
Enabling Efficient Analog Synthesis by Coupling Sparse
Regression and Polynomial Optimization

Ye Wang
University of Texas At Austin

Austin, TX, 78712
wangye805@hotmail.com

Michael Orshansky
University of Texas At Austin

Austin, TX, 78712
orshansky@utexas.edu

Constantine Caramanis
University of Texas At Austin

Austin, TX, 78712
constantine@utexas.edu

ABSTRACT
The challenge of equation-based analog synthesis comes from
its dual nature: functions producing good least-square fits to
SPICE-generated data are non-convex, hence not amenable
to efficient optimization. In this paper, we leverage recent
progress on Semidefinite Programming (SDP) relaxations of
polynomial (non-convex) optimization. Using a general poly-
nomial allows for much more accurate fitting of SPICE data
compared to the more restricted functional forms. Recent
SDP techniques for convex relaxations of polynomial opti-
mizations are powerful but alone still insufficient: even for
small problems, the resulting relaxations are prohibitively high
dimensional.

We harness these new polynomial tools and realize their
promise by introducing a novel regression technique that fits
non-convex polynomials with a special sparsity structure. We
show that the coupled sparse fitting and optimization (C-
SFO) flow that we introduce allows us to find accurate high-
order polynomials while keeping the resulting optimization
tractable.

Using established circuits for optimization experiments, we
demonstrate that by handling higher-order polynomials we re-
duce fitting error to 3.6% from 10%, on average. This trans-
lates into a dramatic increase in the rate of constraint sat-
isfaction: for a 1% violation threshold, the success rate is
increased from 0% to 78%.

1. INTRODUCTION
Automated analog optimization promises to increase pro-

ductivity by reducing design time. While automated synthesis
that involves selection of circuit topology is the ultimate goal
[12], most approaches currently focus on strategies that as-
sume that topology is fixed and focus on optimal device sizing.
In this paper, we focus on the class of optimization approaches
that construct an analytical equation (model) of circuit be-
havior based on specific functional forms, or templates and use
the model to drive the optimization [4, 2, 11]. These meth-
ods are known as equation-based or model-based in contrast
to optimization methods that rely directly on SPICE simula-
tions to drive optimization [12, 8]. Simulation-based methods
allow higher accuracy of point evaluations of feasibility and
ease of use for convergence to local optimal solutions. How-
ever, SPICE simulations are time-consuming, and yield little
structure that can be exploited for efficient global optimiza-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’14 June 01-05 2014, San Francisco, CA USA
Copyright 2014 ACM 978-1-4503-2730-5/14/06 . . . $15.00.

tion. Equation-driven methods are able to overcome the sub-
optimality by capturing the global structure of the problem
and thus delivering a higher-quality solution with guarantees
of global optimality.

The most widely explored approach based on convex op-
timization uses geometric programming (GP) operating on
posynomial functions [2, 4]. A problem that a user of GP-
based automated flow faces is the need to generate the mod-
els of circuit performance in terms of posynomial functions.
Early work [2] derived models using first-principles symbolic
equations. Not only do these involve significant designer in-
volvement and expertise, but perhaps worse, they are not ac-
curate for nanometer scale technologies. An alternative, is
to use automatic model-fitting approaches [3] that fit SPICE-
generated pre-characterization data to posynomial functions.
This approach too, has met with challenges, primarily because
extensive studies have demonstrated that posynomials fail to
produce accurate models for large circuits (see, e.g., [6, 15]).
In a real sense, the promise in analog synthesis of global opti-
mization techniques that are automated and global, and can
hence explore over a large range of design variables, is unmet.

Recent advances in polynomial optimization provide a se-
quence of convex relaxations via semidefinite optimization,
for non-convex polynomial optimization. These methods sug-
gest a promising way forward. Polynomial optimization ap-
proaches have been used in diverse areas, including control,
combinatorial and continuous optimization, differential equa-
tions, and elsewhere. Yet their use in analog synthesis has
not been properly explored, in part due to some important
challenges which this paper addresses. The key advantages
of polynomial optimization are: 1) by permitting model non-
linearity and non-convexity, multivariate polynomials are su-
perior to posynomials in finding regression based models of
higher accuracy; 2) importantly, although non-convex in both
objective and constraints, polynomial optimization problems
can be convexified through Semidefinite-Programming (SDP)
relaxations [9, 7] guaranteeing theoretical convergence to global
optimal solution.

From a practical point of view, there are major limitations
of polynomial-based approaches in both modeling and opti-
mization. Primary among these, are the dual questions of
how to fit SPICE data, and subsequently how to optimize
the potentially large problems that emerge. Where as work
in [11] suggests the potential use of polynomial optimization,
both the above questions remain unaddressed. The essential
difficulty is that high degree polynomials seem unavoidable,
if one wants a good fit to the data. Yet out-of-the-box SDP
relaxations for high degree polynomial optimization have ex-
ponential, and hence prohibitive, size. Thus, while potentially
powerful, these polynomial optimization tools are not practi-
cal in a generic or naive implementation.

The key innovation in this work is in coupling the fitting
process with the optimization process. By designing a tailored

regression procedure, we fit non-convex yet structured poly-
nomials, which we then show are amenable to efficient SDP
optimization, despite their potentially high degree. We call
this coupled fitting and optimization procedure C-SFO for
coupled Sparse Fitting and Optimization.

Our work introduces and leverages recent work on poly-
nomial optimization with structured sparsity, proposed by [7,
10]. This allows the large variable set resulting from high de-
gree polynomials, to be decomposed into several small sets.
This eliminates terms introduced in a naive out-of-the-box
application of SDP tools, yet unnecessary in the structured
sparsity setting. As we show, this can improve the compu-
tational efficiency dramatically, with little to no decrease in
quality.

This paper pursues this agenda. We develop an effective
framework of analog synthesis by coupling sparse regression
and sparse polynomial optimization by adapting ideas from
sparse reconstruction and harmonic analysis. The central con-
tribution of this paper is the novel formulation of polynomial
regression through structured sparsity into overlapping group-
lasso problems [5]. To the best of our knowledge, while much
work in polynomial optimization has focused on exploiting ex-
isting sparsity, or has considered quadratic polynomials ([1]),
the idea of coupling fitting and optimization for potentially
high order polynomials in the proposed way is novel in analog
synthesis, and more generally.

As we explain in detail, the key sparsity notion that can be
exploited in the optimization phase, is a group sparsity among
overlapping groups of variables. By imposing this sparsity in
the fitting phase, we effectively allow the use of high-degree
polynomials in the fitting phase, without sacrificing tractabil-
ity in the optimization phase.

We accomplish this by introducing a novel greedy sparse
polynomial group orthogonal-matching pursuit algorithm to
effectively find a compact fitted function for use in optimiza-
tion. This algorithm is in several respects superior to the
canonical sparse method through `1/`2-norm penalty based
on a convex relaxation of non-convex problems [5]. In partic-
ular, it is more effective at producing group sparsity, and it
is parameter free, which essentially allows for a much more
efficient fitting procedure, as we explain below.

Our simulation experiments on established benchmarks show
that allowing higher degree polynomials is critical. The fit-
ting error decreases from 10% to 3.6% compared to the poly-
nomial model with degree two, which is the maximum degree
that is computationally tractable without sparsity. This im-
provement in accuracy translates to the ability to identify
better feasible solutions and, specifically, it dramatically in-
creases the rate of constraint satisfaction. For instance, for
the op-amp circuit, the success rate is increased from 0% to
78%, assuming that a constraint is considered satisfied if the
SPICE-validated performance value is no more than 1% away
from the specification.

2. SDP RELAXATION FOR SPARSE POLY-
NOMIAL OPTIMIZATION

A generic polynomial optimization problem, defined as:

minimizex : f0(x)

subject to : fi(x) ≥ 0, i = 1, . . . , p.

can be solved through a sequence of (linear) semidefinite pro-
gramming (SDP) relaxations of the form:

minimize{mα} :
∑
α

pαmα

subject to : Mr(m) � 0,

Mr−ri(fim) � 0.

In the interest of space, we skip the details about this standard
framework of moment SDP relaxation, which are contained in
[9, 14]. In this section, we introduce the technique of variable
decomposition [10, 17] to significantly reduce computational
complexity of polynomial SDP relaxation, and the structured
sparsity [17] which translates to such efficient decomposition.

2.1 Variable Decomposition for Polynomial Op-
timization

Consider a decomposition of I = {x1, . . . , xn} into subsets
Ik ⊆ I of variables of the original polynomial problem. We
would like to have moment conditions only over these (ide-
ally small) subsets {Ik} of variables instead of the complete
variable set in the general formulation. Because the size of
the moment matrices grows much faster than linearly, having
many moment matrices over fewer variables, versus having
one large moment matrix involving all the variables, is a great
advantage in terms of overall size of the resulting optimization
problem.

Generically, however, this is not possible. That is, imposing
moment conditions for subsets will not in general imply mo-
ment conditions for the entire set. In order for this to happen,
the subsets {Ik} must satisfy the following three properties:
every variable must be in their union, i.e., {x1, . . . , xp} =⋃
k Ik, every moment derived from corresponding monomial

must be in at least one moment matrices associated with Ik,
and also, for every k ≤ p− 1, there must exist an s < k such
that

Ik+1 ∩
k⋃
j=1

Ij ⊆ Is.

This condition is called the running intersection property.
Once we have such variable decomposition, we can refor-

mulate the SDP-relaxations as follows:

minimize{mα} :
∑
α

pαmα

subject to : Mr(m, Ik) � 0, k = 1, . . . , p

Mr−ri(fim, Ik) � 0, k = 1, . . . , p,

where the moment matrices are now constrained to the vari-
ables in each subset Ik.

By variable decomposition, we can bound the size of the
SDP relaxation by O(p × max(card(Ik))r). This is a signifi-
cant decrease compared to O(nr), for dense polynomial opti-
mization [9, 14].

2.2 Structured Sparsity and Chordal Extension
Although the great reduction through variable decomposi-

tion looks promising, finding an optimal decomposition, i.e.
one that minimizes the induced SDP size for a given polyno-
mial optimization problem, is NP-hard. The work in [17] pro-
posed the efficient heuristic featuring structured sparsity and
the technique of translating structured sparsity into variable
decomposition. We show that this specific sparsity concept is
the interface we need, and our coupled fitting and optimiza-
tion procedure, C-SFO, builds upon this idea. We explain the
details in Section 3.

The structured sparsity of a polynomial optimization prob-
lem is evaluated by the number of correlated variables in both
objective and constraints as captured in the following n × n
symmetric correlative-sparsity-pattern (csp) matrix:

Rij =

1, if i = j,
1, if αi, αj ≥ 1, ∃α ∈ supp(f0),
1, if xi ∈ xfk and xj ∈ xfk , k ≥ 1,
0, otherwise.

Here, xfk represents the set of variables that appear in the
expression of polynomial fk(x). This csp-matrix can also be
viewed as the adjacency matrix for the undirected correlation
graph G(N,E) with the node set N = {1, 2, . . . , n} and edge
set E = {(i, j) : Rij = 1}. Finding the optimal variable de-
composition satisfying the three conditions discussed above is
the same as finding maximal cliques of the correlation graph.
Well-studied heuristics described in, e.g., [17] are available
to generate maximal cliques from chordal extensions of the
csp-matrix. The solver sparsePOP ([17]) efficiently detects
structured sparsity by generating maximal cliques of a chordal
extension. Thus, once the sparse model is properly built, the
application of sparsePOP is a routine. Yet fitting SPICE data
in order to produce polynomials whose csp-matrix has small
maximal cliques, is a difficult problem. As a proxy to this, we
have found that it is enough to produce polynomials whose
csp-matrix itself is sparse. Henceforth, we say that a poly-
nomial optimization problem is sparse, if the corresponding
csp-matrix is sparse.

The key remaining challenge, then, becomes how to prop-
erly build the polynomial model with structured sparsity. We
now move to this problem.

3. SPARSE POLYNOMIAL FITTING
We now formally describe the proposed sparse polynomial

fitting algorithm, that seeks to produce an accurate fitting us-
ing polynomials with structured sparsity as described above.
Then we show how we couple sparse polynomial regression
and optimization.

We denote each n-dimensional point by row vector Xi =
(Xi1, Xi2, . . . , Xin) and the SPICE-generated output, i.e., the
value of the function we seek to fit, as yi, i = 1, 2, . . . ,m with
m as the number of SPICE-generated data points. We seek
to find a polynomial function with degree d:

F (x) =

l∑
p=1

cp

n∏
k=1

x
αpk
k ,

n∑
k=1

αpk ≤ d, ∀p ≤ l,

with all exponents αpk nonnegative, to fit the SPICE data as
well as possible.

As discussed above, our true measure of sparsity is the size
of the maximal cliques. Yet fitting with small maximal cliques
is hard; thus as a proxy, we consider directly imposing sparsity
of the csp-matrix. We expand the design sampling matrix X
to X̃ of dimension m × l with each column corresponding to
one monomial, where l is the target number of monomials.
Thus, we arrive at our initial sparse polynomial regression:

min : ‖Y − X̃C‖22
s.t. : card(supp(R)) ≤ Tcsp, ∀k

f(x) =

l∑
p=1

cp

n∏
k=1

x
αpk
k ,

Here supp(R) is defined as the support for csp-matrix R gen-
erated by polynomial model f , and Tcap is the target sparsity
of R.

This formulation is still not convex, due to the cardinal-
ity constraint. However, as we discuss in the next section,
the cardinality constraint presents fewer challenges than the
maximal clique constraint; hence this problem is significantly
easier to solve. Moreover, as we show in our results, this for-
mulation coupled with our algorithm for its solution which we
give in Section 3.1, indeed results in sparse csp-matrices R,
and resulting sparse polynomial optimization problems with

small maximal cliques, that are quickly solvable by SDP, even
for high degrees.

3.1 Regression as Overlapping Group Lasso
Sparsity of the csp-matrix does not correspond directly to

sparsity of the vector of monomials. In particular, the pres-
ence of some monomials may reduce the sparsity of the csp-
matrix more than others. For example, if the coefficient of
xixjxk is non-zero, we have three non-zero elements in the
csp-matrix, corresponding to (i, j), (j, k), and (k, i). On the
other hand, if the coefficient for the term xixj is non-zero,
this results in adding a single ‘1’ in the (i, j) position in the
csp-matrix.

Thus, in our sparsity formulation, nonzero coefficients of
the former kind (i.e., of higher order terms such as xixjxk)
are more costly than for terms such as xixj . Thus, from the
point of view of sparse regression for optimization, we should
penalize more monomials that may contribute more non-zero
terms to the csp-matrix.

This intuition is also consistent with the physical nature of
performance metric of analog circuits: we expect strong cou-
pling only with a subset of the transistors. This intuition is
verified in the Section 4. As emphasized above, a key obser-
vation that enables the results in this paper, is that the struc-
ture required for efficient optimization is also well-matched to
the analog synthesis problem. Indeed, this is the case in this
discussion as well.

By inspection, we can group monomial terms by their ex-
ponents according to their contributions to the csp-matrix by
the following G:

G0 ={α}, card(supp(a)) ≥ 1

Gij ={α}, αiαj ≥ 1, i < j.

Monomials with exponents in G0 contribute merely to the
diagonal of the csp-matrix and monomials belonging to Gij
at least contribute to the (i, j) position of the csp-matrix.

Note that those groups are generally overlapping if we ex-
plore polynomials with degree more than 2: xixjxk is in Gij ,
Gjk and Gik. Thus our problem is one of minimizing group
sparsity in a pre-specified set of overlapping groups. In order
to solve this problem, we borrow techniques from signal pro-
cessing and statistics, formulated for group sparsity, e.g., [5].
A central computational technique developed for this problem
is the so-called group lasso.

For non-overlapping groups, the standard regularizer or penalty
function typically used, is the so-called `1/`2 norm [18] that
penalizes the `1 norm of the `2 norm inside each group. We
consider the natural extension of this to overlapping groups.
The penalty for coefficient ω in overlapping-group lasso with
the set of groups G is defined as:

ΩGoverlap(ω) = inf
v∈VG,

∑
g∈G vg=ω

∑
g∈G

‖vg‖,

in which ‖ω‖ denotes the Euclidean norm of ω. Here, VG ⊆
Rn×|G| is the set of |G|-tuples of vector

v = (vg)g∈G

supp(vg) ⊆ g,∀g ∈ G,

where g is an element defined above in the set of groups G.
Regularized by this penalty, we can consider the following

convex optimization problem for polynomial regression with
structured sparsity:

min
C∈Rl

1

2
‖Y − X̃C‖2 + λΩGoverlapping(C).

As with standard Lasso optimization, the effect of λ is to con-
trol the sparsity level. A larger λ gives us a sparser solution.

Figure 1: OPAMP Used for Experiments.

As λ tends to zero, we recover the (unregularized) regression
solution. The value of λ is typically chosen by cross valida-
tion with testing data. Group-coordinate descent [5] or other
convex algorithms can be deployed to solve this group lasso
efficiently.

Although the approach described in the section above is
convex and hence the global optimal solution can be found in
polynomial-time, for problems of significant size, as we have
in analog optimization, significant improvements are required
in order to make the problem practically implementable on a
reasonable system. One of the problems with the convex ap-
proach described above is that we need to tune parameter λ.
This is typically done by cross validation; moreover, we need
to adjust the threshold for identifying groups of nonzero coef-
ficients because there is no direct translation from coefficients
to csp-matrix. For large-scale problems like analog perfor-
mance modeling, iterating through λ is time-consuming as
for a fixed λ we need about 20 mins to converge to an opti-
mal solution. We discuss computational requirements in more
detail in Section 4.

In order to overcome the difficulties above, we propose a
greedy version of the standard algorithms for solving overlap-
ping group lasso. We call this the Sparse Polynomial Group-
Orthogonal-Matching Pursuit Algorithm, and it is the first
part of our coupled sparse fitting and optimization frame-
work, or what we have called C-SFO. The approach we pro-
pose is simple, highly efficient and scalable. It is motivated
by the orthogonal matching pursuit algorithm used in statis-
tics and sparse reconstruction (see, e.g., [16]). To the best
of our knowledge, its behavior has not been previously ex-
plored in the current context, namely, polynomial regression
through structured sparsity. By conducting experiments on
small-scale test polynomials where the convex optimization
approach is feasible, we observe similar performance with re-
spect to the convex optimization method.

Orthogonal Matching Pursuit is a technique that seeks to
find the “best matching” projection of multidimensional data
onto an over-complete dictionary. In our case, we require to
find the next “best matching” group rather than single tem-
plate in each iteration. Thus, we are effectively seeking the
projection not onto the best sparse subspace, but the best
sparse cone, which hence calls for some modification of the
original algorithm. Let us denote the set of all possible poly-
nomial terms up to degree d that do not violate a given csp-
matrix R as

M(R, d) = {α,
∑
i

αi ≤ d, αiαj = 0 if R(i, j) = 0}.

This set M can be considered as a reverse grouping from
csp-matrix to polynomial templates. This reverse grouping

has a nice nesting property: if supp(R1) ⊆ supp(R2), then
M(R1) ⊆ M(R2). This nesting behavior is precisely what is
required in order to allow us to pursue a greedy framework.

While parameter free (i.e., we do not need to tune λ) and
generally significantly more efficient, our algorithm behaves at
least as well as the convex optimization formulation. More-
over, the algorithm we produce enjoys the same run-time
guarantees as standard OMP, and in particular, its running
time is at worst quadratic in the dimension of the problem,
and in the sparsity of the problem.

We describe the algorithm in full detail in Algorithm 1.
Here, Rs denotes the current csp-matrix, Ps as polynomial
templates selected (i.e., the set of monomials with non-zero
coefficient in the polynomial produced by csp-matrix Rs), and

r = Y − X̃PsC the residual at each iteration. MaxIter rep-
resents the max number of iterations, and Tol the accuracy
tolerance. Before applying this algorithm, we need to normal-
ize all columns of the design matrix X̃ to eliminate any bias
effect.

Algorithm 1 Sparse Polynomial Group-Orthogonal Match-
ing Pursuit Algorithm

1: procedure Greedy Posynomial Fitting(X̃,Y ,d)
initialization

2: Rs = I(n× n)
3: Ps = M(Rs, d), i = 0

4: C = arg min(‖Y − X̃PsC‖2)

5: r ← Y − X̃PsC . Least-square regression for G0

Main Loop
6: while 1 do
7: (i, j)∗ = arg maxi(‖〈X̃M(Rs|Eij ,d)\M(Rs,d), r〉‖) .

Find the most correlated group (i∗, j∗)
8: if Rs(i, j) 6= 0 then . Update the csp-matrix
9: Rs(i, j) = 1;

10: Ps = M(Rs, d)
11: else
12: Break; . Already in csp-matrix
13: end if
14: C = arg min(‖Y − X̃PsC‖2)

15: i← i+ 1, r ← Y − X̃PsC . Update r and i
16: if ‖r‖ < Tol or i > MaxIter then
17: Break;
18: end if
19: end while
20: end procedure

3.2 Dealing with Constrained Optimization
Fitting structured sparse polynomials is not the end of

the story. There is a significant complication introduced by
adding constraints to the optimization problem. This is be-
cause for constraints, sparsity is defined in a somewhat differ-
ent manner.

In particular, the structured sparsity corresponding to con-
straints is more stringent than that corresponding to the ob-
jective. For a given constraint, the csp-matrix R has R(i, j) =
1 if xi and xj appear simultaneously – that is, they do not
need to appear as a product. The reason for this is that there
is a cross product xixj in the dual Lagrangian polynomial in
the framework of polynomial optimization.

In order to overcome this difficulty, we essentially form the
Lagrangian formally, before fitting polynomials to the func-
tions. We then fit a single sparse polynomial to the resulting
problem. Binary search method can be employed to find opti-
mal Lagrangian duals by increasing the multiplicative weights
whose constraints are not satisfied. We illustrate the results
of this procedure in Section 4.

Table 1: Error Reduction for OPAMP Gain
Training Error Test Error

Method Max Error RMS Error Max Error RMS Error
Monomial 581% 36.5% 458% 36.4%
Quad Poly 145% 9.17% 58.1% 9.24%

C-SFO 61.3% 3.73% 34.2% 3.69%

Table 2: Rate of Constraint Satisfaction
Threshold C-SFO Quad Poly

0.1% 42.5% 0%
1% 77.9% 0%

2.5% 80.3% 1.6%
3% 81.1% 22.0%
4% 85.8% 73.2%
5% 88.9% 79.5%

4. EXPERIMENTAL RESULTS
We test the performance of the proposed C-SFO framework

for coupling sparse regression and polynomial optimization
against geometric programming (GP) [2] and polynomial op-
timization (POP) without sparsity [11]. In both of these op-
timization methods, the models are fitted using least-square
regression. Transistor I-V characteristics are modeled for the
180nm TSMC high-performance model. All the simulations
are done using HSPICETM. The C-SFO framework has been
implemented in MATLAB using the sparse polynomial opti-
mization package SparsePOP [17]. To run the comparisons
with the GP, we use GGPLAB [13]. All testbenches run on
an Intel Xeon 2.93G Linux workstation with 74G memory.

We perform the experiments on the two commonly used
benchmarks, a two-stage operational amplifier (OPAMP) and
a voltage-controlled oscillator (VCO).

Figure 1 shows the schematic of the two-stage operational
amplifier. The output circuit performance metrics that we
aim to model are open-loop gain, unity gain bandwidth (UGB),
and phase margin (PM). We select transistor widths (W),
lengths (L), bias current (Ib), and compensation capacitance
(Cc) as the input variables. Based on the matching require-
ments [2], which dictate symmetry between transistors of the
differential pair and current mirrors, we are able to reduce the
number of independent input variables to 11.

First, we show the power of regression of our method in ex-
ploring the space of high-degree polynomials for subsequent
optimization. The total number of SPICE simulation points
used is 100,000 for training and 5000 for testing. We model the
function over an input range spanning 40% (from 0.8 to 1.2)
of the center value. Table 1 summarizes the fitting results of
the OPAMP gain. Without sparsity, the maximum degree of a
polynomial we can afford in optimization is quadratic. Results
indicate that sparse polynomial regression achieves substan-
tial improvement in accuracy: the RMS error is reduced from
10% to 3.6% compared to the polynomial model. We use the
amplifier gain for comparison because it is the most non-linear
and difficult function to fit (10% rms error for quadratic poly-
nomial). For functions capturing phase margin and unity-gain
bandwidth, all three methods deliver sufficiently good accu-

Table 3: Optimization Results: OPAMP
C-SFO Quad Poly GP

Case # Metric Spec Model SPICE Model SPICE Model SPICE

Case 1
Gain (104) max 1.69 1.68 1.74 1.68 1.95 0.78
UGB (MHz) >10 10.2 10.5 9.98 9.96 10 9.76
PM (◦) >60 60.6 60.5 60 60 60 58.2

Case 2
Gain (104) >1.5 1.55 1.53 1.5 1.36 1.5 0.48
UGB (MHz) max 12.6 12.6 14.8 14.8 18.4 17.8
PM (◦) >60 61.3 60.0 60 60.7 60 59.71

Case 3
Gain (104) >1.50 1.54 1.52 1.49 1.37 1.5 0.57
UGB (MHz) max 18.9 19.0 14.9 14.8 25.6 25.6
PM (◦) >48 47.8 46 48 47.95 48 48.1

0 2 4 6 8 10 12 14 16
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

R
M

S
 F

it
ti
n

g
 E

rr
o

r

Density of Polynomial (# of non−zeros in csp matrix)

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

M
o

d
e

l
C

o
m

p
le

x
it
y
:

S
D

P
 R

u
n

ti
m

e
 (

s
)

Fitting Error

SDP Runtime

Figure 2: Trade-off between Sparsity and Optimiza-
tion Complexity Enabled by C-SFO.

Table 4: Runtime: OPAMP
Method Runtime (s)

GP <1
Quad Poly 20

C-SFO 100

racy (below 1.5% rms error).
We also give the fitting error and model complexity plot of

C-SFO as we increase the polynomial density to demonstrate
why our approach gives a trade-off when exploring the high-
degree space. From Figure 2, we see that as we increase the
density (number of non-zero elements in csp matrix), the RMS
error saturates while computational complexity explodes in
the mean time.

Next we demonstrate the effectiveness of C-SFO by evalu-
ating several optimization scenarios summarized in Table 3,
in terms of optimal objective, the true value of a function
obtained via SPICE simulation and the specification for each
metric. Geometric programming is unable to find good solu-
tions as it could not predict performance within acceptable
accuracy, i.e. 50% error found in the gain spec. Although
quadratic polynomial performs better than GP, its violation
in the gain spec is still too large to identify a true feasible so-
lution evaluated by SPICE. In contrast, C-SFO is able to find
the good solution for all three cases owing to the accuracy of
the model.

Note that even though C-SFO is most accurate among all
three options, we cannot guarantee the true feasibility in every
case, e.g. case 3 of Table 3, because of the residual model er-
ror. However, statistically, higher fitting accuracy translates
into better performance in optimization. We run 127 experi-
ments by varying numerical values of constraints and extract
the average rate of constraint satisfaction, i.e. the rate of find-
ing true feasible solution given threshold of violation in Table
2. We find that C-SFO framework always outperforms the
quadratic polynomial model given different violation thresh-
olds. In addition, average violation error is consistent with
fitting error, that quadratic polynomial have about 4% aver-
age violation while the sparse polynomial model can reduce
that to 2.5%.

In terms of runtime, the results are summarized in Table

Table 5: Error Reduction for VCO Max Frequency
Training Error Test Error

Method Max Error RMS Error Max Error RMS Error
Monomial 15.9% 2.6% 9% 2.7%
Quad Poly 4.1% 1.03% 5.8% 1.5%

C-SFO 1.5% 0.17% 0.68% 0.15%

Figure 3: VCO Used for Experiments.

Table 6: Optimization Results: VCO
C-SFO Quad Poly GP

Case # Metric Spec Model SPICE Model SPICE Model SPICE

Case 1
Power min 4.17 4.17 3.30 4.07 N/A N/A
FMax (MHz) >2.5 2.507 2.507 2.5 2.43 N/A N/A
FMin (MHz) <0.5 0.479 0.479 0.423 0.46 N/A N/A

Case 2
Power min 3.054 3.054 2.9 3.45 3.11 3.02
FMax (MHz) >2 2.00 2.00 2.00 1.98 2.00 1.97
FMin (MHz) <0.5 0.369 0.36 0.36 0.40 0.39 0.36

Case 1
Power min 5.44 5.43 4.74 5.41 N/A N/A
FMax (MHz) >3 3.01 3.021 3.00 2.97 N/A N/A
FMin (MHz) <0.6 0.598 0.599 0.59 0.595 N/A N/A

4. One iteration of C-SFO takes 5 seconds even with relax-
ation order 5. In order to converge to acceptable accuracy
for Lagrangian multipliers, we need 20 iterations on average
for binary search, mentioned in Section 3. In this point of
view, our framework also gives a trade-off between runtime
and optimization performance.

Figure 3 depicts the schematic of a voltage-controlled os-
cillator. Apart from transistor width W and L, we also take
the control voltage Vcntl into consideration as an input vari-
able. By symmetry between transistors between current mir-
rors and equal strength between transistors in inverters, we
are able to reduce number of input variable to 6. The out-
put performance considered here are maximum, minimum fre-
quency and power. We follow the same procedure as 2-stage
OPAMP cases: pick the range of 80% (0.6 to 1.4) and sample
two data sets, 1000 points for training and 100 points for test
separately.

We first show the ability of regression in C-SFO to explore
the high-degree polynomial space to reduce fitting error for
maximum frequency. Again we choose maximum frequency
because it is the most difficult to fit among all three met-
rics. Results are summarized in Table 5. In this case, the
advantage of the C-SFO framework is more pronounced with
a 20X improvement in accuracy comparison to posynomial
and 10X to quadratic polynomial. Table 6 gives the compar-
ison of optimization performance. In cases 1 and 3, GP finds
no feasible solution while the sparse polynomial model is able
to identify feasible solutions. This result agrees with our the-
oretical study that improvements in accuracy help reducing
the rate of constraint violation. Particularly in the VCO case,
our C-SFO framework is superior to others in all three cases.
That can be explained in terms of a better model that we fit
to SPICE data.

5. CONCLUSIONS
In this paper, we present a coupled approach, combining fit-

ting and polynomial optimization, C-SFO. We demonstrate
that by tailoring regression to the optimization procedure,

powerful SDP techniques for (non convex) polynomial opti-
mization can be leveraged to greatly improve the accuracy of
equation based approaches for analog synthesis. Our results
demonstrate promise, showing that significant improvements
are possible in terms of both model accuracy and reliability
in meeting performance constraints.

6. REFERENCES
[1] A. S. Bandeira, K. Scheinberg, and L. N. Vicente.

Computation of sparse low degree interpolating
polynomials and their application to derivative-free
optimization. Mathematical programming, 2012.

[2] S. Boyd, T. Lee, et al. Optimal design of a cmos
op-amp via geometric programming. TCAD, 2001.

[3] W. Daems, G. Gielen, and W. Sansen. Simulation-based
generation of posynomial performance models for the
sizing of analog integrated circuits. TCAD, 2003.

[4] M. del Mar Hershenson. Design of pipeline
analog-to-digital converters via geometric programming.
In ICCAD, 2002.

[5] L. Jacob, G. Obozinski, and J.-P. Vert. Group lasso
with overlap and graph lasso. In ICML. ACM, 2009.

[6] J. Kim, J. Lee, and L. Vandenberghe. Techniques for
improving the accuracy of geometric-programming
based analog circuit design optimization. In ICCAD,
2004.

[7] S. Kim, M. Kojima, and H. Waki. Generalized
lagrangian duals and sums of squares relaxations of
sparse polynomial optimization problems. SIAM
Journal on Optimization, 2005.

[8] M. Krasnicki, R. Phelps, R. A. Rutenbar, and L. R.
Carley. Maelstrom: efficient simulation-based synthesis
for custom analog cells. In DAC, 1999.

[9] J. B. Lasserre. Global optimization with polynomials
and the problem of moments. SIAM Journal on
Optimization, 2001.

[10] J. B. Lasserre. Convergent sdp-relaxations in
polynomial optimization with sparsity. SIAM Journal
on Optimization, 2006.

[11] S.-H. Lui, H.-K. Kwan, and N. Wong. Analog circuit
design by nonconvex polynomial optimization: Two
design examples. IJCTA, 2010.

[12] T. McConaghy, P. Palmers, G. Gielen, and M. Steyaert.
Simultaneous multi-topology multi-objective sizing
across thousands of analog circuit topologies. In DAC,
2007.

[13] A. Mutapcic, K. Koh, S. Kim, and S. Boyd. Ggplab
version 1.00 a matlab toolbox for geometric
programming, 2006.

[14] P. A. Parrilo and B. Sturmfels. Minimizing polynomial
functions. DIMACS, 2003.

[15] A. K. Singh, K. Ragab, M. Lok, C. Caramanis, and
M. Orshansky. Predictable equation-based analog
optimization based on explicit capture of modeling error
statistics. TCAD, 2012.

[16] J. A. Tropp and A. C. Gilbert. Signal recovery from
random measurements via orthogonal matching pursuit.
IEEE Trans Inf Theory, 2007.

[17] H. Waki, S. Kim, M. Kojima, M. Muramatsu, and
H. Sugimoto. Algorithm 883: Sparsepop—a sparse
semidefinite programming relaxation of polynomial
optimization problems. TOMS, 2008.

[18] M. Yuan and Y. Lin. Model selection and estimation in
regression with grouped variables. JRSS, 2006.

