
1

Sparse Algorithms are not Stable:
A No-free-lunch Theorem

Huan Xu, Constantine Caramanis, Member, IEEE and Shie Mannor, Senior Member, IEEE

✦

Abstract—We consider two desired properties of learning algo-
rithms: sparsity and algorithmic stability. Both properties are believed
to lead to good generalization ability. We show that these two prop-
erties are fundamentally at odds with each other: a sparse algorithm
cannot be stable and vice versa. Thus, one has to trade off sparsity
and stability in designing a learning algorithm. In particular, our
general result implies that ℓ1-regularized regression (Lasso) cannot
be stable, while ℓ2-regularized regression is known to have strong
stability properties and is therefore not sparse.

Index Terms—Stability, Sparsity, Lasso, Regularization

1 INTRODUCTION

Stability and Sparsity have both emerged as impor-
tant properties of machine learning algorithms. In a
broad sense, stability means that an algorithm is well-
posed, so that given two very similar data sets, an
algorithm’s output varies little. More specifically, an
algorithm is stable if its output is nearly identical
on two data sets differing on only one sample (this
is known as the leave-one-out error). Stability itself
is a desirable property for learning algorithms. For
example, in feature-selection, one might seek algo-
rithms that select nearly the same feature set when
run on very similar data sets. In addition to inherent
application-related reasons that stability is desirable,
stability is also known to closely related to statistical
property of learning algorithms. Following the land-
mark work in [1], stability is also an avenue for prov-
ing generalization performance of an algorithm. For
example, in [2] stability properties of ℓ2-regularized
Support Vector Machines (SVM) are used to establish
consistency. Also see [3], [4], [5] and many others.
More recently, in [5], the authors show that a (weak)
notion of stability is necessary and sufficient for the
learnability of an algorithm.

• H. Xu is with the Department of Mechanical Engineering, The
National University of Singapore, SINGAPORE.
E-mail: mpexuh@nus.edu.sg.

• C. Caramanis is with the Department of Electrical and Computer
Engineering, The University of Texas at Austin, Austin, TX, USA.
E-mail: caramanis@mail.utexas.edu.

• S. Mannor is with the Department of Electrical Engineering, Technion,
Haifa, ISRAEL.
E-mail: shie@ee.technion.ac.il

Meanwhile, sparsity has long been important for
a variety of reasons: a sparse solution is less com-
plicated and hence generalizes well [6]; sparsity can
facilitate interpretability [7], [8], [9], [10]; and sparse
algorithms may be computationally much easier to
implement, store, compress, etc. Accordingly, numer-
ous sparsity-promoting algorithms have been pro-
posed in signal processing and virtually all fields in
machine learning. A partial list includes: Lasso, 1-
norm SVM, Deep Belief Network, Sparse PCA [11],
[12], [13], [14], [15], [16] and many others.

In this paper, we investigate the mutual relation-
ship of these two concepts. In particular, we show
that sparse algorithms are not stable: if an algorithm
“encourages sparsity” (in a sense defined precisely
below) then its sensitivity to small perturbations of
the input data remains bounded away from zero, i.e.,
it has no uniform stability properties. We define these
notions formally in Section 2. We prove this “no-free-
lunch” theorem by constructing an instance where the
leave-one-out error of the algorithm is bounded away
from zero by exploiting the property that a sparse
algorithm can have non-unique optimal solutions, and
is therefore ill-posed. In a broad sense, our result re-
veals that there is a fundamental tradeoff relationship.
Intuitively, sparsity typically requires non-smoothness
in the objective; this in turn often results in multiple
potentially very different (distant) optimal solutions.
Thus, small perturbations can significantly change the
output, and hence render the algorithm unstable.

As we detail below, there is a spectrum of notions
of stability and of sparsity. The particular definitions
we use are arguably the strongest, although they are
satisfied by many of the most popular algorithms.
While certain relaxations (e.g., to group sparsity) are
easy to obtain, our results do not extend to the weak-
est notion of stability proposed in [5]. Therefore, an
interesting but challenging question is to determine
the appropriate notion of stability and sparsity that is
just strong enough for a similar no-free-lunch theorem
to hold. We leave this for future research.

This paper is organized as follows. We start with
the necessary definitions in Section 2 and provide the
no-free-lunch theorem based on these definitions in
Section 3. Sections 2 and 3 are devoted to regression

2

algorithms; and in Section 4 we generalize the theo-
rem to arbitrary loss functions. In Section 5 we discuss
the justification of the particular notions of stability
and sparsity considered in this paper. Brief concluding
remarks are given in Section 6.

Notation: Capital letters (e.g., A) and boldface let-
ters (e.g., w) are used to denote matrices and column
vectors, respectively. We use the transpose of a col-
umn vector to represent a row vector. Unless other-
wise specified, the same letter is used to represent a
part of an object. For example, the ith column of a
matrix A is denoted by ai. Similarly, the ith element
of a vector d is denoted by di.

2 SETUP AND ASSUMPTIONS

Consider a training sequence {(bi, ai)}
n
i=1, where a is

the vector of input values of the observation and b
is the output — we use (b, A) to represent the entire
sequence. We consider optimization algorithms that
seek to minimize the loss given a new observation
(b̂, â). For a given objective, rather than comparing
two solutions w

1,w2 by considering their empirical
loss, we adopt a somewhat more general framework,
considering only the partial ordering induced by any
learning algorithm L and training set (b, A). That is,
given two candidate solutions, w1,w2, we write

w
1 �(b,A) w

2,

if on input (b, A), the algorithm L would select w
2

before w
1. In short, given an algorithm L, each sample

set (b, A) defines an order relationship �(b,A) among
all candidate solutions w. This order relationship
defines a family of “best” solutions, and one of these,
w

∗ is the output of the algorithm. We denote this by
writing w

∗ ∈ L(b,A).
Thus, by defining a data-dependent partial order

on the space of solutions, we can talk more generally
about algorithms, their stability, and their sparsity. As
we define below, an algorithm L is sparse if the set
L(b,A) of optimal solutions contains a sparse solution,
and an algorithm is stable if the sets L(b,A) and L(b̂,Â)

do not contain solutions that are very far apart, when
(b, A) and (b̂, Â) differ on only one point.

We make a few assumptions on the preference
order:

Assumption 1: (i) The value of a column corre-
sponding to a non-selected feature has no effect
on the ordering: given j, b, A, w1 and w

2, sup-
pose that w

1 �(b,A) w
2, and w1

j = w2
j = 0. Then

for any â,
w

1 �(b,Â) w
2,

where

Â = (a1, · · · , aj−1, â, aj+1, · · · , am) .

(ii) Adding a sample that is perfectly predicted by
a particular solution, cannot decrease its place in

the partial ordering: given b, A, w1, w2, b′ and z,
suppose that w1 �(b,A) w

2, and b′ = z
⊤
w

2. Then

w
1 �(b,A) w

2,

where

b =

(

b

b′

)

; A =

(

A
z
⊤

)

.

(iii) The order relationship is preserved when a
trivial (all zeros) feature is added: given j, b, A,
w

1 and w
2, suppose that w1 �(b,A) w

2. Then

ŵ
1 �(b,Ã) ŵ

2,

where

ŵ
i =

(

w
i

0

)

, i = 1, 2; Ã = (A,0) .

(iv) The partial ordering and hence the algorithm,
is feature-wise symmetric: given b, A, w1, w2 and
P ∈ R

m×m a permutation matrix, if w1 �(b,A) w
2,

then
P⊤

w
1 �(b,AP) P

⊤
w

2.

Many popular algortihms, e.g., standard and regu-
larized regression, satisfy these assumptions. See also
Section 5.

Next, we define precisely what we mean by stabil-
ity and sparsity. We recall the definition of uniform
(algorithmic) stability first, as given in [1]. We let
Z denote the space of points and labels (typically
this will either be R

m+1 or a closed subset of it)
so that S ∈ Zn denotes a collection of n labelled
training points. For regression problems, therefore,
we have S = (b, A) ∈ Zn. We let L denote a
learning algorithm, and for (b, A) ∈ Zn, we let L(b,A)

denote the output of the learning algorithm (i.e., the
regression function it has learned from the training
data). Then given a loss function l, and a labelled
point s = (b, z) ∈ Z , l(L(b,A), s) denotes the loss of
the algorithm that has been trained on the set (b, A),
on the data point s. Thus in the regression setup, we
would have l(L(b,A), s) = |L(b,A)(z) − b|.

Definition 1: [1] An algorithm L has uniform sta-
bility βn with respect to the loss function l if the
following holds:

∀(b, A) ∈ Zn, ∀i ∈ {1, · · · , n} :

max
z′∈Z

|l(L(b,A), z
′)− l(L(b,A)\i, z

′)| ≤ βn.

Here L(b,A)\i stands for the learned solution with the
ith sample removed from (b, A), i.e., with the ith row
of A and the ith element of b removed.
At first glance, this definition may seem too stringent
for any reasonable algorithm to exhibit good stability
properties. However, as shown in [1], many algo-
rithms have uniform stability with βn going to zero.
In particular, Tikhonov regularized regression (i.e., ℓ2-
regularized regression) has stability that goes to zero
as 1/n. Indeed, recent work [17] shows that for p > 1,

3

ℓp regularization has uniform stability with βn going
to zero as 1/n. Stability can be used to establish strong
PAC bounds. For example, [1] shows that if the loss
is bounded by M , then with n samples, the following
holds with probability at least (1− δ),

R ≤ Remp + 2βn + (4nβn +M)

√

ln 1/δ

2n
,

where βn denotes the uniform stability, R the expected
loss, and Remp the empirical (i.e., training) loss.

Since Lasso is an example of an algorithm that
yields sparse solutions, one implication of the results
of this paper is that while ℓp-regularized (p > 1) re-
gression yields stable solutions, ℓ1-regularized regres-
sion does not. We show that the stability parameter
of Lasso does not decrease in the number of samples
(compared to the O(1/n) decay for ℓp-regularized
regression). In fact, we show that Lasso’s stability is,
in the following sense, the worst possible stability. To
this end, we define the notion of the Pseudo Maximal
Error (PME), which is the worst possible error a
training algorithm can have for arbitrary training set
and testing sample labelled by zero.

Definition 2: Given the sample space Z = Y × X
where Y ⊆ R, X ⊆ R

m, and 0 ∈ Y , the pseudo
maximal error for a learning algorithm L w.r.t. Z is

bn(L,Z) , max
(b,A)∈Zn,z∈X

l
(

L(b,A), (0, z)
)

.

As above, l(·, ·) is a given loss function.
As an example, if X is the unit ball, and W (L)
is the set of vectors w that are optimal with re-
spect to at least one training set, then bn(L,Z) =
maxw∈W (L) ‖w‖. Thus, unless L is a trivial algorithm
which always outputs 0, the PME is bounded away
from zero.

Observe that bn(L,Z) ≥ b1(L,Z), since by repeat-
edly choosing the worst sample (for b1), the algorithm
will yield the same solution. Hence the PME does not
diminish as the number of samples, n, increases.

We next define the notion of sparsity of an algo-
rithm which we use.

Definition 3: A weight vector w∗ Identifies Redundant
Features of A if

∀i 6= j, ai = aj ⇒ w∗
iw

∗
j = 0.

An algorithm L is said to be able to Identify Redundant
Features (IRF for short) if ∀(b, A) there exists w

∗ ∈
L(b,A) that identifies redundant features of A.
Being IRF means that at least one solution of the
algorithm does not select both features if they are
identical. We note that this is a rather weak notion
of sparsity. An algorithm that achieves reasonable
sparsity (such as Lasso) should be IRF. Notice that
IRF is a property that is typically easy to check.

Before concluding this section, we comment on
the two definitions that we considered, namely, the
uniform stability and IRF.

Stability is generally a desirable characteristic of
learning algorithms. Recently, a notion of stability
termed all-i-LOO stable, has been shown to be a
necessary and sufficient condition for learnability [5].
An algorithm is all-i-LOO stable, if

∀i ∈ {1, · · · , n} : ES∼µn |l(LS , si)− l(LS\i , si)| ≤ βn,

where µ is the generating distribution. This definition
(and also others defined in the literature, e.g., [3])
requires knowledge of the distribution that generates
samples and thus may be hard to verify, or simply
inappropriate when this distribution is unknown. In
contrast, the notion of uniform stability does not in-
volve the unknown generating distribution and thus
can be evaluated. This is a principal reason that uni-
form stability, while more restrictive, has seen wide
application, particularly for deriving generalization
bounds of learning algorithms.

The notion of IRF is proposed as an easily verifiable
property that most sparse algorithms satisfy. While
there are different notions of sparsity proposed in the
literature, the most widely applied, recently popular-
ized in the compressed sensing literature (and around
in myriad other places) calls sparsity the number of
non-zero elements of a vector. Accordingly, an algo-
rithm is called sparse if it finds the sparsest or nearly-
sparsest solution subject to performance constraints
(e.g., small regression error). Under this definition,
it is clear that IRF is a necessary property for an
algorithm to be sparse.

3 THE MAIN THEOREM

The main contribution of this paper establishes an
incompatibility between stability and sparsity: if an
algorithm is sparse, in the sense that it identifies
redundant features, then that algorithm is not stable.
Notably, this theorem applies to Lasso.

Theorem 1: Let Z = Y × X be the sample space
with m features, where Y ⊆ R, X ⊆ R

m, 0 ∈ Y and
0 ∈ X . Let Ẑ = Y × X × X be the sample space
with 2m features. If a learning algorithm L (trained
on points in Ẑ) satisfies Assumption 1 and identifies
redundant features, its uniform stability bound β is
lower bounded by bn(L,Z), and in particular does
not go to zero with n.

Proof: Note that in light of the definition of uni-
form stability, it suffices to provide one example that
algorithm L fails to achieve a small stability bound.
We construct such an (somewhat extreme) example as
follows.

Let (b, A) and (0, z⊤) be the sample set and the new
observation such that they jointly achieve bn(L,Z),
i.e., for some w

∗ ∈ L(b, A), we have

bn(L,Z) = l
(

w
∗, (0, z)

)

. (1)

4

Let 0n×m be the n×m 0-matrix, and 0 stand for the
zero vector of length m. Further, let

ẑ , (0⊤, z⊤); Â , (A, A);

b̃ ,

(

b

0

)

; Ã ,

(

A, A
0
⊤, z

⊤

)

.

Observe that (b, Â) ∈ Ẑn and (b̃, Ã) ∈ Ẑn+1. We first
show that

(

0

w
∗

)

∈ L(b,Â);

(

w
∗

0

)

∈ L(b̃,Ã). (2)

Notice that L is feature-wise symmetric (Assump-
tion 1 (iv)) and I.R.F., hence there exists a w

′ such
that

(

0

w
′

)

∈ L(b,Â).

Since w
∗ ∈ L(b,A), we have

w
′ �(b,A) w

∗

⇒

(

0

w
′

)

�(b,(0n×m,A))

(

0

w
∗

)

⇒

(

0

w
′

)

�(b,Â)

(

0

w
∗

)

⇒

(

0

w
∗

)

∈ L(b,Â).

The first implication follows from Assumption 1 part
(iii), and the second from part (i).

By Assumption 1 (iv) (feature-wise symmetry), we
have

(

w
∗

0

)

∈ L(b,Â).

Furthermore,

0 = (0⊤, z⊤)

(

w
∗

0

)

,

and thus by Assumption 1(ii) we have
(

w
∗

0

)

∈ L(b̃,Ã).

Hence (2) holds. This leads to (recall that
l(w∗, (b̂, â)) = |b̂− â

⊤
w

∗|)

l
(

L(b,Â), (0, ẑ)
)

= l(w∗, (0, z)); l
(

L(b̃,Ã), (0, ẑ)
)

= 0.

By definition of the uniform bound, we have

β ≥ l
(

L(b,Â), (0, ẑ)
)

− l
(

L(b̃,Ã), (0, ẑ)
)

.

Hence by (1) we have β ≥ bn(L,Z), which establishes
the theorem.

Theorem 1 not only means that a sparse algorithm
is not stable, it also states that if an algorithm is
stable, there is no hope that it will be sparse, since it
cannot even identify redundant features. For instance,
ℓ2 regularized regression is stable (see Example 3
with a linear kernel), and does not identify redundant
features.

4 GENERALIZATION TO ARBITRARY LOSS

Thus far our focus has been on the regression prob-
lem, i.e., with loss function l(w∗, (b̂, â)) = |b̂− â

⊤
w

∗|.
Our results are more general, and apply more broadly,
e.g., to the ǫ-insensitive loss function l(w∗, (b̂, â)) =
max

(

|b̂ − â
⊤
w

∗| − ǫ, 0
)

or the classification error

l(w∗, (b̂, â)) = 1b̂6=sign(â⊤w∗). We can generalize the
results derived to algorithms with loss function hav-
ing the form l(w∗, (b̂, â)) = fm(b̂, â1w

∗
i , · · · , âmw∗

m) for
any fm (here, âi and w∗

i denote the ith component of
â ∈ R

m and w
∗ ∈ R

m, respectively) that satisfies the
following conditions:

(a) fm(b, v1, · · · , vi, · · · , vj , · · · vm)

= fm(b, v1, · · · , vj , · · · , vi, · · · vm); ∀b,v, i, j.

(b) fm(b, v1, · · · , vm) = fm+1(b, v1, · · · , vm, 0); ∀b,v.
(3)

In words, (a) means that the loss function is feature-
wise symmetric, and (b) means that a dummy fea-
ture does not change the loss. Observe that both the
ǫ−insensitive loss and the classification error satisfy
these conditions.

In contrast to the regression setup, under an ar-
bitrary loss function, there may not exist a sample
that can be perfectly predicted by the zero vector,
rendering Definition 2 unnecessarily restrictive. We
thus modify Definition 2 to accomodate this setting.

Definition 4: Let Z = Y × X where Y ⊆ R and X ⊆
R

m. Then the pseudo maximal error for a learning
algorithm L w.r.t. Z is given by

b̂n(L,Z) , max
(b,A)∈Zn,(b,z)∈Z

{

l
(

L(b,A), (b, z)
)

−l
(

0, (b, z)
)

}

.

The PME in the arbitrary loss case is thus defined as
the largest (w.r.t. all possible testing samples) perfor-
mance gap of outputs of a learning algorithm and the
zero vector. Observe that Definition 4 is a relaxation
of Definition 2 in the sense that if the loss function is
indeed the regression error, then the PME defined by
Definition 4 is no smaller than that of Definition 2.

To account for the modification of Definition 2, we
need to make Assumption 1 slightly stronger: we
replace Assumption 1(ii) with the following one.

Assumption 2: (ii) Given b, A, w1, w2, b′ and z if

w
1 �(b,A) w

2, l(w2, (b′, z)) ≤ l(w1, (b′, z))

then

w
1 �(b,A) w

2, where b =

(

b

b′

)

; A =

(

A
z
⊤

)

.

Assumption 2(ii) means that adding a sample that
is better predicted (i.e., smaller loss) cannot make a
candidate solution less preferred.

With these modifications, we have a generalization
of Theorem 1.

Theorem 2: Let Z = Y×X be the sample space with
m features, where Y ⊆ R, X ⊆ R

m, and 0 ∈ X .

5

Let Ẑ = Y × X × X be the sample space with
2m features. If a learning algorithm L (trained on
points in Ẑ) satisfies Assumption 2 and identifies
redundant features, its uniform stability bound β is
lower bounded by b̂n(L,Z), and in particular does
not go to zero with n.

Proof: This proof follows a similar line of rea-
soning as the proof of Theorem 1. Let (b, A) and
(b′, z⊤) be the sample set and the new observation
such that they jointly achieve b̂n(L,Z), i.e., there exists
w

∗ ∈ L(b, A) such that:

b̂n(L,Z) = l
(

w
∗, (b′, z)

)

− l
(

0, (b′, z)
)

= fm(b′, w∗
1z1, · · · , w

∗
mzm)− f(b′, 0, · · · , 0).

Let 0n×m be the n×m 0-matrix, and 0 stand for the
zero vector of length m. We denote

ẑ , (0⊤, z⊤); Â , (A, A);

b̃ ,

(

b

b′

)

; Ã ,

(

A, A
0
⊤, z

⊤

)

.

Observe that (b, Â) ∈ Ẑn and (b̃, Ã) ∈ Ẑn+1. To prove
the theorem, it suffices to show that there exist w1, w2

such that

w
1 ∈ L(b,Â), w

2 ∈ L(b̃,Ã),

and

l
(

w
1, (b′, ẑ)

)

− l
(

w
2, (b′, ẑ)

)

≥ b̂n(L,Z)

where again,

b̂n(L,Z) = fm(b′, w∗
1z1, · · · , w

∗
mzm)− fm(b′, 0, · · · , 0).

By an identical argument to the proof of Theorem 1,
Assumption 1(i), (iii) and (iv) imply that:

(

0

w
∗

)

∈ L(b,Â).

Hence there exists w
1 ∈ L(b,Â) such that

l
(

w
1, (b′, ẑ)

)

= l

((

0

w
∗

)

, (b′, ẑ)

)

(4)

= fm(b′, w∗
1z1, · · · , w

∗
mzm).

The last equality follows from Equation (3) easily.
By feature-wise symmetry (Assumption 1(iv)), we
have

(

w
∗

0

)

∈ L(b,Â). (5)

Hence there exists w
2 ∈ L(b̃,Ã) such that

l
(

w
2, (b′, ẑ)

)

≤ l

((

w
∗

0

)

, (b′, ẑ)

)

(6)

= fm(b′, 0, · · · , 0).

The last equality follows from Equation (3). The in-
equality here holds because by Assumption 2(ii), if

there is no w
2 ∈ L(b̃,Ã) that satisfies the inequality,

then by (5) and definition of b̃ and Ã we have

w
2 �(b̃,Ã)

(

w
∗

0

)

which implies that
(

w
∗

0

)

∈ L(b̃,Ã),

from the optimality of w
2. However, this is a contra-

diction of the assumption that there is no w
2 ∈ L(b̃,Ã)

that satisfies the inequality of (6).
Combining (4) and (6) proves the theorem.

Other Generalizations

While this paper focuses on the case where a learned
solution takes a vector form, it is straightforward to
generalize the setup to the matrix case and show that
a similar no-free-lunch theorem between stability and
group sparsity holds. As an example, consider the
following group-sparse algorithm: Minimize:W ‖B −
AW‖F + ‖W‖1,2, where ‖W‖1,2 is the summation of
the ℓ2 norm of each row of W . Then, treating each
row of W as the value of a feature of the solution
and following a similar argument as the proof of
Theorem 1, one can show that such a group sparse
algorithm cannot be stable. Due to space constraints,
we do not elaborate.

5 DISCUSSION

To see that the two notions of stability and sparsity
that we consider are not too restrictive, we list in this
section some algorithms that either admit a dimin-
ishing uniform stability bound or identify redundant
features. Thus, by applying Theorem 2 we conclude
that they are either non-sparse or non-stable.

5.1 Stable algorithms

All algorithms listed in this section have a uniform
stability bound that decreases as O(1n), and are hence
stable. Examples 1 to 5 and adapted from [1].

Example 1 (Bounded SVM regression): Assume k is a
bounded kernel, that is k(x,x) ≤ κ2. Let F denote
the RKHS space of k. Consider Y = [0, B] and the
loss function

l(f, (y,x)) = |f(x)− y|ǫ

=

{

0 if |f(x)− y| ≤ ǫ;
|f(x)− y| − ǫ otherwise.

The SVM regression algorithm with kernel k is de-
fined as

LS = argmin
g∈F

{

n
∑

i=1

l(g, (yi,xi)) + λn‖g‖2κ

}

6

where S = ((y1,x1), · · · , (yn,xn)). Then, its uniform
stability satisfies

βn ≤
κ2

2λn
.

Example 2 (Soft-margin SVM classification): Assume
k is a bounded kernel, that is k(x,x) ≤ κ2. Let F
denote the RKHS space of k. Consider Y = {0, 1}1

and the loss function

l(f, (y,x)) = (1− (2y − 1)f(x))+

=

{

1− (2y − 1)f(x) if 1− (2y − 1)f(x) > 0,
0 otherwise.

The soft-margin SVM (without bias) algorithm with
kernel k is defined as

LS = argmin
g∈F

{

n
∑

i=1

l(g, (yi,xi)) + λn‖g‖2κ

}

,

where S = ((y1,x1), · · · , (yn,xn)). Its uniform stabil-
ity satisfies

βn ≤
κ2

2λn
.

Example 3 (RKHS regularized least square regression):
Assume k is a bounded kernel, that is k(x,x) ≤ κ2.
Let F denote the RKHS space of k. Consider
Y = [0, B] and the loss function

l(f, (y,x)) = (f(x)− y)2.

The regularized least square regression algorithm
with kernel k is defined as

LS = argmin
g∈F

{

n
∑

i=1

l(g, (yi,xi)) + λn‖g‖2κ

}

,

where S = ((y1,x1), · · · , (yn,xn)). Its uniform stability
satisfies

βn ≤
2κ2B2

λn
.

The next example is relative entropy regularization.
In this case, we are given a class of base hypotheses,
and the output of the algorithm is a mixture of them,
or more precisely a probability distribution over the
class of base hypotheses.

Example 4 (Relative Entropy Regularization): Let H =
{hθ : θ ∈ Θ} be the class of base hypotheses, where
Θ is a measurable space with a reference measure.
Let F denote the set of probability distributions over
Θ dominated by the reference measure. Consider the
loss function for f ∈ F

l(f, z) =

∫

Θ

r(hθ, z)f(θ)dθ;

where r(·, ·) is a loss function bounded by M . Further,
let f0 be a fixed element of F and K(·, ·) denote

1. This is slightly different from but equivalent to the standard
setup where Y = {−1, 1}.

the Kullback-Leibler divergence. The relative entropy
regularized algorithm is defined as

LS = argmin
g∈F

{

n
∑

i=1

l(g, zi) + λnK(g, f0)
}

,

where S = (z1, · · · , zn). Then, its uniform stability
satisfies

βn ≤
M2

λn
.

A special case of relative entropy regularization
is the following maximum entropy discrimination pro-
posed in [18].

Example 5 (Maximum entropy discrimination): Let
H = {hθ,γ : θ ∈ Θ, γ ∈ R}. Let F denote the set of
probability distributions over Θ × R dominated by
the reference measure. Consider Y = {0, 1} and the
loss function

l(f, z) =

(
∫

Θ,R

[γ − (2y − 1)hθ,γ(x)]f(θ, γ)dθdγ

)

+

,

where [γ−(2y−1)hθ,γ(x)] is bounded by M . The maxi-
mum entropy discrimination is a real-valued classifier
defined as

LS = argmin
g∈F

{

n
∑

i=1

l(g, zi) + λnK(g, f0)
}

;

where S = (z1, · · · , zn). Its uniform stability satisfies

βn ≤
M

λn
.

If an algorithm is not stable, one way to stabilize it
is to average its solutions trained on small bootstrap
subsets of the training set, a process called subbag-
ging [19], which we recall in the following example.

Example 6 (Subbagging, see Theorem 5.2 of [19].): Let
L be a learning algorithm with a stability βn, and
consider the following algorithm

L̂
k
D(x) , ES (LS(x))

where ES is the expectation with respect to k points
sampled in D uniformly without replacement. Then L̂

k

has a stability β̂n satisfying

β̂n ≤
k

n
βk.

In a recent work, [17] consider the uniform stability
of ℓp regularization for 1 < p ≤ 2 and elastic net
proposed in [20]. Their results imply the following
examples.

Example 7 (ℓp regularization): Consider a collection
of feature functions (ϕγ(·))γ∈Γ, where Γ is a countable
set, such that for every x ∈ X ,

∑

γ∈Γ

|ϕγ(x)|
2 ≤ κ.

Let F denote the linear span of the feature functions,
i.e.,

F = {
∑

γ∈Γ

αγϕγ(·) : α ∈ ℓ2(Γ)}.

7

Further assume that the loss function is such that
l(f, (y,x)) = V (f(x), y), for some V (·, ·) that is convex,
bounded, and Lipschitz continuous. That is,

1) V is convex.
2) For all y, y′ we have 0 ≤ V (y′, y) ≤ B.
3) For all y1, y2, y, we have |V (y1, y) − V (y2, y)| ≤

L|y1 − y2|.

Then, the ℓp regularization algorithm, defined as

LS = arg min
α∈ℓ2(Γ)

{

n
∑

i=1

l(
∑

γ∈Γ

αγϕγ(·), (yi,xi))

+λn
∑

γ∈Γ

|αγ |
p
}

;

where S = ((y1,x1), · · · , (yn,xn)), is uniformly stable
with

βn =
1

p(p− 1)

(

B

λ

)(2−p)/p
4L2κ

nλ
.

Up to a constant, Examples 1 to 3 are special cases of
Example 7 with p = 2. One interesting observation
is that when p = 1 the stability bound breaks. As
we know from previous sections, this is due to the
sparsity of ℓ1 regularization.

Example 8 (Elastic Net): Under the same assump-
tions as Example 7, the elastic-net regularization al-
gorithm, defined as

LS = arg min
α∈ℓ2(Γ)

{

n
∑

i=1

l(
∑

γ∈Γ

αγϕγ(·), (yi,xi))

+λn
∑

γ∈Γ

(wγ |αγ |+ ǫα2
γ)
}

;

where S = ((y1,x1), · · · , (yn,xn)), for some wγ ≥ 0, is
uniformly stable with

βn =
2L2κ

ǫnλ
.

Note that the weights (wγ)γ∈Γ have no effect in the
stability bound. This is easily expected as ℓ1 reg-
ularization itself is not stable. Indeed, the stability
bound of the elastic net coincides with that of a ℓ2
regularization algorithm. One may easily check that
because of the extra ℓ2 norm, elastic nets do not enjoy
the property of IRF.

We briefly comment on the last example. In [20]
the authors proposed the elastic net and used the
terminology “sparsity,” but with somewhat different
meaning than the one we adopt here. Motivated by
biomedical applications, the intention in [20] is pre-
cisely opposite from the goal of sparsity algorithms
like compressed sensing (and the present paper).
In contrast to compressed-sensing style sparsity that
seeks a solution with the least nonzero elements, work
in [20] in fact seeks algorithms that spread out weight
among all similar features.2 Therefore, this example

2. Indeed, because of the extra ℓ2 term, in almost all instances, the
elastic net would output a solution with at least the same number of
non-zero coefficients as the ℓ1 regularization, and sometimes output
a much denser solution.

does not contradict the results of our main result, that
sparse algorithms are not stable.

5.2 Sparse Algorithms

Next we list some algorithms that identify redundant
features.

Example 9 (ℓ0 Minimization): Subset selection algo-
rithms based on minimizing ℓ0 norm identify redun-
dant features. One example of such an algorithm is
the canonical selection procedure [21], which is defined
as

w
∗ = arg min

w∈Rm

{‖Aw − b‖2 + λ‖w‖0} . (7)

Proof: Note that if a solution w
∗ achieves the

minimum of (7) and has non-zero weights on two
redundant features i and i′, then by constructing a
ŵ such that ŵi = w∗

i + w∗
i′ and ŵi′ = 0 we get a

strictly better solution, which is a contradiction. Hence
ℓ0 minimizing algorithms are IRF.

Since in general finding the minimum of (7) is
NP-hard [22], many algorithms rely on the ℓ1 norm
as a convex relaxation. Most such algorithms either
minimize the ℓ1 norm of the solution under the con-
straint of a regression error, or minimize the convex
combination of some regression error and the ℓ1 norm
of the solution.

Example 10 (ℓ1 Minimization): The following subset
selection algorithms are based on minimizing the ℓ1
norm to identify redundant features.

1) Lasso [11] defined as

w
∗ = arg min

w∈Rm

{

‖Aw − b‖22 + λ‖w‖1
}

.

And equivalently, the LARS algorithm [23] that
solves Lasso.

2) Basis Pursuit [24] defined as the solution of the
following optimization problem on w ∈ R

m:

min : ‖w‖1

s.t.:Aw = b.

3) Dantzig Selector [25] defined as

Minimize: ‖w‖1

Subject to: ‖A∗(Aw − b)‖∞ ≤ c.

Here, A∗ is the complex conjugate of A, and c is
some positive constant.

4) 1-norm SVM [12], [13] defined as the solution of
the following optimization problem on α, ξ, γ.

min : ‖α‖1 + C

n
∑

i=1

ξi

s.t.: yi
{

n
∑

j=1

αik(xi,xj) + γ
}

≥ 1− ξi; ∀i;

ξi ≥ 0; ∀i.

8

5) ℓ1 norm SVM regression [26] defined as the so-
lution of the following optimization problem on
α, ξ and γ:

min : ‖α‖1 + C
n
∑

i=1

ξi

s.t.:
{

n
∑

j=1

αik(xi,xj) + γ
}

− yi ≤ ε+ ξi; ∀i;

yi −
{

n
∑

j=1

αik(xi,xj) + γ
}

≤ ε+ ξi; ∀i;

ξi ≥ 0; ∀i,

where ε > 0 is a fixed constant.

Proof: Given an optimal w
∗ we construct a new

solution ŵ such that for any subset of redundant fea-
tures I ,

∑

i∈I 1(ŵi 6= 0) ≤ 1 and
∑

i∈I ŵi =
∑

i∈I w
∗
i .

Thus, ŵ and w
∗ are equally good, which implies that

any ℓ1 minimizing algorithm has at least one optimal
solution that is IRF. Hence such algorithm is IRF by
definition.

6 CONCLUSION

In this paper, we prove that sparsity and stability
are at odds with each other. We show that if an
algorithm is sparse, then its uniform stability is lower
bounded by a nonzero constant. This also shows that
any algorithmically stable algorithm cannot be sparse.
Thus, we show that these two widely used concepts,
namely sparsity and algorithmic stability contradict each
other. At a high level, this theorem provides us with
additional insight into these concepts and their inter-
relation, and it furthermore implies that a tradeoff
between these two concepts is unavoidable in de-
signing learning algorithms. Given that both sparsity
and stability are desirable properties, one interesting
direction is to understand the full implications of
having one of them. That is, what other properties
must a sparse solution have? Given that sparse algo-
rithms often perform well, one may further ask for
meaningful and computable notions of stability that
are not in conflict with sparsity.

ACKNOWLEDGMENTS

This work was supported by NUS startup grant
R-265-000-384-133, NSF (grants EFRI-0735905, CNS-
0721532, CNS-0831580), DTRA (grant HDTRA1-08-
0029), and Israel Science Foundation (contract 890015).
A preliminary version of this work was presented in
the Forty-Sixth Allerton Conference on Communica-
tion, Control, and Computing.

REFERENCES

[1] O. Bousquet and A. Elisseeff. Stability and generalization.
Journal of Machine Learning Research, 2:499–526, 2002.

[2] I. Steinwart. Consistency of support vector machines and other
regularized kernel classifiers. IEEE Transactions on Information
Theory, 51(1):128–142, 2005.

[3] T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi. Gen-
eral conditions for predictivity in learning theory. Nature,
428(6981):419–422, 2004.

[4] S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin. Learning
theory: Stability is sufficient for generalization and necessary
and sufficient for consistency of empirical risk minimization.
Advances in Computational Mathematics, 25(1-3):161–193, 2006.

[5] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan.
Learnability and stability in the general learning setting. In
Proceedings of 22nd Annual Conference of Learning Theory, 2009.

[6] F. Girosi. An equivalence between sparse approximation and
support vector machines. Neural Computation, 10(6):1445–1480,
1998.

[7] R. R. Coifman and M. V. Wickerhauser. Entropy-based algo-
rithms for best basis selection. IEEE Transactions on Information
Theory, 38(2):713–718, 1992.

[8] S. Mallat and Z. Zhang. Matching pursuits with time-
frequency dictionaries. IEEE Transactions on Signal Processing,
41(12):3397–3415, 1993.

[9] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty
principles: Exact signal reconstruction from highly incomplete
frequency information. IEEE Transactions on Information Theory,
52(2):489–509, 2006.

[10] D. L. Donoho. Compressed sensing. IEEE Transactions on
Information Theory, 52(4):1289–1306, 2006.

[11] R. Tibshirani. Regression shrinkage and selection via the
Lasso. Journal of the Royal Statistical Society, Series B, 58(1):267–
288, 1996.

[12] O. L. Mangasarian. Generalized support vector machines. In
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages 135–146.
MIT Press, 2000.

[13] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support
vector machines. In Advances in Neural Information Processing
Systems 16, 2003.

[14] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimen-
sionality of data with nerual networks. Science, 313:504–507,
2006.

[15] A. d’Aspremont, L El Ghaoui, M. I. Jordan, and G. R. Lanck-
riet. A direct formulation for sparse PCA using semidefinite
programming. SIAM Review, 49(3):434–448, 2007.

[16] A. d’Aspremont, F. Bach, and L. El Ghaoui. Full regularization
path for sparse principal component analysis. In Proceedings of
the Twenty-fourth International Conference on Machine Learning,
2007.

[17] A. Wibisono, L. Rosasco, and T. Poggio. Sufficient conditions
for uniform stability of regularization algorithms. Technical
Report MIT-CSAIL-TR-2009-060, Massachusetts Institute of
Technology, 2009.

[18] T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy
discrimination. In Advances in Neural Information Processing
Systems 12, pages 470–476. MIT Press, 1999.

[19] T. Evgeniou, M. Pontil, and A. Elisseeff. Leave one out
error, stability, and generalization of voting combinations of
classifiers. Machine Learning, 55(1):71–97, 2004.

[20] H. Zou and T. Hastie. Regularization and variable selection
via the elastic net. Journal of the Royal Statistical Society Series
B, 67(2):301–320, 2005.

[21] D. P. Foster and E. I. George. The risk inflation criterion for
multiple regression. The Annals of Statistics, 22:1947–1975, 1994.

[22] B. K. Natarajan. Sparse approximate solutions to linear sys-
tems. SIAM Journal of Computation, 24:227–234, 1995.

[23] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle
regression. The Annals of Statistics, 32(2):407–499, 2004.

[24] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic
decomposition by basis pursuit. SIAM Journal on Scientific
Computing, 20(1):33–61, 1999.

[25] E. J. Candès and T. Tao. The Dantzig selector: Statistical
estimation when p is much larger than n. The Annals of
Statistics, 35(6):2313–2351, 2007.

[26] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press,
2002.

9

Huan Xu received the B.Eng. degree in au-
tomation from Shanghai Jiaotong University,
Shanghai, China in 1997, the M.Eng. de-
gree in electrical engineering from the Na-
tional University of Singapore in 2003, and
the Ph.D. degree in electrical engineering
from McGill University, Canada in 2009. From
2009 to 2010, he was a postdoctoral asso-
ciate at The University of Texas at Austin.
Since 2011, he has been an assistant pro-
fessor at the Department of Mechanical En-

gineering at the National University of Singapore. His research
interests include statistics, machine learning, robust optimization,
and planning and control.

Constantine Caramanis (M’06) received his
Ph.D. in EECS from the Massachusetts In-
stitute of Technology in 2006. Since then,
he has been on the faculty in Electrical
and Computer Engineering at The Univer-
sity of Texas at Austin. He received the
NSF CAREER award in 2011. His current
research interests include robust and adapt-
able optimization, machine learning and
high-dimensional statistics, with applications
to large scale networks.

Shie Mannor (S’00-M’03-SM’09) received
the B.Sc. degree in electrical engineering,
the B.A. degree in mathematics, and the
Ph.D. degree in electrical engineering from
the Technion-Israel Institute of Technology,
Haifa, Israel, in 1996, 1996, and 2002, re-
spectively. From 2002 to 2004, he was a
Fulbright scholar and a postdoctoral asso-
ciate at M.I.T. He was with the Department
of Electrical and Computer Engineering at
McGill University from 2004 to 2010 where

he was a Canada Research chair in Machine Learning. He has been
an associate professor at the Faculty of Electrical Engineering at
the Technion since 2008. His research interests include machine
learning and pattern recognition, planning and control, multi-agent
systems, and communications.

