularized ssjgpa follows from the standard triangle
inequality. Conversely, one can take the worst-case noised; = —c;sgn(x})u, whereu is given
by

b—Ax* H
wl Hb—A;*Hz . . if Ax* 7é b, 7
any vector with uni?s norm  otherwise
from which the result follows after some algebra. O

If we takec; = ¢ and normalizedch; for all 4, Problem (3) is the well-known Lasso [4, 5].

2.2 Arbitrary norm and correlated disturbance

Itis possible to generalize this result to the case wheré:tmorm is replaced by an arbitrary norm,
and where the uncertainty is correlated from feature taufeatFor space considerations, we refer
to the full version ([15]), and simply state the main reshkse.

Theorem 2. Let|| - ||, denote an arbitrary norm. Then the robust regression proble

: . A . =1 :
i { e b (4 84 bt 2 (G 8I6i < i =10 )

is equivalent to the regularized regression problein, cgm {Hb — Ax|lo + 2000 il }

Using feature-wise uncorrelated disturbance may lead édyeonservative results. We relax this,
allowing the disturbances of different features to be dateel. Consider the following uncertainty
set:

Z/[I £ {(617 T 76m)’fj(”61‘|aa' ) H5m||a) < 07 j = la T 7k} )
where f;(-) are convex functions. Notice that bothand f; can be arbitrary, hence this is a very
general formulation and provides us with significant flelitipiin designing uncertainty sets and

equivalently new regression algorithms. The followingdiem converts this formulation to a con-
vex and tractable optimization problem.

Theorem 3. Assume that the sét = {z € R™|f;(z) <0, j =1,--- ,k; z > 0} has non-empty
relative interior. The robust regression problem

min { max |[b— (44 AA)X|G} ,
x€ER™ | AAeU’



is equivalent to the following regularized regression pesb

min {Hb—AxHa—i-v()\,n,x)};
AERY ,KERT xER™
k (4)
: N T s
where:v(X, £, x) £ max [(n +x)Te - ; \; (c)} .
Example 1. Supposé{’ = {(51’... 75m)’H||51Har" Nmlla], < l;} for a symmetric norm

|| - ||, then the resulting regularized regression problem is

min {||b — Ax|la +Z||x||:}; where|| - || is the dual norm of] - ||,.
xeR™

The robust regression formulation (1) considers disturbarthat are bounded in a set, while in
practice, often the disturbance is a random variable witftounded support. In such cases, it is not
possible to simply use an uncertainty set that includesdafiissible disturbances, and we need to
construct a meaningf@¥ based on probabilistic information. In the full version [1&e consider
computationally efficient ways to use chance constraint®tstruct uncertainty sets.

3 Sparsity

In this section, we investigate the sparsity propertiesbéist regression (1), and equivalently Lasso.
Lasso’s ability to recover sparse solutions has been axtdnsliscussed (cf [6, 7, 8, 9]), and takes
one of two approaches. The first approach investigates thtdgmm from a statistical perspective.
That is, it assumes that the observations are generateddpaesé€) linear combination of the fea-
tures, and investigates the asymptotic or probabilisticd@®mns required for Lasso to correctly
recover the generative model. The second approach treafmdblem from an optimization per-
spective, and studies under what conditions a pditb) defines a problem with sparse solutions
(e.g., [16]).

We follow the second approach and do not assume a generat@el minstead, we consider the
conditions that lead to a feature receiving zero weight. drtipular, we show that (i) as a direct
result offeature-wise independenad the uncertainty set, a slight change of a feature that was
originally assigned zero weight still gets zero weight (@ifeen 4); (ii) using Theorem 4, we show
that “nearly” orthogonal features get zero weight (Comylld); and (iii) “nearly” linearly dependent
features get zero weight (Theorem 5). Substantial reseagdrding sparsity properties of Lasso
can be found in the literature (cf [6, 7, 8, 9, 17, 18, 19, 2@ arany others). In particular, similar
results as in point (ii), that rely on ancoherenceroperty, have been established in, e.g., [16], and
are used as standard tools in investigating sparsity ofd_fiem a statistical perspective. However,
a proof exploiting robustness and properties of the unicgytés novel. Indeed, such a proof shows
a fundamental connection between robustness and spausityimplies that robustifying w.r.t. a
feature-wise independent uncertainty set might be a fgieusvay to achieve sparsity for other
problems.

Theorem 4. Given(A4, b), letx* be an optimal solution of the robust regression problem:

min { max |[b — (A + AA)XQ} .
xeR™ | AAeU

Letl C {1,---,m} be such thatforali € I, z} = 0. Now let
= {(61,... ,6m)]||6j|\z <cj, JEI; 82 < i+ 4, ie[},

Then,x* is an optimal solution of

min { max ||b— (A+ AA)XQ} ,

x€R™ | AAdcU

for any A that satisfiegla; — ;|| < ¢; fori € I, anda; = a, forj & I.



Proof. Notice that fori € I, 27 = 0, hence the'" column of both4 and A A has no effect on the
residual. We have

P (ar 4], = g o - A v ane], = gy o - (A 220

Fori € I, ||a;—4,|| < ;,anda; = a; for j ¢ I. Thus{ A+ AA|AA e U} C {A+AA|AA € U}.
Therefore, for any fixed’, the following holds:

max Hb —(A+AA)X

< max Hb — (A+ AA)X
2 Adeu

By definition ofx*,

max Hb (A+ Ad)x*

Therefore we have

max Hb — (A+ AA)X*
AAeU

< max Hb — (A+AAX
2 Adeu

Since this holds for arbitrary’, we establish the theorem. O

Theorem 4 is establishagsing the robustness argumennd is a direct result of thieature-wise
independencef the uncertainty set. It explains why Lasso tends to aszegn weight to non-
relative features. Consider a generative mbéle: Y-, _; w;a; + { wherel C {1---,m} and{ is

a random variable, i.eb,is generated by features belongingftoln this case, for a featuré ¢ I,
Lasso would assign zero weight as long as there exists arpedwalue of this feature, such that
the optimal regression assigned it zero weight. This is glsmvn in the next corollary, in which
we apply Theorem 4 to show that the problem has a sparse@ohailong as an incoherence-type
property is satisfied (this result is more in line with theditmnal sparsity results).

Corollary 1. Suppose that for all, ¢; = c. If there existsI C {1,---,m} such that for all
v € span({a;,i € I} U{b}) [v| = 1, we havev"a; < ¢Vj ¢ I, then any optimal solutios*
satisfiesrs = 0,Vj & I.

Proof. Forj ¢ I, letaj denote the projection of; onto the span ofa;, i € I} (J{b}, and let
al £ a; —a;. Thus, we havéa; || < c. Let A be such that

J
5 — a; 1 €1
Tl af idl

Now let R
UZ (81, ,0m)|8ill2 < ¢, i€ I;||8;]l2 =0, j & I}

Consider the robust regression probleriny { max, 4 |[p—(A+AA)%x

2}, which is equivalent

to ming {] X||, + > ies ] }. Now we show that there exists an optimal solutionsuch

thati? = O forall j ¢ I. This is becaus@; are orthogonal to the span of ¢&;, i € 7} J{b}.
Hence for any giverx, by changingz; to zero for allj ¢ I, the minimizing objective does not
increase.

Sincella — a;{| = |laj || < ¢ Vj ¢ I, (and recall thatd = {(1,- - ,8,,)|[[d:]l2 < ¢, Vi}) applying
Theorem 4 we establish the corollary. O

The next corollary follows easily from Corollary 1.

Coroallary 2. Suppose there exisfsC {1,--- ,m}, such that for alli € I, ||a;|| < ¢;. Then any
optimal solutionx* satisfiesc? = 0, fori € I.

YWhile we are not assuming generative models to establish the results, itiisteti#isting to see how these
results can help in a generative model setup.



The next theorem shows that sparsity is achieved when a fedtofes are “almost” linearly depen-
dent. Again we refer to [15] for the proof.

Theorem 5. GivenI C {1,--- ,m} such that there exists a non-zero vectat );c; satisfying
I Z wiag s < nuln_H 1> aiciwl,
i€l iel

then there exists an optimal solutiari such thati € I : «} = 0.

Notice that for linearly dependent features, there existszero(w; );c; suchthat| > . ., w;a;l|2 =
0, which leads to the following corollary.

Corollary 3. GivenI C {1,---,m}, let A; & (ai) ,andt = rank(A;). There exists an
iel

optimal solutionx* such thatx; = (z;),-; has at most non-zero coefficients.

Setting/ = {1,--- ,m}, we immediately get the following corollary.

Corollary 4. If n < m, then there exists an optimal solution with no more thamon-zero coeffi-
cients.

4 Density Estimation and Consistency

In this section, we investigate the robust linear regresomulation from a statistical perspective
and rederivausing only robustness propertidsat Lasso is asymptotically consistent. We note that
our result applies to a considerably more general framewwhk Lasso. In the full version ([15])
we use some intermediate results used to prove consistensow that regularization can be
identified with the so-called maxmin expected utility (MMIEfdamework, thus tying regularization
to a fundamental tenet of decision-theory.

We restrict our discussion to the case where the magnitudbeofillowable uncertainty for all
features equals, (i.e., the standard Lasso) and establish the statistaistency of Lasso from
a distributional robustness argument. Generalizatiorhéonon-uniform case is straightforward.
Throughout, we use, to represent where there ara samples (we take, to zero).

Recall the standard generative model in statistical legrniet P be a probability measure with
bounded support that generates i.i.d. samfllies:;), and has a density*(-). Denote the set of the
first n samples bys,,. Define

Z (b; — %)%+ cpllz|1 }:argmin{%

x(P) —argmm \//br b—rTx)2dP(b, )}

In words, x(c,,, Sy,) is the solution to Lasso with the tradeoff parameter set,tg'n, andx(P)

is the “true” optimal solution. We have the following corisiscy result. The theorem itself is a
well-known result. However, the proof technique is novehisTtechnique is of interest because
the standard techniques to establish consistency intgtatikarning including VC dimension and

algorithm stability often work for a limited range of algthmins, e.g., SVMs are known to have
infinite VC dimension, and we show in the full version ([13}atLasso is not stableln contrast,

a much wider range of algorithms have robustness intetiyeta allowing a unified approach to

prove their consistency.

Theorem 6. Let{c,} be such that,, | 0 andlim, . n(c,)™*! = co. Suppose there exists a
constantd such that|x(c,,S,)||2 < H almost surely. Then,

nan;O \//b,r(b —r'x(cn,Sn))?dP(b,r) = \//b}r(b —rx(P))2dP(b,r),

almost surely.

3\*—‘

x(cp,S,) = arg min{




The full proof and results we develop along the way are defeto [15], but we provide the main
ideas and outline here. The key to the proof is establishiogrmection between robustness and
kernel density estimation.

Step 1: For a givenx, we show that the robust regression loss over the trainitegidaqual to the
worst-case expectegeneralization error To show this we establish a more general result:

Proposition 1. Given a functiory : R™*! — R and Borel setsZy, - - - , Z, C R™*1| let
i€s
The following holds
1 n
il Z sup  h(r;,b;) = sup / h(r,b)du(r,b).
n i=1 (ri,bi)€2; pneEP, JRM+1

Step 2: Next we show that robust regression has a form like thateneft hand side above. Also,
the set of distributions we supremize over, in the right hside above, includes a kernel density
estimator for the true (unknown) distribution. Indeed,sider the following kernel estimator: given
samplegb;, r;)" ,

= b—b;,,r—r;
é m—+1\—1 K 19 1
haltr) £ (rem 3 ()
where:K (x) £ Ij_y 4 qm+1(x) /271

®)

Observe that the estimated distribution given by Equatiiélongs to the set of distributions

Pn(A,A,b,C) £ {ILL € 7)|ZL = [bl —cb; + C] X H[aij - 5ij,aij + (51']'];
j=1
VS C (L m} el 2 > [S1/n),

ieS

and hence belongs B(n) = P(n) £ Uxjy; s> 52 —nez Pn(4, A, b, ), which is precisely the set
14t iy J

of distributions used in the representation from Proposifi.

Step 3: Combining the last two steps, and using the fact that| 4, (b,r) — h(b,r)|d(b,r) goes to

zero almost surely whe, | 0 andne™*! 1 oo sinceh,,(-) is a kernel density estimation ¢f-)

(see e.g. Theorem 3.1 of [21]), we prove consistency of rtategsession.

We can remove the assumption thjat(c,,,S,)||2 < H, and as in Theorem 6, the proof technique

rather than the result itself is of interest. We postponetioef to [15].

Theorem 7. Let{c,} converge to zero sufficiently slowly. Then

nh_)rr;o \//M(b —r'x(cp,Spn))2dP(b,r) = \//b?r(b —rx(P))2dP(b, 1),

almost surely.

5 Conclusion

In this paper, we consider robust regression with a leasésgerror loss, and extend the results of
[11] (i.e., Tikhonov regularization is equivalent to a rgbtormulation for Frobenius norm-bounded
disturbance set) to a broader range of disturbance setsemue hegularization schemes. A special
case of our formulation recovers the well-known Lasso atlgar, and we obtain an interpretation
of Lasso from a robustness perspective. We consider morergembust regression formulations,
allowing correlation between the feature-wise noise, aedstwow that this too leads to tractable
convex optimization problems.

We exploit the new robustness formulation to give direciofs®f sparseness and consistency for
Lasso. As our results follow from robustness propertiesuggests that they may be far more

general than Lasso, and that in particular, consistencyspadseness may be properties one can
obtain more generally from robustified algorithms.
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