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Robust Regression and Lasso

Huan Xu, Constantine Caramanis, Member, IEEE, and Shie Mannor, Senior Member, IEEE

Abstract—Lasso, or (' regularized least squares, has been ex-
plored extensively for its remarkable sparsity properties. In this
paper it is shown that the solution to Lasso, in addition to its spar-
sity, has robustness properties: it is the solution to a robust op-
timization problem. This has two important consequences. First,
robustness provides a connection of the regularizer to a physical
property, namely, protection from noise. This allows a principled
selection of the regularizer, and in particular, generalizations of
Lasso that also yield convex optimization problems are obtained
by considering different uncertainty sets. Second, robustness can
itself be used as an avenue for exploring different properties of
the solution. In particular, it is shown that robustness of the so-
lution explains why the solution is sparse. The analysis as well as
the specific results obtained differ from standard sparsity results,
providing different geometric intuition. Furthermore, it is shown
that the robust optimization formulation is related to kernel den-
sity estimation, and based on this approach, a proof that Lasso is
consistent is given, using robustness directly. Finally, a theorem is
proved which states that sparsity and algorithmic stability contra-
dict each other, and hence Lasso is not stable.

Index Terms—Lasso, regression, regularization, robustness,
sparsity, stability, statistical learning.

I. INTRODUCTION

N this paper we consider linear regression problems with

least-square error. The problem is to find a vector x so that
the /5 norm of the residual b — Ax is minimized, for a given ma-
trix A € R™*" and vector b € R"™. From a learning/regression
perspective, each row of A can be regarded as a training sample,
and the corresponding element of b as the target value of this ob-
served sample. Each column of A corresponds to a feature, and
the objective is to find a set of weights so that the weighted sum
of the feature values approximates the target value.
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It is well known that minimizing the least squared error
can lead to sensitive solutions [1]-[4]. Many regularization
methods have been proposed to decrease this sensitivity.
Among them, Tikhonov regularization [5] and Lasso [6], [7]
are two widely known and cited algorithms. These methods
minimize a weighted sum of the residual norm and a certain
regularization term, ||x||2 for Tikhonov regularization and ||x||,
for Lasso. In addition to providing regularity, Lasso is also
known for the tendency to select sparse solutions. Recently this
has attracted much attention for its ability to reconstruct sparse
solutions when sampling occurs far below the Nyquist rate, and
also for its ability to recover the sparsity pattern exactly with
probability one, asymptotically as the number of observations
increases (there is an extensive literature on this subject, and
we refer the reader to [8]—[12] and references therein).

The first result of this paper is that the solution to Lasso has
robustness properties: it is the solution to a robust optimiza-
tion problem. In itself, this interpretation of Lasso as the solu-
tion to a robust least squares problem is a development in line
with the results of [13]. There, the authors propose an alterna-
tive approach of reducing sensitivity of linear regression by con-
sidering a robust version of the regression problem, i.e., mini-
mizing the worst-case residual for the observations under some
unknown but bounded disturbance. Most of the research in this
area considers either the case where the disturbance is row-wise
uncoupled [14], or the case where the Frobenius norm of the
disturbance matrix is bounded [13].

None of these robust optimization approaches produces a so-
lution that has sparsity properties (in particular, the solution to
Lasso does not solve any of these previously formulated robust
optimization problems). In contrast, we investigate the robust
regression problem where the uncertainty set is defined by fea-
ture-wise constraints. Such a noise model is of interest when
values of features are obtained with some noisy preprocessing
steps, and the magnitudes of such noises are known or bounded.
Another situation of interest is where noise or disturbance across
features is meaningfully coupled. We define coupled and uncou-
pled disturbances and uncertainty sets precisely in Section II-A
below. Intuitively, a disturbance is feature-wise coupled if the
variation or disturbance satisfies joint constraints across fea-
tures, and it is uncoupled otherwise.

Considering the solution to Lasso as the solution of a robust
least squares problem has two important consequences. First,
robustness provides a connection of the regularizer to a phys-
ical property, namely, protection from noise. This allows for
principled selection of the regularizer based on noise properties.
Moreover, by considering different uncertainty sets, we con-
struct generalizations of Lasso that also yield convex optimiza-
tion problems.

Second, and perhaps most significantly, robustness is a strong
property that can itself be used as an avenue for investigating
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different properties of the solution. We show that robustness of
the solution can explain why the solution is sparse. The analysis
as well as the specific results we obtain differ from standard
sparsity results, providing different geometric intuition, and ex-
tending beyond the least-squares setting. Sparsity results ob-
tained for Lasso ultimately depend on the fact that introducing
additional features incurs larger #! -penalty than the least squares
error reduction. In contrast, we exploit the fact that a robust so-
lution is, by definition, the optimal solution under a worst-case
perturbation. Our results show that, essentially, a coefficient of
the solution is nonzero if the corresponding feature is relevant
under all allowable perturbations. In addition to sparsity, we also
use robustness directly to prove consistency of Lasso.

We briefly list the main contributions as well as the organiza-

tion of this paper.

 In Section II, we formulate the robust regression problem
with feature-wise independent disturbances, and show that
this formulation is equivalent to a least-square problem
with a weighted ¢; norm regularization term. Hence, we
provide an interpretation of Lasso from a robustness per-
spective.

e We generalize the robust regression formulation to loss
functions of arbitrary norm in Section III. We also con-
sider uncertainty sets that require disturbances of different
features to satisfy joint conditions. This can be used to mit-
igate the conservativeness of the robust solution and to ob-
tain solutions with additional properties.

e InSection IV, we present new sparsity results for the robust
regression problem with feature-wise independent distur-
bances. This provides a new robustness-based explanation
for the sparsity of Lasso. Our approach gives new analysis
and also geometric intuition, and furthermore allows one
to obtain sparsity results for more general loss functions,
beyond the squared loss.

* We relate Lasso to kernel density estimation in Section V.
This allows us to reprove consistency in a statistical
learning setup, using the new robustness tools and formu-
lation we introduce. Along with our results on sparsity,
this illustrates the power of robustness in explaining and
also exploring different properties of the solution.

* Finally, we prove in Section VI a “no-free-lunch” theorem,
stating that an algorithm that encourages sparsity cannot be
stable.

A. Notation

We use capital letters to represent matrices, and boldface let-
ters to represent column vectors. Row vectors are represented as
the transpose of column vectors. For a vector z, z; denotes its
ith element. Throughout the paper, a; and ro are used to denote
the 4th column and the jth row of the observation matrix A, re-
spectively. We use a;; to denote the 75 element of A, hence it is
the jth element of r;, and sth element of a;. For a convex func-
tion f(-), 9f(z) represents any of its subgradients evaluated at
z. The all-ones vector of length n is denoted by 1,,.

II. ROBUST REGRESSION WITH FEATURE-WISE DISTURBANCE

In this section, we show that our robust regression formula-
tion recovers Lasso as a special case.
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The regression formulation we consider differs from the stan-
dard Lasso formulation, as we minimize the norm of the error,
rather than the squared norm. It can be shown that these two co-
incide up to a change of the regularization coefficient, since the
solution set to either formulation is the Pareto efficient set of the
regression error and the regularization penalty. (We provide the
detailed argument in Appendix A for completeness.)

A. Formulation

Robust linear regression considers the case where the ob-
served matrix is corrupted by some potentially malicious distur-
bance. The objective is to find the optimal solution in the worst
case sense. This is usually formulated as the following min-max
problem

Robust Linear Regression:

Inin {ﬁag;l b —(A+ AA)XIIz} )
where U is called the uncertainty set, or the set of admissible
disturbances of the matrix A. In this section, we consider the
class of uncertainty sets that bound the norm of the disturbance
to each feature, without placing any joint requirements across
feature disturbances. That is, we consider the class of uncer-
tainty sets

ué{(‘sl,/6m)|||st||2SCL/Z:1,,m} (2)
for given ¢; > 0. We call these uncertainty sets feature-wise
uncoupled, in contrast to coupled uncertainty sets that re-
quire disturbances of different features to satisfy some joint
constraints (we discuss these extensively below, and their
significance). While the inner maximization problem of (1)
is nonconvex, we show in the next theorem that uncoupled
norm-bounded uncertainty sets lead to an easily solvable opti-
mization problem.

Theorem 1: The robust regression problem (1) with uncer-
tainty set of the form (2) is equivalent to the following ¢! regu-
larized regression problem:

min
X e R m

b — Ax|ls + > cilzil p - 3)

1=1

Proof: Fix x*. We prove that maxaacy ||b — (A +
AA)x*|l2= [[b — Ax* |2 + 321, cilf].
The left-hand side (LHS) can be written as
b — (A+ AA)x*||

max
AAeU

= max

b—(A+ (64,..., 6,,)) x*
G I = (A (B 8 )) X7

= b — Ax* —Zlf&”z
i=1

max
(61,-.,6m)[[16:]]2<c:

< max
(81,-.,6m)|116:][2<c;

b — Ax*[ly + > lla}8ill2

1=1

< b= Ax*|la + ) |2} ei- )

i=1
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Now, let
us { Tb=AxT if Ax” # b,
any vector with unit 2 norm otherwise;
and let
5 & ] —cisgn(a)u if 27 # 0
‘ —cu otherwise.

Observe that [|8% |2 = c;, hence, AA* 2 (8%,...,6%) € U.
Notice that

max ||b — (A + AA)X™||,
AAeU
2 ||b— (A+AA")x2
b —(A+(87,...,6,))x"[l,

—[b—ax) = I (—atesgn(au)

i} #0 9
= ||(b — Ax™) + <Z ¢ |a:f|) u
=1 2
=b—Ax*|l, + > cila]l. 5)
=1
The last equation holds from the definition of u.
Combining (4) and (5) establishes the equality

maxa e [Ib = (A + AA)x o= [[b— Ax[lo + S0 ¢l
for any x*. Minimizing over x on both sides proves the
theorem. Note that the theorem remains valid if we replace U
by its boundary set { (81, ...,8m)|||6i|l2 =ci, i=1,...,m}.
|

Taking ¢; = ¢ and normalizing a; for all 7, Problem (3) re-
covers the well-known Lasso [6], [7].

In many setups of interest, the noise 8; is random with a
known distribution and possibly an unbounded support. Thus,
a robust regression formulation that allows all admissible A A
can be too pessimistic or even meaningless. One remedy is to
replace the deterministic guarantee by a probabilistic one, i.e.,
to find a parameter ¢; such that ||6;]]2 < ¢; holds with a given
confidence 1 — 7. This can be achieved via line search and bi-
section, provided that we can evaluate Pr(||6;||2 > ¢). Note that
the distribution of é; is known, thus we can evaluate this proba-
bility via Monte Carlo sampling.

Another setting of interest is when we have access only to
the mean and variance of the distribution of the uncertainty
(e.g., [15]-[17]). In this setting, the uncertainty sets are con-
structed via a bisection procedure which evaluates the worst-
case probability over all distributions with given mean and vari-
ance. Furthermore, this worst-case probability can be evaluated
by solving a Semi-Definite Program. We elaborate the detailed
uncertainty set construction for both settings in [18]; see also
[19].

III. GENERAL UNCERTAINTY SETS

One reason the robust optimization formulation is powerful is
its flexibility: having provided the connection to Lasso, it then
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allows the opportunity to generalize to efficient “Lasso-like”
regularization algorithms.

In this section, we make several generalizations of the robust
formulation (1) and derive counterparts of Theorem 1. We gen-
eralize the robust formulation in two ways: (a) to the case of
arbitrary norm; and (b) to the case of coupled uncertainty sets.

We first consider the case of an arbitrary norm || - ||, in R™
as a cost function rather than the squared loss. The proof of the
next theorem is identical to that of Theorem 1, with only the 2
norm changed to || - ||,

Theorem 2: The robust regression problem

min { max ||b—(A+ AA)XH(L} ;
x€R™ | AAEU,
where

Us £ {1 80| [Billu <o i=1.....m)

is equivalent to the following regularized regression problem:

i b — Ax||, il p
xrgﬂgg{ll x| +26|x|}

i=1

We next remove the assumption that the disturbances are
feature-wise uncoupled. Allowing coupled uncertainty sets
is useful when we have some additional information about
potential noise in the problem, and we want to limit the
conservativeness of the worst-case formulation. Consider the
following uncertainty set:

U E {61 8 fi(l81las - 1Bimlla) < O;

where f;(-) are convex functions. Notice that, both k& and f;
can be arbitrary, hence, this is a very general formulation, and
provides us with significant flexibility in designing uncertainty
sets and equivalently new regression algorithms (see for ex-
ample Corollaries 1 and 2). The following theorem shows that
this robust formulation is equivalent to a more general regular-
ization-type problem, and thus converts this formulation to a
tractable optimization problem. The proof is postponed to the
Appendix.

Theorem 3: Assume that the set
Z2{zeR™|f;(z)<0,j=1,...,k z >0}

has nonempty relative interior. Then the robust regression
problem

min { max ||b— (4+ AA)XHa}

xeR™ | Adeu
is equivalent to the following regularized regression problem:

i b — Ax||, ALK, ;
ACRL o < {li x[la + v(A K, %)}
k
A
where: (A, K, x) = nax (k+|x))Tec— Z Ajfi(e)] 6)

i=1
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Remark: Problem (6) is efficiently solvable. Denote
(A kK,x) 2 [(H x)Te -k, Ajfj(c)] This is a
convex function of (A, k,x), and the subgradient of 2°(-) can
be computed easily for any c. The function v(\, K, x) is the
maximum of a set of convex functions, z¢(+), hence is convex,
and satisfies

du (A", K%, x") = 92° (X", K", x")

where ¢y maximizes |(k* + [x|*)Tc — 25:1 )\;'ffj(c)] We
can efficiently evaluate co due to convexity of f;(-), and hence
we can efficiently evaluate the subgradient of v(-).

The next two corollaries are a direct application of Theorem
3.

Corollary 1: Suppose
U ={(6,...

for a symmetric norm || - ||s. Then the resulting regularized re-
gression problem is

min {|[b — Ax]|o + I[|x|[T}

xER™

where || - ||% is the dual norm of || - ||5.

This corollary interprets arbitrary norm-based regularizers
from a robust regression perspective. For example, it is straight-
forward to show that if we take both || - ||, and || - ||s as the
Euclidean norm, then U’ is the set of matrices with bounded
Frobenius norm, and Corollary 1 reduces to the robust formula-
tion introduced in [13].

Corollary 2: Suppose

U ={(81,...,6,)| Tc <s; where: ¢c; = ||6;]|a}

for a given matrix 7" and a vector s. Then the resulting regular-
ized regression problem is the following optimization problem
on x and A:

Minimize: ||b — Ax]|[, +s' A
Subject to: x < TTX;
—x<T"X;
A>0.

Unlike previous results, this corollary considers general poly-
tope uncertainty sets, i.e., the column-wise norm vector of the
realizable uncertainty belongs to the polytope {T'c < s}. Ad-
vantages of such sets include the linearity of the final formu-
lation. Moreover, the modeling power is considerable, as many
interesting disturbances can be modeled in this way.

To further illustrate the power and flexibility of the robust op-
timization formulation, we provide in [18] other examples that
are based on the robust regression formulation with different
uncertainty sets that lead to tractable (i.e., convex) optimization
problems. One notable example is the case where the pertur-
bation of the matrix A can be decomposed as a column-wise
uncoupled noise and a row-wise uncoupled noise. The resulting
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formulation resembles the elastic-net formulation [20], where
there is a combination of #? and ¢! regularization. We refer the
reader to [18] for the full details.

IV. SPARSITY

In this section, we investigate the sparsity properties of ro-
bust regression (1), and equivalently Lasso. Lasso’s ability to
recover sparse solutions has been extensively studied and dis-
cussed (cf [8]-[11]). There have been primarily two approaches
to studying Lasso. The first approach investigates the problem
from a statistical perspective. That is, it assumes that the ob-
servations are generated by a (sparse) linear combination of the
features, and investigates the asymptotic or probabilistic con-
ditions required for Lasso to correctly recover the generative
model. The second approach treats the problem from an opti-
mization perspective, and studies the conditions under which a
pair (A, b) defines a problem with sparse solutions (e.g., [21]).

We follow the second approach and do not assume a gener-
ative model. Instead, we consider the conditions that lead to a
feature receiving zero weight. Our first result paves the way for
the remainder of this section. We show in Theorem 4 that, es-
sentially, a feature receives no weight (namely, x; = 0) if there
exists an allowable perturbation of that feature which makes it
irrelevant. This result holds for general norm loss functions, but
in the #2 case, we obtain further geometric results. For instance,
using Theorem 4, we show, among other results, that “nearly”
orthogonal features get zero weight (Theorem 5). Using sim-
ilar tools, we provide additional results in [18]. There, we show,
among other results, that the sparsity pattern of any optimal
solution must satisfy certain angular separation conditions be-
tween the residual and the relevant features, and that “nearly”
linearly dependent features get zero weight.

Substantial research regarding sparsity properties of Lasso
can be found in the literature (cf [8]-[11], [22]-[26], and many
others). In particular, results that rely on an incoherence prop-
erty have been established in, e.g., [21], and are used as standard
tools in investigating sparsity of Lasso from the statistical per-
spective. However, a proof exploiting robustness and properties
of the uncertainty is novel. Indeed, such a proof shows a funda-
mental connection between robustness and sparsity, and implies
that robustifying with respect to a feature-wise independent un-
certainty set might be a plausible way to achieve sparsity for
other problems.

To state the main theorem of this section, from which the
other results derive, we introduce some notation to facilitate the
discussion. Given an index subset I C {1,...,n}, and a ma-
trix A A, let AAT denote the restriction of A A on feature set /,
i.e., AAT equals A A on each feature indexed by i € I, and is
zero elsewhere. Similarly, given a feature-wise uncoupled un-
certainty set U/, let U I be the restriction of I/ to the feature set I,
ie, U’ 2 {AAT|AA € U}. Observe that any element AA € U
can be written as AA’ + AA™ (here I° 2 {1,...,n}\ I) such
that AAT € U” and AAT e UT".

Theorem 4: The robust regression problem

min { s 10— (4 A @
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has a solution supported on an index set / if there exists some
perturbation AA € U!°, such that the robust regression problem

min { max ||b— (A + AA+ AA)X||2} (8)
x€R™ | AAel!

has a solution supported on the set I.

Thus, a robust regression has a solution supported on a set I,
if we can find one (bounded) perturbation of the features corre-
sponding to /¢ that makes them irrelevant (i.e., not contributing
to the regression error and hence with zero weight). An alterna-
tive interpretation is that if a certain matrix (A+A A" in the the-
orem) is sparse under a more strict condition (note that /! favors
non-zero weight on I¢), then all its “neighboring” matrices are
sparse under an “easier” condition. This leads to a novel tech-
nique of proving sparsity, by identifying a “neighboring” matrix
that generates sparse solutions under a strict condition. Theorem
4 is indeed a special case of the following theorem with ¢; = 0
for all j ¢ I. The detailed proof is provided in Appendix C.

Theorem 4’: Let x* be an optimal solution of the robust re-
gression problem

e {pglo-(+2amk) O

andlet I C {1,...,m} besuchthatz} =0V j ¢ I Let

U2 (B, 8l I8ill2 < civ i € I8l < ¢ + 1.
J&1.}
Then, x* is an optimal solution of
min { max ||b — (A + AA)X||2} (10)
xeR™ (AAet

for any A that satisfies ||a; — a;|| < I, for j ¢ I, and &; = a;
fori € 1.

Proof: Notice that
b—(A+ AA)x*
max [|b — (A +AA4)x7,

— max [[b— (A+ AAX,
AAeU

= max
AA€el

Hb — (A+ AA)x*
2

These equalities hold because for j € I, 7 = 0, hence the jth
columns of both A and A A have no effect on the residual.
For an arbitrary x’, we have

max |[b — (4 + AA)X'||, < max Hb —(A+AAX
AAEU AAEU 2

This is because ||a; —a;|| < I;forj ¢ I,anda; = a; fori € I.
Hence, we have

(A+AA|AA €U} C {A+AA‘AAEL?}.
Finally, note that

- I, < - 1, -
max [[b— (A +AA)[|, € max [Ib— (4 + A4,

3565

Therefore, we have

max

q < max
AAeU

Hb B (A + AA)X*H2 AAeU

Hb — (A+aax|

Since this holds for arbitrary x’, we establish the theorem. ®

A closer examination of the proof shows that we can replace
the /2 norm loss by any loss function f(-) which satisfies the
condition that if z; = 0, A and A’ only differ in the j" column,
then f(b, A,x) = f(b, A’,x). This theorem thus suggests a
methodology for constructing sparse algorithms by solving a
robust optimization with respect to column-wise uncoupled un-
certainty sets.

When we consider #2 loss, we can translate the condition of
a feature being “irrelevant” into a geometric condition, namely,
orthogonality. We now use the result of Theorem 4 to show that
robust regression has a sparse solution as long as an incoher-
ence-type property is satisfied. This result is more in line with
the traditional sparsity results, but we note that the geometric
reasoning is different, and ours is based on robustness. Indeed,
we show that a feature receives zero weight, if itis “nearly” (i.e.,
within an allowable perturbation) orthogonal to the signal, and
all relevant features.

Theorem 5: Let ¢; = c for all 4 and consider £ loss. Sup-
pose that there exists I C {1,...,m} such that for all v €
span ({a;,i € I} J{b}),|lvll = 1, wehave v'a; < ¢, Vj &
1. Then there exists an optimal solution x* that satisfies x;" =0,
Vi & I

Proof: For j ¢ I, letaj denote the projection of a; onto
the span of {a;, i € I'}|J{b}, and let a]'-" £a;— a; . Thus, we
have [|a} || < c. Let A be such that

A a; iEI;
& = a;" 1 & 1.
Now let
UE{(b1,....6m)|I6ill2<c,i€l|6ll=0,¢I}.

Consider the robust regression problem

Hb — (A+AA)%

3

+ D ier c|:fsz|} Note
2
that the &; are orthogonal to the span of {&;, ¢ € I}|J{b}.
Hence for any given X, by changing % to zero forall j ¢ I, the
minimizing objective does not increase.

min { max
x aded

which is equivalent to ming {Hb — Ax

Since ||a; — a;|| = |laj|| < ¢V j & [, (and recall that
U = {(b1,...,6,)|6:ll2 < ¢, ¥V i}) applying Theorem 4 °
concludes the proof. [ |
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To better understand the results of this section, we can
consider a generative modelld = >, crWia; + é where
I C {1...,m} and é is a random noise variable, i.e., b is
generated by features belonging to /. If we further assume that
the value of irrelevant features (i.e., features ¢ I) are generated
according to some zero-mean random rule (say Gaussian noise),
it follows that as the number of samples increases the irrelevant
features will be nearly orthogonal to the subspace spanned by
the relevant features and b with high probability. Consequently,
the irrelevant features will be assigned zero weight by Lasso.

V. DENSITY ESTIMATION AND CONSISTENCY

In this section, we investigate the robust linear regression for-
mulation from a statistical perspective and re-derive using only
robustness properties that Lasso is asymptotically consistent.
The basic idea of the consistency proof is as follows. We show
that the robust optimization formulation can be seen to be the
maximum error with respect to a class of probability measures.
This class includes a kernel density estimator, and using this, we
show that Lasso is consistent.

A. Robust Optimization, Worst-Case Expected Utility and
Kernel Density Estimator

In this subsection, we present some notions and intermediate
results. In particular, we link a robust optimization formulation
with a worst case expected utility (with respect to a class of prob-
ability measures). Such results will be used in establishing the
consistency of Lasso, as well as providing some additional in-
sights on robust optimization. Proofs are postponed to the ap-
pendix. Throughout this section, we use P to represent the set
of all probability measures (on Borel o-algebra) of R™+1,

We first establish a general result on the equivalence between
a robust optimization formulation and a worst-case expected
utility:

Proposition 1: Given a function f : R™*! — R and Borel
sets Zq,. .., Z, CR™*L et

’ ’

'pné{M€P|V5’g{l,...7n}:u(uzi> ZISI/n}-

i€s
The following holds:

n

1
LSS sup fribi) = sup
n i=1 (“an)eza

[ s bduteb)
HEPn JRm+1

This leads to the following corollary for Lasso, which states
that for a given x, the robust regression loss over the training
data is equal to the worst-case expected generalization error.

Corollary 3: Givenb € R", A € R™*™, the following equa-
tion holds for any x € R™

Ib — Ax[ls + Vaea||xl + Ve
= sup

\/n/ (0 — ' Tx)2du(c’,b"). (11)
neP(n) JRm+

'While we are not assuming generative models to establish the results, it is
still interesting to see how these results can help in a generative model setup.
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Here2
P(n) £ U Pu(A,A,b,0);
H””QS\/ECH? v i:‘lai”QS\/ﬁcn
7D’n (A/ A"/ b7 0)

2{p € P|Z; = [b; — 05,b; + 7}

m
X H[aij — 6@', gy + 61‘]'];
j=1

vsg{l,...,n}:u<u zz-) > |S]/n}.

i€S

Remark 1: Tt is worth providing some further explanation of
the meaning of Corollary 3. Equation (11) is nonprobabilistic.
That is, it holds without any assumption (e.g., i.i.d., or gener-
ated by certain distributions) on b and A, and it does not in-
volve any probabilistic operation such as taking expectation on
the LHS. Instead, it is an equivalence relationship that holds for
an arbitrary set of samples. Note that the right-hand side (RHS)
also depends on the samples since 75(71) is defined through A
and b. Indeed, ’ﬁ(n) represents the union of classes of distri-
butions P,,(A, A, b, ) such that the norm of each column of
A is bounded, where P, (A4, A, b, ) is the set of distributions
corresponding to (see Proposition 1) disturbance in hyper-rec-
tangle Borel sets 21, ..., Z, centered at (b;,r; ) with lengths
(ZJi, 261‘1, ey 261m)

The proof of consistency relies on showing that this set P,
of distributions contains a kernel density estimator. Recall the
basic definition: The kernel density estimator for a density A in
R?, originally proposed in [27] and [28], is defined by

ha(%) = (nel) ™ 2:;[( (x ;x>

where {c, } is a sequence of positive numbers, X; are i.i.d. sam-
ples generated according to h, and K is a Borel measurable
function (kernel) satisfying K > 0, f K = 1. See [29], [30]
and references therein for detailed discussions. Fig. 1 illustrates
a kernel density estimator using a Gaussian kernel for a ran-
domly generated sample-set. A celebrated property of a kernel
density estimator is that it converges in £! to h when ¢, | Oand
nc;ll T oo [29].

B. Consistency of Lasso

We restrict our discussion to the case where the magnitude
of the allowable uncertainty for all features equals c, (i.e., the
standard Lasso) and establish the statistical consistency of Lasso
from a distributional robustness argument. Generalization to the
nonuniform case is straightforward. Throughout, we use ¢,, to
represent ¢ where there are n samples (we take ¢,, to zero as n
grows).

2Recall that a;; is the jth element of r;
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kernel function
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Fig. 1. Illustration of Kernel Density Estimation.

Recall the standard generative model in statistical learning:
let P be a probability measure with bounded support that gen-
erates i.i.d. samples (b;, r;), and has a density f*(-). Denote the
set of the first n samples by S,,. Define

. I
x(cn,Sn)—argm;n ﬁ;(b -1/ x)2 + culz|1
- S (b~ 0% + cullals
i=1
x(P) £ arg min {\// (b —rTx)2dP(b, r)} .
x Jb,r

In words, x(¢p,S,,) is the solution to Lasso with the tradeoff
parameter set to ¢, \/n, and x(P) is the “true” optimal solution.
We have the following consistency result. The theorem itself is a
well-known result. However, the proof technique is novel. This
technique is of interest because the standard techniques to estab-
lish consistency in statistical learning including Vapnik-Cher-
vonenkis (VC) dimension (e.g., [31]) and algorithmic stability
(e.g., [32]) often work for a limited range of algorithms. For
instance, the k-Nearest Neighbor is known to have infinite VC
dimension, and we show in Section VI that Lasso is not stable.
In contrast, a much wider range of algorithms have robustness
interpretations, allowing a unified approach to prove their con-
sistency. For example, it is shown in [33] that Support Vector
Machines have a similar robust optimization interpretation, and
one can prove consistency of SVMs from this robustness per-
spective.

Theorem 6: Let {c,} be such that ¢, |
lim,, 00 n(cp )™+
such that ||x(c,

0 and
= oo. Suppose there exists a constant H
Sn)ll2 < H for all n. Then

lim \// (b—rTx(c,,S,))2dP(b,r)
n—oo br

_ \//b (b— rTx(P))2dP(b, r)

almost surely.

Proof:
Step 1: We show that the RHS of (11) includes a kernel den-
sity estimator for the true (unknown) distribution.
Consider the following kernel estimator given sam-
ples S,, = (b;,r;)"_; and tradeoff parameter c¢,,:

falb,x) & (nep ) ZK(_ )

where: K(z) = Ij_y 4ipm+1(2)/2" T (12)
Let fi,, denote the distribution given by the density
function f, (b, r). Itis easy to check that /i,, belongs
to Pn(A, (cnln,...,cnly), b,cy1l,) and hence it
belongs to P(n) by definition.

Step 2: Usingthe £! convergence property of the kernel den-
sity estimator, we prove the consistency of robust re-
gression and equivalently Lasso.

First note that the fact that ||x(c,,Sp)||2 < H and P has a
bounded support, implies that there exists a universal constant
C such that
(b—r"x(cn,Sn))? < C.

max
(b,r)ESupport(P)

By Corollary 3 and since fi,, € P(n), we have

\/b (b —r"x(cn,Sn))?dfin(b,r)

\//b (b—rTx(cp, Sn))2du(b,r)

- \ Z(b,: =1/ X(en, Sn))? + eallx(cn,

i=1

sup
HEP(N

Sn)”l + cn

n

\ > (b =17 x(P))? + col X(P) |1 + cn

=1

e

where the last inequality holds by definition of x(¢;,, Sp).
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Taking the square of both sides, we have

/l; (b—r"x(cn,Sn))?dfin (b, r)

n

< 237 = T x(P))? + (1 + [x(P)]1)?

n -
=1

n

Zb—rx ))2.

=1

:I'—‘

+2¢,(1+ [x(P

Note that the RHS converges to [, (b —r'x(P))?dP(b,r) as
n 1 oo and ¢, | 0 almost surely. Furthermore, we have

/b (b= T x(cn, S0))2dP (b, )
—r'"x(c,. 2dji r
< /M(b (¢ Su))2djin (b, )

+ [max(b —r'x(c,,Sp))?

,r

x / o) = £l
< / (b= r"x(e. 5,)) i b.7)

|fn(b,r) —

Jb,r

f*(b,r)d(b,r),

where the last inequality follows from the definition of C'. No-
tice that fb |fn(b,r) — f*(b,r)|d(b,r) goes to zero almost
surely when ¢, | 0 and nc™* 1 oo since f,(-) is a kernel
density estimator of f*(-) (see e.g.,[29, Theorem 3.1]). Hence
the theorem follows. [ |

We can remove the assumption that ||x(c,, Sy, )||2 < H, and
as in Theorem 6, the proof technique rather than the result itself
is of interest.

Theorem 7: Let {c,} converge to zero sufficiently slowly.
Then

lim. \//b (b= rTx(cn, S, ))dP(b, ¥)

= \/ i (b —rTx(P))2dP(b,r)

almost surely.

Proof: To prove the theorem, we need to consider a set
of distributions belonging to P(n). Hence we establish the fol-
lowing lemma first.

Lemma 1: Partition the support of P as Vi, ..., Vp such the
£° radius of each set is less than c,,. If a distribution p satisfies

p(Ve) = [{il (b, i) € Vi}| /ms

then 11 € P(n).

t=1,...,T  (13)
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Proof: Let Z; = [bi—cy, bi+cn] XHTzl [@ij—Cn,aij+cnl;
recall that a,; the jth element of r;. Notice V; has £°° norm less
than ¢,, we have

(bi,r; € Vi) =V, C Z;.

Therefore, for any S C {1,...,n}, the following holds:
n (U z) ZM(UVtEi €S:byr; € 14)
i€s

t|3i€Sb; r;i€V;

>

t|3i€Sb; r;€V;

1(Ve)
# ((birri) € Vi) /n > |S|/n.

Hence ;1 € Pn(A,A,b,cn) where each element of A is ¢y,
which leads to € P(n). [

Now we proceed to prove the theorem. Partition the support
of P into T subsets such that the /> radius of each one is
smaller than c,,. Let P(n) denote the set of probability mea-
sures satisfying (13). Hence P(n) C P(n) by Lemma 1. Fur-
ther notice that there exists a universal constant K such that
Ix(cn,Sn)ll2 < K/epn due to the fact that the square loss of
the solution x = 0 is bounded by a constant which only de-
pends on the support of P. Thus, there exists a constant C' such
that maxy (b — v x(cpn, Sn))? < C/c2.

Following a similar argument as the proof of Theorem 6, we
have

/ (b= £Tx(cn, S0))2dpin (b, )

sup
.une’ﬁ(n) b
1 n
< =3 = T x(P))? + 1+ x(P)1)?
=1
+2en(LF [x(P)) | = D206~ 1] x(P))? (14)
=1

and (see equation at the bottom of the next page) where
fu stands for the density function of a measure . Notice
that P, is the set of distributions satisfying (13), hence
inf , cpin) fb,r |fur (b,r) — f(b,r)|d(b,r) is upper-bounded
by Zthl |P(Vi) — #(bs, i € Vi)|/n, which goes to zero as n
increases for any fixed ¢,, (see, for example, [34, Prop. A6.6]).

Therefore
in { | 1t (b7r)—f(b,r)|d(b7r)}—>0
woePm) Lpr "

if ¢, | O sufficiently slowly. Combining this with (14) proves
the theorem. ]

20/

VI. STABILITY

Knowing that the robust regression problem (1) and in partic-
ular Lasso encourage sparsity, it is of interest to investigate an-
other desirable characteristic of a learning algorithm, namely,
stability. We show in this section that Lasso is not stable. In-
deed, this is a special case of the main result of [35], where we
show that a learning algorithm that possesses certain sparsity
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properties cannot be stable. While we elaborate the Lasso case
in this section for completeness, we refer the readers to [35] for
the more general case.

Before giving formal definitions, we briefly comment on the
difference between the notions of robustness and stability. In
this paper, “robustness” stands for the property of an algorithm
such that its output regression function, if tested on a sample set
“similar” to the training set, will have a testing error close to the
training error. Therefore, a robust-optimization based learning
algorithm (e.g., Lasso) is inherently robust since it essentially
minimizes an upper bound of testing-errors on sample sets that
are “similar” to the training set. In contrast, “stability,” as we de-
fine formally below, refers to the property of an algorithm that
if trained on “slightly different” sample sets, it will have “sim-
ilar” output functions. Therefore, in principle, an algorithm can
be robust but non-stable, because while it can output two signif-
icantly different regression functions given two similar sample
sets, the error if tested on the other set need not be much higher.
This section shows that Lasso falls into precisely this category.

Now we recall the definition of uniform stability [32] first.
At a high level, an algorithm is stable if the output function
does not have a heavy dependence on any one given training
sample, i.e., the output function changes only slightly if any one
training sample is removed. To be more specific, we let Z de-
note the space of (labeled) samples (typically this will be a com-
pact subset of R™*+1) so that S € Z™ denotes a collection of n
labeled training points. We let L denote a learning algorithm,
and for S € Z", we let Lg denote the output of the learning
algorithm (i.e., the regression function it has learned from the
training data). Then given a loss function /, and a labeled point
s = (z,b) € Z,weletl(Lg, s) denote the loss of the algorithm
that has been trained on the set S, on the data point s. Thus for
squared loss, we would have I(Lg, s) = ||Ls(z) — bl|2.

Definition 1: An algorithm L has a uniform stability bound
of f3,, with respect to the loss function [ if the following holds:

VSe Zn,vl € {17 .- 7”}7 ”l(“—& ) - l(l]—S\i7 )HOO < /HTL

Here L g\: stands for the learned solution with the +th sample
removed from S.
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The notion of uniform stability is of interest because it im-
plies tight (in terms of rates) generalization bounds if the sta-
bility scales as fast as o(ﬁ) (see [32]). It is also shown in [32]
that many learning algorithms have reasonable stability. For ex-
ample, Tikhonov-regularized regression (i.e., £ regularization)
has stability that scales as 1/n.

In contrast, in this section we show that not only is the sta-
bility (in the sense defined above) of Lasso much worse than
the stability of #2-regularized regression, but in fact Lasso’s sta-
bility is, in a precise sense, as bad as it gets. To this end, we de-
fine the notion of the trivial bound as the worst possible error a
training algorithm can have, given an arbitrary training set and
testing sample labeled by zero.

Definition 2: Given aloss function {(-, -), a subset from which
we can draw m labeled points, Z C R™*(m+1) and a subset for
one unlabeled point, ¥ C R™, a trivial bound for a learning
algorithm L with respect to Z and X is

max [ (Ls,(z,0)).

b(L, 2, X) = SEZ,2EX

Note that the trivial bound does not diminish as the number
of samples increases, since by repeatedly choosing the worst
sample, the algorithm will yield the same solution.

Now we show that the uniform stability bound of Lasso can
be no better than its trivial bound with the number of features
halved. The proof is constructive: we provide an example (re-
call the uniform requirement in Definition 1) where by adding
or removing one training sample, Lasso will output significantly
different regression functions. At a high level, the instability of
Lasso is due to the fact that its minimizing objective is non-
smooth, and thus (in some sense) ill-defined.

Theorem 8: Let Z C R*(2m+1) pe the domain of the sample
set and X C R>™ be the domain of the new observation, such
that

(b,A) € Z=(b,A,A) € Z,
(z')eX=(z",2")eX.

Then the uniform stability bound of Lasso is lower bounded by
b(Lasso, Z, X).

/ (b—r"x(cn,Sn))%dP(b, 1)
Jbr

< inf {/br(b_ r'x(¢n,Sn))?dpn (b, r)

pn €P(n)

+ nl}ax(b —r'x(cn, Sy
,r

< sup
pn €P(n)

+2C/c%  inf
" €P(n)

Hay

D2 [ 1 06) = S0l r>}

/b (b—r1"x(cn,8n))2dpin (b, 1)

{[ - 000
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Proof: Let (b*, A*) and (0,z* ") be the sample set and the
new observation such that they jointly achieve b(Lasso, Z, X),
and let x* be the optimal solution to Lasso with respect to
(b*, A*). Consider the following sample set:

b* A* A*
( 0 OT Z*T> -
Observe that (x*7,07) T is an optimal solution of Lasso with
respect to this sample set. Now remove the last sample from the
sample set. Notice that (07, x*T)T is an optimal solution for
this new sample set. Using the last sample as a testing obser-
vation, the solution with respect to the full sample set has zero

cost, while the solution of the leave-one-out sample set has a
cost b(Lasso, Z, X'). And, hence, we prove the theorem. []

We note that the example in the proof would not work for
£? regularization, simply because #2 regularization spreads the
weight between identical features to achieve a strictly smaller
regularization penalty, i.e., (x*/2,x*/2) is a better solution than
both (x*,0) and (0,x*). Indeed, in [35] we show that it is the
ability to identify redundant features (i.e., select only one be-
tween identical features) that leads to instability of Lasso and
many other sparse algorithms.

VII. CONCLUSION

In this paper, we consider robust regression with a
least-square-error loss. In contrast to previous work on ro-
bust regression, we considered the case where the perturbations
of the observations are in the features. We show that this
formulation is equivalent to a weighted ¢! norm regularized
regression problem if no correlation of disturbances among dif-
ferent features is allowed, and hence provide an interpretation
of the widely used Lasso algorithm from a robustness perspec-
tive. We also formulated tractable robust regression problems
for disturbance coupled among different features and hence
generalize Lasso to a wider class of regularization schemes.

The sparsity and consistency of Lasso are also investigated
based on its robustness interpretation. In particular we present
a “no-free-lunch” theorem saying that sparsity and algorithmic
stability contradict each other. This result shows, although
sparsity and algorithmic stability are both regarded as desirable
properties of regression algorithms, it is not possible to achieve
them simultaneously, and we have to trade off these two prop-
erties in designing a regression algorithm.

The main thrust of this work is to treat the widely used regu-
larized regression scheme from a robust optimization perspec-
tive, and extend the result of [13] (i.e., Tikhonov regulariza-
tion is equivalent to a robust formulation for Frobenius norm
bounded disturbance set) to a broader range of disturbance sets
and hence regularization schemes. This not only provides us
with new insights on why regularization schemes work, but also
offers a solid motivation for selecting a regularization parameter
for existing regularization schemes, and facilitate the design of
new regularization schemes.
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APPENDIX A
EQUIVALENCE OF TWO FORMULATIONS

In this appendix we show that the following two formulations:
min ||b — Ax||s 4 c1]|x[|1; and min ||b — Ax||3 + ca|x]|1.

are equivalent up to a change of tradeoff parameters c¢; and c,.
We first define the concept of weak efficiency.

Definition 3: Given two functions f(-) : R™ — R and
g() : R™ — R, x* € R™ is weakly efficient if at least one of
the following three conditions holds:

1) x* € arg maxxepm f(X);
2) x* € arg maxxerm g(X);
3) x* is Pareto efficient. That is, there exists no x’ such that

f(x') < f(x) and g(x') < g(x) with at least one strict

inequality holds.

Indeed, a standard result in convex analysis states that the
set of optimal solutions for the weighted sum of two convex
functions coincides with the set of weakly efficient solutions.

Lemma 2: If f(x) and g(x) are both convex, then the so-
lution set of

min A1 f(x) + A2g(x)

where A\; and A, range over [0, +00) and cannot be zero simul-
taneously, is the set of weakly efficient solutions.

Proof: Observe that if x* is an optimal solution for
some nonzero A; and Ap, then it must be Pareto effi-
cient. If x* is an optimal solution for A\; = 0, then
x* € argmaxxegm g(x). If x* is an optimal solution for
A2 = 0, then x* € argmaxxerm f(x). Thus, an optimal
solution must be weakly efficient.

If x* belongs to arg max f(x), then it is optimal with respect
to Ao = 0. Similarly for arg max g(x). Now suppose that x*
is Pareto efficient. Since f(-) and g(-) are convex functions,
we have the following set 7 £ {(a,b)|3x € R™ : f(x) <
a; &g(x) < b} is a convex set and observe that all Pareto effi-
cient solutions are on the boundary. Given an arbitrary point x*
on the boundary, it follows from the supporting hyperplane the-
orem there exists a line (note that the set 7 is in 2-d space) that
passes the x* and is lower-left to 7 (note that 7 is unbounded
up and right). In another word, there exists A1, Ao both nonneg-
ative such that x* minimizes A1 f(x) + A2g(x). Combining the
three conditions, we conclude that a weakly efficient solution is
optimal to some tradeoff parameters. ]

Thus, we have that the set of optimal solutions to miny ||b —
Ax|l2 + c1]|x||1 where ¢; ranges over [0,+00] is the set of
weakly efficient solutions of ||b — Ax||2 and ||x||;. Similarly,
the set of optimal solutions to miny ||b — Ax||3 + co||x||; where
¢o ranges over [0, +00] is the set of weakly efficient solutions of
|Ib— Ax||3 and ||x||;. Further note that these two sets of weakly
efficient solutions are identical, due to the fact that taking square
of non-negative value is monotonic. We therefore conclude that
these two formulations are identical up to change of the tradeoff
parameters.
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APPENDIX B
PROOF OF THEOREM 3

Theorem 3: Assume that the set

Z2{zeR"|f;(z) <0,j=1,...,k z>0}

has non-empty relative interior. Then the robust regression
problem

min { max ||b —
xeR™ | AAeU

(A+ AA)x||a}
is equivalent to the following regularized regression problem:

min

{lIb = Ax|la + v(A, £, %)} ;
AeRf‘F,neRj;,xGRm

k
where: v(A, K, x) 2 nax (k+[x])Tc— Z; Ajfi(c)
J:

Proof: Fix a solution x*. Notice that

:{(817'-'7

Hence we have:

b)lc € Z; I6illa = iy i=1,...,m}.

(A+ AA)X||a

max b=
AAe

max max
ceZ | ||6illa=cii=1,....,m

m
s { o= a1+ Skl

=1
Ib — Ax"[|o + max {|x*[Tc} .

5)

The second equation follows from Theorem 2.

Now we need to evaluate max.cz{|x*|Tc}, which equals
to — mineez{—|x*|"c}. Hence, we are minimizing a linear
function over a set of convex constraints. Furthermore, by as-
sumption the Slater’s condition holds. Hence, the duality gap of
minge z {—|x*| Tc} is zero. A standard duality analysis shows
that

min
k
,\GIRJr ,K.GIF\RI

Igleazx{|x*|Tc} = v(A, K, xX"). (16)

We establish the theorem by substituting (16) back into (15) and
taking minimum over x on both sides. [ |

APPENDIX C
PROOF OF THEOREM 4

Theorem 4: The robust regression problem

min {max IIb — 17)

xeER™ | AAeU (A + AA)X||2}
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has a solution supported on an index set [ if there exists some
perturbation AA € U!°, such that the robust regression problem

min { max ||b — (A—I—AA-}-AA)XHz} (18)
xeR™ | adeur

has a solution supported on the set I.

Proof: We show that Theorem 4 is a special case of The-
orem 4’. To see this, we map the notations of Theorem 4 to the
notations of Theorem 4’. To avoid conflict of notations, we use
> for the notations in Theorem 4’. For example A’ is the matrix
A in Theorem 4’. Given b, A, i and I, we do the following
conversion:

cii=cViel; I i=cj,c;:=0,Yjel
A=A A .=A+AA; b’ = b.

Thus we have

U={(b1,....6)|I6ill2 < i, V I}
= {(81,....6)|I:l]2 < ¢}, i € I
181l < ¢+ 15, 5 ¢ T}
=,
U = {(81..-.6)|16ill2 < iy i € I; [|85]l2 = 0, 5 ¢ I}
= {81 )l 18]l < ¢, i € I [|85]l2 < ¢ G & T}
=Uu',
and
T ={(81,.. )|||5 l2=0,i€1; |8;ll2 <c¢;j, j &1}
:{ 81, 8| I6ill2 =0, 5 €L |62 <), j&1}.

Thus, (10) is equivalent to (17) and (9) is equivalent to (18).
Furthermore, A’ — A’ = AA implies that |la; —al|| < I} for
j ¢ I,and a; = al fori € IduetothefactthatAA € L{I

Applying Theorem 4’ completes the proof. [ |

APPENDIX D
PROOF OF PROPOSITION 1

Proposition 1: Given a function f : R™*! — R and Borel
sets Z1,...,2Z, C R™tL et

Pné{ﬂep|v5g{17...,n}:u(UZL) > |S[/n}.

i€s
The following holds

n

LS sup flrib) = sup /H ) due.b)

n i—1 Ti,bi)EZ; HEP,
Proof: To prove Proposition 1, we first establish the fol-
lowing lemma.

Lemma 3: Given a function f : R™*! — R, and a Borel
set Z C R™7!, the following holds:

sup f(x) = ] seaut.

x'€Z

sup
REP|u(Z)



3572

Proof: Let x be a e-optimal solution to the LHS, consider
the probability measure ' that put mass 1 on X, which satisfy
p'(Z) = 1. Hence, we have

sup f(x') —e <

x'€Z

sup
pEP|u(2)=

/ £ () dpu(x)
1JRm+1

since € can be arbitrarily small, this leads to

sup f(x') < 19)

x'€Z

sup

x)du(x).
o / ()

Next construct function f : R™*! — R as

iy & [ ()
f(x)_{f(x)

X € Z,
otherwise.

By definition of X we have f(x) < f(x) + € forall x € R™ .
Hence, for any probability measure p such that u(Z) = 1, the
following holds:

/ f(x)du(z) < / F&)dp(z) + €
Rm+1 Rm+1
=/ +e < sup f(x) e

This leads to

sup
HEP|u(2)=1

/Rm+1 f(x)du(z) < sup f(x')+e.

x'€Z

Notice € can be arbitrarily small, we have

swp [ JGdul) < sup f(K). @0
nEP|p(Z)=1JR™+1 x'€Z
Combining (19) and (20), we prove the lemma. [ ]

Now we proceed to prove the proposition. Let X; be an e—
optimal solution to sup,. ¢ z. f(x;). Observe that the empirical
distribution for (X1, ...,X,) belongs to P,. Since € can be ar-
bitrarily close to zero, we have

U3 sy s swp [ pGoaute. @b
1 Xi€Zi HEP, JRm+1
Without loss of generality, assume
f(%1) < f(%2) < -+ < f(%a). (22)
Now construct the following function:
F) A ) minxez, f(X) x €U 25
fx) = { f(x) otherwise. 23)

Observe that f(x) < f(x) + e for all x.
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Furthermore, given p € P,,, we have

/u%mﬂ fx)du(x) -
= /[Rzmﬂ F)dp(x

~—

Thus we have for any p € P,
1 .
FEdn(x) — e <~ 3 flsa).
JRm+1 n

Therefore

sup /  T00du(x) — e < sup —Zf x0).

HEPn x;€2; T

Notice € can be arbitrarily close to 0, we proved the proposition
by combining with (21). ]

APPENDIX E
PROOF OF COROLLARY 3

Corollary 3: Given b € R", A € R"*™, the following
equation holds for any x € R™:

Ib — Ax[l> + Viea||xl + Ve
= sup

\/n/ (b —r'Tx)2dp(r’ v'). (24)
neP(n) JRm1

Here,

P(n) £ U Pn(A,A,b,0);
lolla<vmnen; ¥ a:(|6; |2 <v/nen
Pn(A"/A?b?o.)
£ {p € P|Z; =[b; — 0i,b; + 0i]

x [Tlai; -

bijs @ij + 6ij;

VS§{17...7n}:u<U Zi> > |S|/n}.
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max
loll2<v/men;V 4:]6: |2 <v/ncn

= sup
lloll2<vnen: ¥ i:l6: [l <v/nex

= sup
lloll2<vmen; ¥ i:|8; [|l2 <v/ne,

Ib+0o—(A+[61,...
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1 6m]) x|,

sup
(biti)€E[bi—0i,bi+0] XH;V;I[M]'—&] 1@ +6i5]

n

sup

(b; — #7x)?

i=1 (Ei-,f“i)e[bz'*tfi,bi+0i]><H?:l [ai; —06:5,ai;+6:;]

Proof: The RHS of (24) equals

sup
loll2<vnen; ¥ itl|8ill2<v/ncn

sup n/ (b/ — r'TX)Zdu(r’,b’)
REP,(A,Ab,0) Rm+1
Notice by the equivalence to robust formulation, the LHS equals

the equation shown at the top of the page, furthermore, applying
Proposition 1 yields

n
sup (b; — £ x)2
i=1 (bi,f'i)G[bi*Ui,bi+0i]><H?:1[aijféijyaij+§ij]

n/ (0 — ' Tx)2dp(r’, v)
Rm-+1

= sup
HEP,(A,A,b,0)
= sup ’[L/ (b/ _ I.I—l—)()Zdﬂ/(r/7 b/)
nEPL(A,Ab,0) m1
which proves the corollary. -
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