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Risk Sensitive Robust Support Vector Machines

Huan Xu, Constantine Caramanis, Shie Mannor and Sungho Yun

Abstract—We propose a new family of classification
algorithms in the spirit of support vector machines, that
builds in non-conservative protection to noise and controls
overfitting. Our formulation is based on a softer version of
robust optimization called comprehensive robustness. We
show that this formulation is equivalent to regularization
by any arbitrary convex regularizer. We explain how the
connection of comprehensive robustness to convex risk-
measures can be used to design risk-constrained classifiers
with robustness to the input distribution. Our formulations
lead to easily solved convex problems. Empirical results
show the promise of comprehensive robust classifiers in
handling risk sensitive classification.

I. INTRODUCTION

Support Vector Machines (SVMs) are among the most
successful algorithms for classification (cf [1], [2], [3]).
The standard SVM setup assumes all training samples
and testing samples are independently generated ac-
cording to an unknown underlying distribution, and
finds a hyperplane (in the Reproducing Kernel Hilbert
Space) to minimize some regularized empirical loss. In
this paper we follow a different approach, proposed
originally by [4], [5], [6]. The training data are assumed
to be generated by the true underlying distribution, but
some non-iid (potentially adversarial) disturbance is
then added to the samples we observe. Previous work
on robust SVMs are all based on a (often too conserva-
tive) worst-case analysis, i.e., training error under the
most adversarial disturbance realization is considered.
This worst-case approach provides a solution with but
one guarantee: feasibility and worst-case performance
control for any realization of the disturbance within the
bounded uncertainty set. If the disturbance realization
turns out favorable (e.g., close to mean behavior), no
improved performance is guaranteed, while if the real-
ization occurs outside the assumed uncertainty set, all
bets are off: the error is not controlled. This makes it
difficult to address noise with heavy tails: if one takes
a small uncertainty set, there is no guarantee for high
probability events; if one seeks protection over large
uncertainty sets, the robust setting may yield overly
pessimistic solutions.

We harness new developments in robust optimiza-
tion (cf [7], [8]), in particular the softer notion of “com-

H. Xu and S. Mannor are with the Department of Electrical
and Computer Engineering, at McGill University, Montreal, CA
xuhuan@i m ntgil | . ca, shie@ce.ntgill.ca

C. Caramanis and S. Yun are with the Department of
Electrical and Computer Engineering, at The University of
Texas at Austin, Austin, TX car anani s@rai | . ut exas. edu,
shyun@ce. ut exas. edu

prehensive robustness” [9], and derive a new robust
SVM formulation that addresses this problem explicitly.
The key idea to comprehensive robustness is to dis-
count lower-probability noise realizations by reducing
the loss incurred. This allows us to construct classifiers
with improved empirical performance together with
probability bounds for all magnitudes of constraint
violations. In particular, our contributions include: (1)
We use comprehensive robustness to construct “soft
robust” classifiers with performance guarantees that
depend on the level of disturbance affecting the training
data - that is, the performance guarantee is noise-level-
dependent. We show that this richer class of robustness
is equivalent to a much broader class of regularizers, in-
cluding, e.g., standard norm-based SVM and Kullback-
Leibler divergence based SVM regularizers. (2) We next
show the connection to risk theory ([10], [11]), at the
same time extending past work on chance constraints,
and also opening the door for constructing classifiers
with different risk-based guarantees. Although the con-
nection seems natural, to the best of our knowledge this
is the first attempt to view classification from a risk-
hedging perspective. (3) We illustrate the performance
of our new classifiers through simulation. We show
that the comprehensive robust classifier, which can be
viewed as a generalization of the standard SVM and
the robust SVM, provides superior empirical results.

Il. COMPREHENSIVE ROBUST CLASSIFICATION

We consider the standard binary classification setup,
where given a finite number of training samples
{xi,y:}; € R" x {-1,+1}, we must find a linear
classifier, h"'*(x) = sgn((w, x) +b). In standard SVMs,
the parameters are obtained by solving the convex
optimization problem:

IE’II? {T’(W, b) + ; [1 - yz(<wa Xi> + b)v O] }7
where r(w, b) is a regularization term. The standard ro-
bust SVM (cf [5], [4]) considers the case where samples
are corrupted by some noise § = (d1,- -, d,,) such that

5i EM:
min: - r(w,b) + ; &
s.t.: & > [1—yi((w,x; — 8;) +b)], Vé; €N,

& > 0.

Preprint submitted to 48th IEEE Conference on Decision and Control.
Received March 6, 2009.



CONFIDENTIAL. Limited circulation. For review only.

Let N = [[“, Vi, and denote the hinge loss of a
sample under a certain noise realization as &;(d;) =
max [1 — y;((w, x; — &;) + b),0]. The robust classifier
can be rewritten as:

m

{r(w,b) + Z&’(‘Si)}'

min max
w,b (81, ,8m)EN

There are two potential problems with this robust
classifier. First, it treats all disturbances belonging to
N in exactly the same manner, which can lead to an
unfavorable bias to rare disturbances. In fact, it can be
shown that replacing A with its boundary we obtain
the same classifier. Second, it provides no protection
against disturbances outside N, which makes it in-
appropriate to handle disturbances with unbounded
support, particularly in the heavy-tailed case.

Instead, we formulate the comprehensive robust clas-
sifier by introducing a discounted loss function de-
pending not only on the nominal hinge loss, but also
on the noise realization itself. Let h;(-,-) : Rx R* — R
satisfy 0 < hi(a,8) < hi(a,0) = a. We use h to
denote our discounted loss function: it discounts the
loss depending on the realized data, yet is always
nonnegative, and provides no discount for samples
with zero disturbance. Thus, the comprehensive robust
classifier is given by:

min sup
Wb (81, ,8m)EN

{riw.+ > hi(€i(9:),6:) JEUEY

We investigate additive discounts of the form
hi(o, B) 2 max(0,a — f;(3)) in this paper. Additive
structure provides a rich class of discount functions,
while remaining tractable. Moreover, additive structure
provides the link to risk theory and convex risk
measures which we pursue in Section IV. Substituting
hi(a, B) £ max(0,a — fi(B)) and N =[], A into (11.1)
and extending f;(-) to take the value +oo for §; ¢ N;,
we obtain a formulation of the comprehensive robust
classifier (CRC):

m

min:  r(w,b)+ > &, (11.2)
i=1
s.t.: yi((w, x; — 8;) +b) > 1 =& — fi(8:)(11.3)

V&, R, i=1,-,m

& > 0; t=1,---,m.

Function f;(-) controls the disturbance discount, and
thus must satisfy infgern fi(8) = fi(0) = 0. If we set
fi(+) to be the indicator function of a set, we recover
the standard robust classifier. Thus the comprehensive
robust classifier is a natural generalization of the robust
classifier with more flexibility on setting f;(-).

The function f;(-) has a physical interpretation as
controlling the margin of the resulting classifier under
all disturbance. That is, when & = 0, the resulting
classifier guarantees a margin 1/||w|| for the observed

sample x; (the same as the standard classifier), together
with a guaranteed margin (1 — f;(8;))/||w| when the
sample is perturbed by 4;.

We now show that any convex regularization term in
the constraint is equivalent to a comprehensive robust
formulation, and vice versa. Given a function f(.), let
f* denote its Legendre-Fenchel transform or conjugate
function, given by f*(s) = sup,{(s,z) — f(z)}. We
use this below to establish the equivalence between
convex regularization and comprehensive robustness.
The proof of Theorem 1 is straightforward, and hence
omitted.

Theorem 1 The Comprehensive Robust Classifier (11.2) is
equivalent to the convex program:

m

min :r(w,b) + Z &,
i=1

sty ((w, %) +b) — fr(lyw) >1-&, i=1,---
&3>0, i=1,--,m.

)m)

(11.4)

Theorem 1 has two implications. First, it gives an equiv-
alent and finite representation for the infinite program
of the Comprehensive robust classifier. Second, the
robustness for a given regularizer f*(-) can be obtained
by investigating the corresponding discount function
).

Since infyern fi(ysw) = f7(0) =0, f7(-) “penalizes”
y;w and is thus a regularization term. A classifier
that has a convex regularization term g(-) in each
constraint is equivalent to a comprehensive robust clas-
sifier with disturbance discount f(-) = ¢g*(-). Therefore,
the comprehensive robust classifier is equivalent to
the constraint-wise regularized classifier with general
convex regularization. This equivalence gives an al-
ternative explanation for the generalization ability of
regularization: the set of testing data can be regarded as
a “disturbed” copy of the set of training samples where
the penalty on large (or low-probability) disturbance is
discounted. Empirical results show that a classifier that
handles noise well has a good performance for testing
samples.

As an example of this equivalence, set f;(d;) = «||d;]|
for « > 0 and r(w,b) = 0. Hence, f(y;w) is the
indicator function of the dual-norm ball with radius
a. Thus (11.4) is equivalent to

min: Y .o &,
s.t.: y7(<W7 Xz>+b)21_§1a 221,,7’71, (“5)
[wl* <o,

&>0,i=1,-,m.

Problem (I1.5) is the standard regularized classifier.
Hence, comprehensive robust classification is a general
framework which includes both robust SVMs and reg-
ularized SVMs as special cases.
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In the full version [12], we show that as long as com-
puting the conjugate of the discount function can be
done efficiently, then the resulting comprehensive ro-
bust classification problem is computationally tractable.

I11. NORM DISCOUNT

In this section, we discuss a class of discount
functions based on certain ellipsoidal norms of the
noise, i.e., fi(d;) = ti(]|d]|v), for a nondecreasing t¢; :
R — R*. Thus f/(y) = t(|ly|v-1), where t;(y) =
Sup,so [ty — t(z)]. This formulation has two natu-
ral probabilistic interpretations: (1) it provides tight
bounds on the probability of all magnitudes of con-
straint violations when only the first two moments of
the disturbance are known (Theorem 2); (2) it computes
the probabilities of all magnitudes of constraint viola-
tions when the disturbance is Gaussian (Theorem 3).

Theorem 2 Suppose the random variable 4] has mean O
and variance X.* Then the constraint

yi((w, xi = 8i) +b) 2 1 =& — t:([|0:f[ 1), Vo; € R,

(111.6)
is equivalent to
sk Pr(v(w, X)) +0) = 14+& - (L7)
1
>—s)>1- Vs >0

(t()" +1

The infimum is over all 0-mean random variables with
variance ¥, and ¢; ' (s) £ sup{r|t(r) < z}.

Proof: In [4], the authors study the robust formu-
lation and show that for a fixed ~,, the following three
inequalities are equivalent:

o inf

o yi({w, x;) +b) =1+ & > yolws,
o yi({w, x; —8;) +b) —1+& >0, V[dills—1 <.

Observe that Equation (111.7) is equivalent to: Vv > 0,

. . 1
J:ir(léz)Pr(yi((w, X)) +b)—1+& > —ti(v)) = 1—72 1
Hence, it is equivalent to:

Yi((w, xi—8;)+b)—14& = —ti(7), V[di[s-2 <v, Vy=0.

Since ¢;(+) is nondecreasing, this is equivalent to (I11.6).
|

Theorem 2 shows that the comprehensive robust
formulation bounds the probability of all magnitudes of

We use superscript = as in 8 or x] to denote the true (but
unknown) value for an uncertain variable.

1
Pry((w, x;)+0)—1+&>0) > 1 - 5,
sl r(yi((w, xj) +b) =1+ & >0) o)

constraint violation. Notice that the robust formulation
yi((w, x;) +b) — 1+ & > v||lw]||x gives a (tight) bound

inf )Pr(yi(<w, X)) +b)—1+& > —s)

explicitly depending on ||w|/s, and is impossible to
bound without knowing ||w/||s; a priori.

With a similar argument, we can derive probability
bounds under a Gaussian noise assumption.

Theorem 3 If §] ~ N(0,3), then the constraint

yi({w, x; — 8;) +b) > 1 =& — t:(]|0;]|g-1), Vd; € R,
(11.8)
is equivalent to

Pryi((w, x[) +b) — 1+ & > —s) > ®(t;'(s)),(111.9)

Here, ®(-) is the cumulative distribution function of A/(0, 1).

Proof: For fixed k& > 1/2 and constant [, the follow-
ing constraints are equivalent:

Prysw'd8; >1) >k
— 1< (b_l(k})(WTZW)l/Q
= 1<yw'd;, Y|&]ls-1 < (k).

Notice that (I11.10) is equivalent to

Pr(il(w, x0) +5) = 1+ & > —t:(7)) = ®(3), ¥y 20,
and hence it is equivalent to: Vv > 0,

yi((w, x; — &;) +b) =1+ & > —ti(7),
V||di]ls-1 < @7 (@(y)) =1

Since ¢;(+) is nondecreasing, this is equivalent to (111.8).
[ |
We provide examples of “simple” discount functions.
For affine function ¢;(z) = axz+b, its conjugate function
is tf(y) = I, — b. For indicator function ¢;(z) = I, +b.,
its conjugate is t;(x) = ax + b. For quadratic function
ti(x) = ax? + b, its conjugate t!(y) = y*/4a — b is still a
quadratic function. All these discount functions lead to
second order cone programs. Another common choice
of piecewise-defined discount function which replaces
the jump from zero to infinity of the indicator function
by a smooth increase, either linear or quadratic. Such
discount functions also lead to SOCPs, and thus have
a computational cost comparable to the robust formu-
lation.

Preprint submitted to 48th IEEE Conference on Decision and Control.
Received March 6, 2009.



CONFIDENTIAL. Limited circulation. For review only.

1V. COMPREHENSIVE ROBUSTNESS AND CONVEX RISK
MEASURES

We next investigate the relationship between com-
prehensive robustness and convex risk measures, a
notion adapted from decision theory. The theory of
(convex) risk? measures [10] was developed in response
to the observation that the preference of a decision
maker among random losses (aka gambles) can be
quite complicated. A risk measure defines a preference
relationship among random variables: X; is preferable
over X, iff p(X1) < p(X2). We can regard p(-) as the
measurement of how risky a random variable is: X is
a less risky decision than X5 when p(X;) < p(X3).

Definition 1 A risk measure is a function p : X — R.
A risk measure is called convex if it satisfies the following
three conditions:

1) Convexity: p(AX +(1=N)Y) < Ap(X)+(1=N)p(Y);

2) Monotonicity: X <Y = p(X) < p(Y),

3) Translation Invariance: p(X +a) = p(X)+a,Va € R.

Convexity means diversifying reduces risk. Monotonic-
ity says that if one random loss is always less than
another, it is preferable. Translation invariance says that
if a fixed penalty « is going to be paid in addition to X,
we are indifferent to whether we will pay it before or
after X is realized. A convex risk measure p(-) is called
normalized if it satisfies p(0) = 0 and VX € X, p(X) >
Ep(X), which essentially says that the risk measure
p(+) represents risk aversion. Many widely used criteria
comparing random variables are normalized convex
risk measures, including expected value, Conditional
Value at Risk (CVaR), and the exponential loss function
(I91, [13]).

Equipped with a normalized convex risk mea-
sure p(-), corresponding to particular risk preferences,
we formulate the risk-measure constrained classifier
(RMCC):

min: r(w,b) + Zfi,
i=1

s.t.: pz(§1) > pi(l - y7(<W, X:) + b))a i=1--
5720; 2215 , M.

7m7

(1V.10)

Notice that x] is a random variable, hence 1 —
yi((w, xI') +b) is a random loss, and ¢; is the constant
“equivalent.” In fact, the risk-constrained classifier and
the comprehensive robust classifier are equivalent.

Theorem 4 (1) A Risk-Measure Constrained Classifier
with normalized convex risk measures p; (-) is equivalent to a

2This is a term used in decision theory to represent a random
loss, which is different from what is often used in machine learning
literature, i.e., a certain loss of the classifier.

Comprehensive Robust Classifier with the discount function
given by

i(8) = inf{of(Q)Eq(d]) =6};
ad(Q) = ;}?XGEQ(X/)—M(X/))-

(2) A Comprehensive Robust Classifier with convex discount
functions f;(-) is equivalent to a Risk-Constrained Classifier
with the risk measure given by

pi(X)
A;

inf{m e RIX —m e A;};
(X € XX() < fi(3(), Y e 2,

>l

assuming that &; has support R".

Before proving Theorem 4, we establish the following
two lemmas. Lemma 1 is adapted from [10], and the
readers can find the proof there.

Lemma 1l Let X be the set of random variables for
(Q,F,P), P be the set of probability measures absolutely
continuous with respect to P, and p : X — R be a convex
risk measure satisfying X,, | X = p(X,) — p(X), then
there exists a convex function « : P — (—o0, +00] such
that

p(X) = sup (Eq(X) — a(Q))
Qep

VX eX.  (IV11)

Furthermore, a®(Q) £ supxcx (Eq(X’')—p(X")) satisfies
(IV.11), and it is minimal in the sense that a°(Q) < a(Q)
for all @ € P, if «(-) also satisfies (1V.11).

We call «°(-) the minimal representation of a convex
risk measure.

Lemma 2 For a normalized convex risk measure p(-), its
minimal representation satisfies:

0=a’P) <a’(Q), VQ < P.
Proof: First, since Eg(0) =0, we have

p(0) =0 — inf a°(Q) = 0.

V.12
QeP ( )

Next, by definition a’(P) = supxcx (Ep(X) — p(X)),
and Ep(X) < p(X) by assumption. Hence taking the
supremum leads to «y(P) < 0. Combining this with
Equation (1V.12) establishes the lemma. [ |

Now we proceed to prove Theorem 4.

Proof: (1) By Lemma 2, f;(8;) > 0 since a°(Q) > 0,

VQ € P. In addition, Ep(d;) = 0 and o’(P) = 0 together
imply £;(0) = 0.

Now, the constraint in the optimization formulation
can be rewritten as

& > 1—yi((w, x5) +b) + ps(yiw ' 87).

Preprint submitted to 48th IEEE Conference on Decision and Control.
Received March 6, 2009.



CONFIDENTIAL. Limited circulation. For review only.

This in turn can be rewritten as

&+ yi((w, x3) +b) — 1> sup (Eq(yiw ' 87) — (Q))
QEP

& Gtyi(w,x) +b)—1>
sup sup (yinﬁi - a(Q))
8,€R™ QEP|Eq(87)=5;
& yil(w, x; —8;) +b) > 1 =& —inf{a(Q)|Eq(d;) =
V57 S R”,
< yi((w, x; — 8;) +b) > 1 =& — fi(d;), Vo; € R",

which proves the first part.

(2) First we show p;(-) is a convex risk measure.
Notice f;(0) is finite, hence, p;(X) > —oo. Observe that
pi(+) satisfies Translation Invariance. To prove Mono-
tonicity, suppose X <Y and Y —s € A; forsome s € R,
then X — s € A;, hence inf{m|X —m € A;} < s, which
implies p;(X) < p;(Y). To prove Convexity, suppose
X —m and Y — n belong to A; for m,n € R. Given
A €1]0,1], we have A(X(w) —m) + (1 —AN)(Y(w) —n) <
fi(87 (w)) and hence (AX+(1—-\)Y)—(Am+(1—A)n) €
A; which implies p;(AX + (1 = A)Y) < dm 4+ (1 — M\)n,
hence the convexity holds. Therefore p;(-) is a convex
risk measure.

Now, the constraint in the optimization formulation
which, as above, is equivalent to

& > 1—yi((w, x3) +b) + pi(yiw ' 67),
can also be rewritten as:
inf{m € Rly;w' 6] —m € A;} <& +yi((w, x;) +b) — 1
o yw 0 — & —yi((w, x)) +b)+1—c € A,
Ve >0

& yiw 6 (W) — & —yi((w, x;) +b) + 1 — ¢ < fi(8] (w))

Yw € Q,Ve >0
S yw 8 — & —yi((w, x;) +b) + 1 —e < f;(8,),

The last equivalence holds from the assumption that §;
has support R". [ |

For the first part of Theorem 4, the assumption that
pi(+) is normalized can be relaxed to p;(0) = 0 and
inf{ad(Q)[Eq(6]) = 0} = 0.

Let P be the set of probability measures absolutely
continuous w.r.t. P. It is known ([10], [11]) that any
convex risk measure p(-) can be represented as p(X) =
supgep Eq(X) — a(Q)] for some convex function «f-);
conversely, given any such convex function «, the
resulting function p(-) is indeed a convex risk measure.
Given «(-), p(-) is called the corresponding risk mea-
sure. The function «(-) can be thought of as a penalty
function on probability distributions. This gives us a
way to directly investigate classifier robustness with
respect to distributional deviation. As an example,
suppose we want to be robust over distributions that
are nowhere more than a factor of two greater than
a nominal distribution, P. This can be captured by
the risk constraint using risk measure p(-), where p

corresponds to the convex function « given by letting
af-) satisfy a(Q) = 0 for dQ/dP < 2, and a(Q) = +o0
for all other Q.

We provide some examples of classifiers obtained
from such robustness w.r.t. distributional deviation.

d:gxample 1 Suppose 87 ~ N(0,%;) and let risk measure
p(-) correspond to KL-divergence,

[ElogLdP Q <P,
400 otherwise.

a(Q) = {

Then the Risk-Measure Constrained Classifier is equiv-
alent to

T’(W, b) + Z Eiv
=1

min :
st yi((w, xi>—|—b)—wTEiw/2
Zl_gzv Zzlv , M,
57,205 2217 y M.

For general 48] and a(-), it is not always straightfor-
ward to find and optimize the explicit form of the
regularization term. Hence we sample, approximating
P with its empirical distribution ;. This is equivalent
to assuming &/ has finite support {d;,---,d:} with
probability {pi,--- ,p:}. We note that the distribution of
the noise is often unknown, where only some samples
of the noise are given. Therefore, the finite-support
approach is often an appropriate method in practice.

7 Example 2 For 4] with finite support, the Risk Mea-

sure Constrained Classifier is equivalent to

V(Sz e R".

min: r(w,b) + Zf“
i=1

yi((w, x;) +b) — o (yiA:W + /\il) + N

s.t.:
>1-&,i=1,---,m;
&E>0,i=1,---,m;

where o*(y) £ sup,so{y'x — a(x)} and A, =

Example 3 Further let a(q) = >°_, ¢;log(q;/p;), the
KL divergence for discrete probability measures. The
risk-measure constraint in (IV.10) is equivalent to

t
ij exp (yq;wT5g —yi((w, x;) +b) +1— fz) <1
j=1

This is a geometric program: it is convex, and special-
ized algorithms exist for its solution.
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V. KERNELIZED COMPREHENSIVE ROBUST CLASSIFIER

Much of the previous development can be extended
to the kernel space. The main contributions in this
section are (i) a representer theorem in the case where
we have discount functions in the feature space; and
(ii) a sufficient condition for approximation in the case
that we have discount functions in the original sample
space.

We use k(-,-) : R” x R — R to represent the
kernel function, and K to denote the Gram matrix with
respect to (x1, -+ ,X,,). Let ¢(-) be the mapping from
the sample space R” to the feature space ®. Let & C &
be the subspace spanned by {¢(x1), -+, d(xm)}. For a
vector z € ®, denote z= as its projection on &. The
following theorem states that we can focus on w € &
w.l.o.g.

Theorem 5 If f;(-) is such that f;(8) > fi(67), for all
d € &, and w € P satisfies

y((w, ¢(xi)—8;)+b) > 1-&— fi(8:),
then its projection w= also satisfies (V.13).
Let c = (Cla"' 7Cm)r gi(c) £ f7(2211 Ci(b(xi))’ and
7(a,b) = (X1 aj(x;),b). Let e; denote the i’ basis

vector. The kernelized comprehensive robust classifier
can be written as:

V8, € @, (V.13)

Kernelized Comprehensive Robust Classifier:

m

min : 7(a,b) + Zf“
i=1

st.: yi(e] Ka+b) —yia Ke>1—¢& — gi(c),
YeeR™, i=1,---,m,
&>0,i=1,---,m,
where the constraint can be further simplified as
yile] Kao+b) —gf(yiKa) >1—-&, i=1,--- ,m.

Generally ¢*(-) depends on the exact formulation of
the feature mapping ¢(-). However, if there exists h; :
RT — R* such that f;(8) = hi(1/(d, d)),Vé € @,
then ¢f(y;Ka) = h!(]a| k), i.e., independent of the
feature mapping. When h; is an increasing function,
then f;(6) > fi(67) is automatically satisfied. This is
the case for many common kernels, including Gaussian
RBF.

The previous results hold for the case where we have
explicit discount functions in the feature space. How-
ever, in certain cases the discount functions naturally
lie in the original sample space. The next theorem gives
a sufficient alternative in this case.

Theorem 6 Suppose h; : R™ — R satisfies

hi (V (x5, %;) + k(x; — 8,%; — 8) — 2k(x;, %; —
< fi(), V& eR"

8))(V.14)

Then
i (W, 6(x:)=3g)+b) = 1=&—hi(y/(84,04)), ¥4 € O,
implies

yi((w, o(xi — 8)) +b) > 1—& — f:(5),V6 € R™.

In fact, when Equation (V.14) holds with equality, this
sufficient condition is also necessary. As the condition
in Theorem 6 only involves the kernel function k(-,-)
and is independent of the explicit feature mapping,
it applies for abstract (and infinite dimensional) map-

pings.
VI. NUMERICAL SIMULATIONS

We compare the performance of three classification
algorithms: the standard SVM, the standard robust
SVM with ellipsoidal uncertainty set, and the compre-
hensive robust SVM with ellipsoidal uncertainty set
with linear discount function from the center of the
ellipse to its boundary (see below). The comprehensive
robust classifier beats both the SVM and the robust
SVM, building in protection to noise without being
overly conservative.

We use a linear discount function for the comprehen-
sive robust classifier. That is, noise is bounded in the
same ellipsoidal set as for the robust SVM, {8]|d]s-: <
1}, and the discount function is f;(6) = a|/6g-: for
[[6]|s-: < 1, and +oco otherwise. The parameter o
controls the disturbance discount. As « tends to zero,
there is no discount inside the uncertainty set, and we
recover the robust classifier. As « tends to +oo, the
discount increases until the constraint is only imposed
at the center of the ellipse, recovering the standard
SVM.

We use SeduMi 1.1R3 ([14]) to solve the resulting
convex programs. We first compare the performance
of the three algorithms on the Wisconsin-Breast-Cancer
data set from the UCI repository ([15]). In each itera-
tion, we randomly pick 50% of the samples as training
samples and the rest as testing samples. Each sample is
corrupted by i.i.d. noise, which is uniformly distributed
in an ellipsoid {4||d]|s;—: < 1}. Here, the matrix ¥ is
diagonal. For the first 40% of features, ¥;; = 16, and
for the remaining features, ¥;; = 1, so noise is skewed
toward part of the features. We repeat 30 such iterations
to get the average empirical error of the three different
algorithms. Figure 1 (a) shows that the comprehensive
robust classifier outperforms both the robust and stan-
dard SVM classifiers. As anticipated, when « is small,
comprehensive robust classification has a testing error
rate comparable to robust classification. For large «,
the classifier’s performance is similar to that of the
standard SVM. Thus comprehensive robust classifica-
tion provides a more flexible approach to handle the
noise. We run similar simulations on lonosphere and
Sonar data sets from the UCI repository [15]. To fit the
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Fig. 1. Empirical Testing Error for (a) WBC Data; (b) lonosphere
Data; (c) Sonar Data.

variability of the data, we scale the uncertainty set: for
40% of the features, ¥;; equals 0.3 for lonosphere and
0.01 for Sonar; for the remaining features, X;; equals
0.0003 for lonosphere and 0.00001 for Sonar. Figures 1
(b) and (c) show the respective simulation results. In
Figure (c), the robust and standard SVM solutions
coincide. As with the WBC data set, comprehensive
robust classification achieves its optimal performance
for mid-range «, and is superior to both the standard
SVM and the robust SVM.

The noise resistance ability of the resulting classifiers
is also of interest, especially when the decision maker
is risk-sensitive. This is measured using percentile per-
formance: for each testing sample, we generate 100
independent noise realizations (using the same noise
model as above) and measure the probability (i.e., con-
fidence) that this testing sample is correctly classified.
The percentage of testing samples that achieves each
confidence threshold is reported in Figure 2. Note that
now the vertical axis represents the success rate, not the
error rate. The standard SVM has a good performance
for the 50% threshold, but it degrades significantly
as the threshold increases, indicating a lack of noise-
protection. The robust classifier tends to be overly
conservative. The comprehensive robust classifier with
« appropriately tuned performs well at all thresholds,
especially in the 60% to 80% range, indicating good
noise resistance without being overly conservative.

VII. CONCLUDING REMARKS

Our contribution is the introduction of a more ge-
ometric notion of hedging and controlling complexity
(robust and comprehensive robust classifiers integrally
depend on the uncertainty set and structure of the
discount function) and the link to probabilistic notions
of hedging, including chance constraints and convex
risk constraints. We believe that the design flexibility
of such a framework is the key for better performance
and risk management.
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