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Abstract— We consider two widely used notions in machine
learning, namely: sparsity and algorithmic stability. Both notions
are deemed desirable in designing algorithms, and are believed
to lead to good generalization ability. In this paper, we show
that these two notions contradict each other. That is, a sparse
algorithm can not be stable and vice versa. Thus, one has to
tradeoff sparsity and stability in designing a learning algorithm.
In particular, our general result implies that �1-regularized
regression (Lasso) cannot be stable, while �2-regularized re-
gression is known to have strong stability properties.

I. INTRODUCTION

Regression and classification are important problems with
impact in a broad range of applications. Given data points
encoded by the rows of a matrix A, and observations or labels
b, the basic goal is to find a (linear) relationship between
A and b. Various objectives are possible, for example in
regression, on may consider minimizing the least squared
error, ||Ax− b||2, or perhaps in case of a generative model
assumption, minimizing the generalization error, i.e., the ex-
pected error of the regressor x on the next sample generated:
E||a�x − b||. In addition to such objectives, one may ask
for solutions, x, that have additional structural properties. In
the machine learning literature, much work has focused on
obtaining solutions with special properties.

Two properties of particular interest are sparsity of the
solution, and the stability of the algorithm. Stability in this
context, refers to the property that when given two very
similar data sets, an algorithm’s output varies little. More
specifically, an algorithm is stable if its output changes
very little when given two data sets differing on only one
sample (this is known as the leave-one-out error). When this
difference decays in the number of samples, that decay rate
can be used directly to prove good generalization ability
[1]. This stability property is also used extensively in the
statistical learning community. For example, in [2] the author
uses stability properties of �2-regularized SVM to establish
its consistency.

Similarly, numerous algorithms that encourage sparse so-
lutions have been proposed in virtually all fields in machine
learning, including Lasso, �1-SVM, Deep Belief Network,
Sparse PCA (cf [3], [4], [5], [6]) and many others, mainly
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because of the following reasons: (i) a sparse solution is less
complicated and hence generalizes well ([7]); (ii) a sparse
solution has good interpretability or equivalently less cost
associated with the number non-zero loading ([8], [9], [10],
[11]); and (iii) sparse algorithms may be computationally
much easier to implement, store, compress, etc.

In this paper, we investigate the mutual relationship of
these two concepts. In particular, we show that sparse algo-
rithms are not stable: if an algorithm “encourages sparsity”
(in a sense defined precisely below) then its sensitivity to
small perturbations of the input data remains bounded away
from zero, i.e., it has no uniform stability properties. We
define these notions exactly and precisely in Section II.

We prove this no-free-lunch theorem by constructing an
instance where the leave-one-out error of the algorithm is
bounded away from zero by exploiting the property that a
sparse algorithm can have non-unique optimal solutions.

This paper is organized as follows. We make necessary
definitions in Section II and provide the no-free-lunch theo-
rem based on these definitions in Section III. Sections II and
III are devoted to regression algorithms; in Section IV we
generalize the theorem to arbitrary loss functions. Conclud-
ing remarks are given in Section V.

II. DEFINITIONS AND ASSUMPTIONS

The first part of the paper considers regression algorithms
that find a weight vector, x∗ in the feature space. The goal
of any algorithm we consider is to minimize the loss given a
new observation (b̂, â). Initially we consider the loss function
l(x∗, (b̂, â)) = |b̂ − â�x∗|. Here a is the vector of feature
values of the observation. In the standard regression problem,
the learning algorthm L obtains the candidate solution x∗ by
minimizing the empirical loss ||Ax−b||2, or the regularized
empirical loss. For a given objective function, we can com-
pare two solutions x1,x2 by considering their empirical loss.
We adopt a somewhat more general framework, considering
only the partial ordering induced by any learning algorithm
L and training set (b, A). That is, given two candidate
solutions, x1,x2, we write

x1 �(b,A) x2,

if on input (b, A), the algorithm L would select x2 before x1.
In short, given an algorith L, each sample set (b, A) defines
an order relationship �(b,A) among all candidate solutions x.
This order relationship defines a family of “best” solutions,
and one of these, x∗ is the output of the algorithm. We denote
this by writing x∗ ∈ L(b,A).

Thus, by defining a data-dependent partial ordering on
the space of solutions, we can speak more generically of



algorithms, their stability, and their sparseness. As we define
below, an algorithm L is sparse if the set L(b,A) of optimal
solutions contains a sparse solution, and an algorithm is
stable if the sets L(b,A) and L(b̂,Â) do not contain solutions

that are very far apart, when (b, A) and (b̂, Â) differ on only
one point.

We make a few assumptions on the preference ordering,
and hence on the algorithms that we consider:

Assumption 1. (i) Given j, b, A, x1 and x2, if

x1 �(b,A) x2,

and
x1

j = x2
j = 0,

then for any â,
x1 �(b,Â) x2,

where

Â = (a1, · · · ,aj−1, â,aj+1, · · · ,am) .

(ii) Given b, A, x1, x2, b′ and z, if

x1 �(b,A) x2,

and
b = z�x2,

then
x1 �(b,A) x2,

where

b =
(

b
b′

)
; A =

(
A
z�

)
.

(iii) Given j, b, A, x1 and x2, if

x1 �(b,A) x2,

then
x̂1 �(b,Ã) x̂2,

where

x̂i =
(

xi

0

)
, i = 1, 2; Ã = (A,0) .

(iv) Given b, A, x1, x2 and P ∈ R
m×m a permutation

matrix, if
x1 �(b,A) x2,

then
P�x1 �(b,AP ) P�x2.

Part (i) says that the value of a column corresponding
to a non-selected feature has no effect on the ordering; (ii)
says that adding a sample that is perfectly predicted by a
particular solution, cannot decrease its place in the partial
ordering; (iii) says the order relationship is preserved when
a trivial (all zeros) feature is added; (iv) says that the partial
ordering and hence the algorithm, is feature-wise symmetric.
These assumptions are intuitively appealing and satisfied by
most algorithms including, for instance, standard regression,
and regularized regression.

In what follows, we will define precisely what we mean by
stability and sparseness. We recall the definition of uniform
(algorithmic) stability first, as given in [1]. We let Z denote
the space of points and labels (typically this will be a com-
pact subset of R

m+1) so that S ∈ Zn denotes a collection of
n labelled training points. For regression problems, therefore,
we have S = (b, A) ∈ Zn. We let L denote a learning
algorithm, and for (b, A) ∈ Zn, we let L(b,A) denote the
output of the learning algorithm (i.e., the regression function
it has learned from the training data). Then given a loss
function l, and a labelled point s = (z, b) ∈ Z , l(L(b,A), s)
denotes the loss of the algorithm that has been trained on
the set (b, A), on the data point s. Thus for squared loss,
we would have l(L(b,A), s) = ‖L(b,A)(z) − b‖2.

Definition 1. An algorithm L has uniform stability βn with
respect to the loss function l if the following holds:

∀(b, A) ∈ Zn, ∀i ∈ {1, · · · , n},
‖l(L(b,A), ·) − l(L(b,A)\i, ·)‖∞ ≤ βn.

Here L(b,A)\i stands for the learned solution with the ith

sample removed from (b, A), i.e., with the ith row of A and
the ith element of b removed.

At first glance, this definition may seem too stringent for
any reasonable algorithm to exhibit good stability properties.
However, as shown in [1], Tikhonov-regularized regression
has stability that scales as 1/n. Stability can be used to
establish strong PAC bounds. For example, in [1] they show
that if we have n samples, βn denotes the uniform stability,
and M a bound on the loss, then

R ≤ Remp + 2βn + (4nβn + M)

√
ln 1/δ

2n
,

where R denotes the Bayes loss, and Remp the empirical
loss.

Since Lasso is an example of an algorithm that yields
sparse solutions, one implication of the results of this paper
is that while �2-regularized regression yields sparse solutions,
�1-regularized regression does not. We show that the stability
parameter of Lasso does not decrease in the number of
samples (compared to the O(1/n) decay for �2-regularized
regression). In fact, we show that Lasso’s stability is, in the
following sense, as bad as it gets. To this end, we define the
notion of the trivial bound, which is the worst possible error
a training algorithm can have for arbitrary training set and
testing sample labelled by zero.

Definition 2. Given a subset from which we can draw
n labelled points, Z ⊆ R

n×(m+1) and a subset for one
unlabelled point, X ⊆ R

n, a trivial bound for a learning
algorithm L w.r.t. Z and X is

b(L,Z,X ) � max
(b,A)∈Z,z∈X

l
(
L(b,A), (z, 0)

)
.

As above, l(·, ·) is a given loss function.

Notice that the trivial bound does not diminish as the num-
ber of samples, n, increases, since by repeatedly choosing
the worst sample, the algorithm will yield the same solution.



Our next definition makes precise the notion of sparsity
of an algorithm which we use.

Definition 3. An algorithm L is said to identify redundant
features if given (b, A), there exists x∗ ∈ L(b,A) such that
if ai = aj , then not both xi and xj are nonzero. That is,

∀i �= j, ai = aj ⇒ x∗
i x

∗
j = 0.

Identifying redundant features means that at least one
solution of the algorithm does not select both features if
they are identical. We note that this is a quite weak notion
of sparsity. An algorithm that achieves reasonable sparsity
(such as Lasso) should be able to identify redundant features.

III. MAIN THEOREM

The next theorem is the main contribution of this paper.
It says that if an algorithm is sparse, in the sense that
it identifies redundant features as in the definition above,
then that algorithm is not stable. One notable example that
satisfies this theorem is Lasso.

Theorem 1. Let Z ⊆ R
n×(m+1) denote the domain of

sample sets of n points each with m features, and X ⊆ R
m+1

the domain of new observations consisting of a point in R
m,

and its label in R. Similarly, let Ẑ ⊆ R
n×(2m+1) be the

domain of sample sets of n points each with 2m features, and
X̂ ⊆ R

2m+1 be the domain of new observations. Suppose
that these sets of samples and observations are such that:

(b, A) ∈ Z =⇒ (b, A, A) ∈ Ẑ
(0, z�) ∈ X =⇒ (0, z�, z�) ∈ X̂ .

If a learning algorithm L satisfies Assumption 1 and identi-
fies redundant features, its uniform stability bound β is lower
bounded by b(L,Z,X ), and in particular does not go to zero
with n.

Proof: Let (b, A) and (0, z�) be the sample set and the
new observation such that they jointly achieve b(L,Z,X ),
i.e., for some x∗ ∈ L(b, A), we have

b(L,Z,X ) = l
(
x∗, (0, z)

)
. (1)

Let 0n×m be the n×m 0-matrix, and 0 stand for the zero
vector of length m. We denote

ẑ � (0�, z�); Â � (A, A);

b̃ �
(

b
b′

)
; Ã �

(
A, A
0�, z�

)
.

We first show that(
0
x∗

)
∈ L(b,Â);

(
x∗

0

)
∈ L(b̃,Ã). (2)

Notice that L is feature-wise symmetric and identifies redun-
dant features, hence there exists a x′ such that(

0
x′

)
∈ L(b,Â).

Since x∗ ∈ L(b,A), we have

x′ �(b,A) x∗

⇒
(

0
x′

)
�(b,(0n×m,A))

(
0
x∗

)

⇒
(

0
x′

)
�(b,Â)

(
0
x∗

)

⇒
(

0
x∗

)
∈ L(b,Â).

The first impication follows from Assumption 1(iii), and the
second from (i).

Now notice by feature-wise symmetry, we have(
x∗

0

)
∈ L(b,Â).

Furthermore,

0 = (0�, z�)
(

x∗

0

)
,

and thus by Assumption 1(ii) we have(
x∗

0

)
∈ L(b̃,Ã).

Hence (2) holds. This leads to

l
(
L(b,Â), (0, ẑ)

)
= l(x∗, (0, z)); l

(
L(b̃,Ã), (0, ẑ)

)
= 0.

By definition of the uniform bound, we have

β ≥ l
(
L(b,Â), (0, ẑ)

) − l
(
L(b̃,Ã), (0, ẑ)

)
.

Hence by (1) we have β ≥ b(L,Z,X ), which establishes
the theorem.

Theorem 1 not only means that a sparse algorithm is not
stable, it also states that, if an algorithm is stable, there is
no hope to achieve satisfactory sparsity, since it cannot even
identify redundant features. Note that indeed, l2 regularized
regression is stable, and does not identify redundant features.

IV. GENERALIZATION TO ARBITRARY LOSS

The results derived so far can easily be generalized
to algorithms with arbitrary loss function l(x∗, (b̂, â)) =
fm(b̂, â1x

∗
i , · · · , âmx∗

m) for some fm. Here, âi and x∗
i

denote the ith component of â ∈ R
m and x∗ ∈ R

m,
respectively. We assume that the function fm(·) satisfies the
following conditions

(a) fm(b, v1, · · · , vi, · · · , vj , · · · vm) =
fm(b, v1, · · · , vj , · · · , vi, · · · vm); ∀b,v, i, j.

(b) fm(b, v1, · · · , vm) = fm+1(b, v1, · · · , vm, 0); ∀b,v.
(3)

We require following modifications of Assumption 1(ii) and
Definition 2.

Assumption 2. (ii) Given b, A, x1, x2, b′ and z if

x1 �(b,A) x2, l(x2, (b′, z)) ≤ l(x1, (b′, z))

then

x1 �(b,A) x2, where b =
(

b
b′

)
; A =

(
A
z�

)
.



Definition 4. Given Z ⊆ R
n×(m+1) and X ⊆ R

m+1, a
trivial bound for a learning algorithm L w.r.t. Z and X is

b̂(L,Z,X ) � max
(b,A)∈Z,(b,z)∈X

{
l
(
L(b,A), (b, z)

)−l
(
0, (b, z)

)}
.

These modifications account for the fact that under an
arbitrary loss function, there may not exist a sample that
can be perfectly predicted by the zero vector. With these
modifications, we have the same no-free-lunch theorem.

Theorem 2. As before, let Z ⊆ R
n×(m+1), and Ẑ ⊆

R
n×(2m+1) be the domain of sample sets, and X ⊆ R

m+1,
and X̂ ⊆ R

2m+1 be the domain of new observations, with m
and 2m features respectively. Suppose, as before, that these
sets satisfy

(b, A) ∈ Z =⇒ (b, A, A) ∈ Ẑ
(b′, z�) ∈ X =⇒ (b′, z�, z�) ∈ X̂ .

If a learning algorithm L satisfies Assumption 2 and identi-
fies redundant features, its uniform stability bound β is lower
bounded by b̂(L,Z,X ).

Proof: This proof follows a similar line of reasoning
as the proof of Theorem 1. Let (b, A) and (b ′, z�) be the
sample set and the new observation such that they jointly
achieve b̂(L,Z,X ), i.e., let x∗ ∈ L(b, A), and

b̂(L,Z,X ) = l
(
x∗, (b′, z)

) − l
(
0, (b′, z)

)
= fm(b′, x∗

1z1, · · · , x∗
mzm) − f(b′, 0, · · · , 0).

Let 0n×m be the n×m 0-matrix, and 0 stand for the zero
vector of length m. We denote

ẑ � (0�, z�); Â � (A, A);

b̃ �
(

b
b′

)
; Ã �

(
A, A
0�, z�

)
.

To prove the theorem, it suffices show that there exists x1,
x2 such that

x1 ∈ L(b,Â); x2 ∈ L(b̃,Ã),

and
l
(
x1, (b′, ẑ)

) − l
(
x2, (b′, ẑ)

) ≥ b̂(L,Z,X )

where again,

b̂(L,Z,X ) = fm(b′, x∗
1z1, · · · , x∗

mzm) − fm(b′, 0, · · · , 0).

By an identical argument as that of Proof 1, we have(
0
x∗

)
∈ L(b,Â).

Hence

∃x1 ∈ L(b,Â) : (4)

l
(
x1, (b′, ẑ)

)
= l

((
0
x∗

)
, (b′, ẑ)

)
(5)

= fm(b′, x∗
1z1, · · · , x∗

1zm).

The last equality follows from Equation (3) easily.

Now notice that by feature-wise symmetry, we have(
x∗

0

)
∈ L(b,Â).

Hence

∃x2 ∈ L(b̃,Ã) : (6)

l
(
x2, (b′, ẑ)

) ≤ l

((
x∗

0

)
, (b′, ẑ)

)
(7)

= fm(b′, 0, · · · , 0).

The last equality follows from Equation (3). The inequality
here holds because by Assumption 2(ii), if there is no x2 ∈
L(b̃,Ã) that satisfies the inequality, then we have

x2 �(b̃,Ã)

(
x∗

0

)

which then implies that

⇒
(

x∗

0

)
∈ L(b̃,Ã),

which is absurd.
Combining (4) and (6) proves the theorem.

V. CONCLUSION

In this paper, we prove a no-free-lunch theorem show
that sparsity and stability are at odds with each other. We
show that if an algorithm is sparse, then its uniform stability
is lower bounded by a nonzero constant. This also shows
that any stable algorithm cannot be sparse. Thus we show
that these two widely used concepts, namely sparsity and
algorithmic stability conflict with each other. At a high level,
this theorem provides us with additional insight into these
concepts and their interrelation, and it furthermore implies
that, a tradeoff between these two concepts is unavoidable
in designing learning algorithms. On the other hand, given
that both sparsity and stability are desirable properties, one
interesting direction is to understand the full implications
of having one of them. That is, what other properties must
a sparse solution have? Given that sparse algorithms often
perform well and have strong statistical behavior, one may
further ask for other significant notions of stability that are
not in conflict with sparsity.
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