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Abstract—We consider a robust-optimization-driven system-
level approach to interference management in a cellular broad-
band system operating in an interference-limited and highly dy-
namic regime. Here, base stations in neighboring cells (partially)
coordinate their transmission schedules in an attempt to avoid
simultaneous max-power transmission to their mutual cell edge.
Limits on communication overhead and use of the backhaul
require base station coordination to occur at a slower time scale
than the customer arrival process.

The central challenge is to properly structure coordination
decisions at the slow time scale, as these subsequently restrict
the actions of each base station until the next coordination
period. A further challenge comes from the fact that over longer
coordination intervals, the statistics of the arriving customers,
e.g., the load, may themselves vary or be only approximately
known. Indeed, we show that performance of existing approaches
degrades rapidly as the uncertainty in the arrival process
increases.

In this paper we show that a two-stage robust optimization
framework is a natural way to model two-time-scale decision
problems. We provide tractable formulations for the base-station
coordination problem, and show that our formulation is robust
to fluctuations (uncertainties) in the arriving load. This tolerance
to load fluctuation also serves to reduce the need for frequent
re-optimization across base stations, thus helping minimize the
communication overhead required for system level interference
reduction. Our robust optimization formulations are flexib le,
allowing us to control the conservatism of the solution. Oursim-
ulations show that we can build in robustness without significant
degradation of nominal performance.

Index Terms—Robust Optimization, System Level Optimiza-
tion, Interference Management.

I. INTRODUCTION

I N down-link cellular systems with small cells and full
frequency re-use, base station service rates are coupled

by inter-cell interference, thus jeopardizing their perfor-
mance. Thus minimizing the effect of inter-cell interference is
paramount. Rather than physical-level approaches that require
millisecond-scale inter-base-station coordination, i.e., at the
time scale of channel fluctuations, (e.g., zero-forcing) or
frequency partitioning (increasingly undesirable as the num-
ber of base stations increases), we consider here asystem
level algorithmic approach, that aims to determine an optimal
scheduling policy of the whole system simultaneously, to
minimize joint transmissions of base stations to their mutual
boundary. While avoiding the requirement to communicate at
the millisecond time scale, a naive implementation of such
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a scheme would require full knowledge of the behavior of
arriving customers over the entire system at all time, thus
requiring base stations to communicate all information of
any change in the spatial load – arguably prohibitively high
inter-base station communication overhead. To overcome this
difficulty, Rengarajan and de Veciana [1] propose a novel
framework in which customers are aggregated into classes,
and then base stations coordinate at this coarse level, jointly
optimizing a transmission schedule using only the statistics
of customer (class) arrivals, and offered load, allowing base-
station coordination to occur at a much slower time scale than
customer arrival.

When the offered load is known at the time of coordination,
the techniques proposed in [1] have been shown to increase
the stability region, decrease file transfer delay significantly
at all load levels, while also increasing the uniformity in
the coverage. As we demonstrate in the sequel, this exact
knowledge of the offered load at each time seems to be crucial,
as performance quickly degrades as uncertainty in the offered
load increases.

In this paper we develop tools from multi-stage robust
and stochastic optimization to tackle this problem of load
uncertainty. Most approaches to solve resource allocation
problems in wireless networks are based on exact knowledge
of environment variables, e.g., channel state information, of-
fered load, noise power, etc. as in [2], [3] and [4] and some
use robust optimization paradigms to handle uncertain random
variables, see e.g. [5]. However, to the best of our knowledge,
there have been no attempts to model adaptability by using
techniques from multi-stage adjustable robust and stochastic
optimization in wireless cellular systems.1

Our first contribution is in showing that multi-stage (for our
purposes here, two-stage) robust and stochastic optimization
provide the right optimization framework for considering
distributed decision-making with coordination and uncertainty
at different time scales in wireless cellular systems. We
consider uncertainty in the load, as well as uncertainty in
its distribution among base stations. We formulate tractable
(in particular, convex) optimization formulations for robust
coordination considering both capacity-maximizing and delay-
minimizing formulations. In extensive simulation experiments,
we show that our robust and stochastic optimization formu-
lations successfully immunize our solutions to variationsin
the load, both in terms of the stability region, and also in
terms of average delay. At the same time, we investigate the

1There has been some work in network provisioning, although quite
different from what we consider here, e.g., see [6] where a two-stage robust
optimization approach is used to solve a network flow problem.
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so-called price of robustness, or conservatism, by considering
the degradation of the nominal performance (how well does
the robust solution do when there are no variations?). Our
simulation results indicate that we can build in robustness
without significant degradation from the nominal performance
(i.e., when there is no deviation, the robust solution does not
sacrifice much in terms of performance).

We focus on two models for the variation in the customer
arrival process. In the first, we assume that the arrival rateto
base station cells is fixed, while the distribution of customers
and their location within each cell varies. This models the
scenario where total traffic is unaffected, but some event leads
to variation in traffic distribution patterns. Next, we consider
the case where the distribution of customers among base
station cells, and within cells is as expected, but the aggregate
level of traffic varies. This models a scenario where customer
location is unaffected, but some event leads to increased or
decreased total traffic.

The structure of this paper is as follows. In Section II we
provide the basic system model and setup of our problem.
In Section III, we briefly summarize some previous results
and give background on Adjustable Robust Optimization and
Stochastic Optimization problems. In Section IV-A, we moti-
vate the robust and stochastic optimization counterpart ofthe
system-level network optimization problem [1]. In Sections
IV-B, IV-C and IV-D, we consider three different formulations,
each designed for different models for the uncertainty of
the arrival process, and different objective functions, namely,
capacity maximization, and delay minimization. We provide
simulations to illustrate the performance of each. Finally,
Section V concludes this paper.

II. SYSTEM MODEL AND SETUP

Rengarajan and de Veciana [1] propose a novel solution
to enhance wireless broadband capacity in the case where
neighboring cell transmissions are the limiting source of inter-
ference. To take advantage of the diversity in users’ sensitivity
to interference from the neighboring cells, they first group
customers in each base station into several classes according
to their interference sensitivities and system loads. Thenbase
stations jointly optimize a transmission policy determining
which class of customers each base station should serve at each
time and at what power level,using only statistics of channel
quality and load distribution. Their model is the starting place
for our work here, and therefore we use similar notation to
theirs wherever possible.

Let N be the number of base stations. Each base station,b,
serves customers that are aggregated intoKb customer classes.
We assume that each customer is served by a single base
station. The clustering of customers into a smaller number
of classes serves to reduce the complexity of the required
communication and coordination, as well as the computational
complexity of the resulting optimization problems. We adopt
the same aggregation model and approach as in [1], and hence
refer the reader there for the details. Arrivals to classk of base
station b are Poisson with rateλbk and mean file sizeF bk.
Thus the offered load isρbk = λbkF bk.

The operating decisions at each base station consist of
the transmit power level, and the customer class served.
The interference seen at a particular cell, depends only on
the power level at which its neighboring base stations are
transmitting, and in particular does not depend on the customer
class being served.

This simple observation forms the basis for the low-
overhead coordination schemes we propose: base stations use
customer load statistics to coordinate via slow-scale usage
of the backhaul, deciding on a power schedule (who will
transmit at what power, at what time). This decouples the the
actions of neighboring base stations, allowing each individual
base station to serve its customer classes optimally, subject
to the agreed-upon power constraint, in order to best serve
the realization of customer load at each moment. Crucially,
no information about the realized customer load need be
communicated to neighboring base stations, eliminating the
need for high-bandwidth, low-lattency backhaul usage.

This paper is about optimally deciding upon the slow-scale
power-level schedule, when the offered load~ρ = {ρbk} is
not known exactly. We define “optimality” with respect to
two objectives: maximizing the stability of the system, i.e.,
the offered load at which delay remains bounded, and also
minimizing average customer delay at all loads. We approach
these two tasks by formulating optimization problems mod-
eling capacity maximization and delay minimization. While
delay minimization is directly related to the quantity we wish
to control, capacity maximization is an indirect proxy that
offers computational advantages because it can be expressed as
a linear function of our decision variables. This is particularly
true for our two-stage optimization formulations.

We now give the single stage optimization formulation
with no uncertainty, using a generic objective function, to
set the stage for the multi-stage formulations in the following
sections.

We assume that there areL total joint power profiles at
which the base stations can transmit, and we define decision
variables~α = {αl}

L
l=1 to denote the fraction of time the base

stations spend broadcasting at each power profile. The reason
we require joint power profile variables, rather than individual
power profile variables for each base station, is that this will
enable power profile coordination across base stations. We
define decision variables~p = {p l

bk} to denote the fraction of
time base stationb serves customer classk, when joint power
profile l ∈ {1, . . . , L} is being used.

As defined above, let~λ denote the customer arrival rate,
so that~ρ is the vector of offered loads. In the formulation
below, there is no uncertainty in~λ (and hence in the offered
load). Letf(~α, ~p) denote the objective function. The objective
functionf(~α, ~p) is at this point generic, but below we provide
two formulations, differing only in our choice off , with one
modeling capacity maximization, the other delay minimiza-
tion.

We obtain the following optimization problem:
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min~α,~p f(~α, ~p)
s.t. ρbk ≤ Rbk(~α, ~p) ∀b, k

∑Kb

k=1 p
l
bk ≤ αl ∀b, l

∑L
l=1 αl ≤ 1

p l
bk ≥ 0 ∀b, k, l

αl ≥ 0 ∀l

. (1)

We useRbk(~α, ~p) to denote the capacity allocated to classk in
base stationb by schedule~α, ~p. Therefore the constraintsρbk ≤
Rbk(~α, ~p) are the system stability constraints. The remaining
constraints merely say that the fractions of time spent in each
power profile cannot add to more than 100% of time, and that
amount of time each base station wishes to serve customers
under power profilel must not exceed the total amount of time
allocated to power profilel, namely,αl.

In this formulation, the schedule of power profiles (or
power levels) is determined simultaneously with the decisions
of which class each base station will serve. The novel op-
timization concept we propose here, is to separate power-
level decisions from serving-class decisions, into a two-stage
design: the former decisions (power profile) are our coordina-
tion decisions, taken before the uncertainty is realized, while
the latter decisions (serving class) are made only after the
uncertainty is realized (i.e., after the base stations see their
own realized load in each customer class). These form our
first and second stage decisions, as discussed below.

III. A DJUSTABLE ROBUST/STOCHASTIC OPTIMIZATION

Stochastic and Robust Optimization have recently found
successful application in select signal processing and com-
munication problems ( [?], [?]) where they have been impor-
tant in dealing with parameter uncertainty. One of the main
optimization-based contributions of this paper is to introduce
multi-stage robust and stochastic optimization as a usefuland
important modeling methodology and a computational tool
for problems in wireless networks. In particular, we aim to
illustrate its use in dealing with dynamic problems affected
with uncertainty, yet where coordination among agents (in our
case, neighboring base stations) occurs at a slower time scale
than the realization of the uncertainty (in our case, the variation
in customer arrivals).

The purpose of this section is to provide a brief review
of robust and stochastic optimization, and then to introduce
multi-stage (particularly two-stage) robust and stochastic op-
timization problems. We first review the single-stage (non-
adaptable) robust optimization paradigm. To make the connec-
tion to our subsequent discussion on two-stage optimization
clear, we write the optimization variables asu and v. In
the sequel, the former will denote first-stage decisions to be
implemented immediately, while the latter will denote second-
stage decisions, implemented at a later time. In our context,
first stage decisions will represent coordination decisions made
prior to the realization of the customer arrivals (i.e., thejoint
power level schedule,{αl}), and our second stage decisions
will represent scheduling decisions made by each base station
only after the arrival of customers is realized (which customer
classes to serve under each power profile,{plbk}).

A. Robust and Stochastic Optimization

Consider a, for now linear, optimization problem:

minu,v cu+ qv
s.t. Uu+ V v ≤ b

u ≥ 0
v ≥ 0.

(2)

Robust and Stochastic Optimization address the setting
wherein the parametersU and V are only partially known,
or are noisy or corrupted.2 Stochastic optimization treats the
uncertainty as driven by a distribution, and requires the con-
straints to be satisfied in some probabilistic sense, eitherwith
high probability, or by penalizing constraint violation and then
minimizing the expected penalty (e.g., [?], [?], [11]). Robust
optimization, on the other hand, assumes adeterministic, set-
baseduncertainty model.3 Using ω to denote uncertainty, the
robust optimization formulation of the nominal problem above
takes the following form:

minu,v cu+ qv
s.t. U(ω)u+ V (ω)v ≤ b ∀ω ∈ Ω

u ≥ 0
v ≥ 0

(3)

For a variety of uncertainty sets,Ω, the above problem is
efficiently solvable and in fact is again a linear program for
polyhedralΩ. For further details, we refer the reader to [9],
[10] and the survey [?] and references therein.

Whether or notω is treated as a stochastic or a deterministic
(worst-case) parameter, a key element of the formulation is
that decisionsu and v are fixedbefore the realization of the
uncertainty,ω. If, however, the second stage decisions,v, are
implemented onlyafter the realization of the uncertainty,ω,
i.e., if the decision maker can observeω before implementing
v, then the above formulation is potentially very conservative.
It means that the decision-maker is giving up any opportunity
to adapt to the realized uncertainty. One may also consider
the so-calledreceding-horizonapproach, wherein one solves
the above problem,and then reoptimizesonce additional infor-
mation about the uncertainty becomes known. This approach
has two disadvantages: first, it requires potentially significantly
increased computation since optimization problems must be
solved at the faster time scale, and second, the first-stage
decisions may still be suboptimal, since they are obtained by
solving the above problem that does not explicitly take into
account any second-stage adaptability.

B. Two-Stage Optimization

The two-stage optimization paradigm addresses precisely
these two short-comings of the above model. It allows us to
decide only the first stage, non-adjustable variablesu, and

2The case of unknownc, q, or b can be treated similarly, through a simple
transformation of the problem.

3Numerous papers have shown that despite the worst-case formulation of
Robust optimization as opposed to the probabilistic natureof the uncertainty
in stochastic optimization, the performance of solutions to the former typically
compares very favorably to that of the latter. Indeed, the two formulations are
often differentiated by suitability of the formulation, and as we discuss at
length in this paper, tractability of the resulting optimization problem.
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instead of optimizing overv, we can optimize overpolicies
for adaptability for the second stage solution. Moving the
objective function into the constraints, we can write this fully-
adaptable optimization formulation as:

minu,γ γ
s.t. ∃u such that∀ω ∈ Ω,

∃ v with















γ ≥ cu+ qv(ω)
U(ω)u+ V (ω)v(ω) ≤ b
u ≥ 0
v(ω) ≥ 0















(4)

Equivalently, this can be written as:

minu maxω cu+ qv(ω)
s.t. U(ω)u+ V (ω)v(ω) ≤ b ∀ω

u ≥ 0
v(ω) ≥ 0 ∀ω

(5)

The second formulation is an optimization over first stage de-
cisions, and second stage functions of uncertainty, or policies.
Following [7], [8], we refer to these equivalent formulations
as theAdaptable Robust Counterpart(ARC).

Similarly, we may consider the two-stage model for stochas-
tic optimization, where the uncertainty,ω, is chosen according
to some distribution. In our setting, constraints correspond
to stability of our system, and therefore we must impose
these constraints deterministically, obtaining a cross between
the robust and stochastic optimization viewpoints. Thus, the
resulting multi-stage optimization problem takes the form:

minu cu+ Eω[minv(ω) qv(ω)]
s.t. U(ω)u+ V v(ω) ≤ b ∀ω

u ≥ 0
v(ω) ≥ 0 ∀ω.

(6)

In general, for both robust and stochastic optimization for-
mulations, obtaining the optimal policyv(ω) exactly is in-
tractable, and we must be content to look for solutions in
restricted classes of functions. In this paper, we consider
two techniques for accomplishing this in a computationally
tractable manner. First, following [7] and adapting techniques
that have been used in inventory management problems, we
consider affine functions of the uncertainty,ω:

v(ω) = w +Wω.

While even this restriction may in general be NP-hard, we
show that in our application, such an affine rule is (a) tractable,
reducing to a linear optimization, (b) easily implemented at the
fast time-scale, requiring only evaluation of an affine function,
thus much more computationally efficient than reoptimization
required in the receding horizon approach, and (c) in one
important case we consider (see Section IV-B), this affine
policy does not restrict the adaptability and hence for thiscase
is equivalent to the ARC.

We next consider an approach allowing for more general
non-affine functions of the uncertainty. Here, we essentially
fit a piecewise bilinear function to the optimal adaptability
function. This approach is important for the case where affine
adaptability is not optimal, or the resulting optimizationprob-
lem for affine adaptability is not tractable. We show that our

piecewise bilinear approach can be computed via a tractable,
convex optimization problem, and further show that its per-
formance is very close to that of optimal adaptability. Like
affine adaptability, this approach also has the implementation
advantage of not requiring reoptimization at the second stage,
and hence at the fast time scale, thus providing significant
computational advantages over the receding horizon approach.

C. Advantages of Different Two-Stage Formulations

We have discussed several variants of stochastic and robust
optimization, with different formulations of adaptability. Also,
as mentioned in the introduction, we consider two different
noise models for the customer arrival process. Some com-
binations of uncertainty model and adaptability formulation
prove more tractable than others. We try to elucidate this
in the following section. In addition, we try to illustrate the
breadth of the modeling and computational techniques we
introduce, even though space constraints make it impossible
to exhaustively explore every combination of adaptability
formulation and uncertainty model.

IV. U NCERTAIN ARRIVAL RATES

When the loads are known exactly, simulations reveal that
the solution of [1] demonstrates remarkable improvements
over a simple baseline no-coordination solution. Yet these
gains deteriorate when the offered loads change over time at
a faster scale than the base stations can re-optimize. In this
paper, by using robust and stochastic optimization techniques
( [7], [9], [10] and [11]), we propose an approach to make the
solution robust to the changes of the offered loads.

A. Two-stage Optimization

In [1], base stations coordinate, choosing joint power-
and-class transmission schedules. We consider separatelythe
two different elements of the transmission profile: a power
profile and a class profile. The power profile represents the
transmit power level for each base station; the class profile
represents the class that each base station will serve. Since
the interference level seen by a base station depends only on
the power level of its neighbors, and not which classes they
might be serving, fixing a power profile also fixes interference
to each base station. Therefore class scheduling decisions
become decoupled as soon as power profiles are fixed, and
hence inter-base-station communication is not needed beyond
power profile scheduling. Hence, the two-stage optimization
setting becomes natural: before the actual offered loads for
each class in each base station become known, base stations
coordinate and decide upon the power profile schedule; next
base stations decide on the class profile schedule after the
offered loads become known without further communication
with other base stations.

This two-stage formulation allows us to consider robustness
to uncertainty in the offered load. We consider two different
uncertainty models for the variation in the offered loads,
exploiting the strengths of robust and stochastic optimization,
respectively. The first model is afixed total arrival rate
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model: while the actual arrival rates of user classes fluctuate
in each base station, the sum of fluctuations is always zero.
We handle this using the robust optimization paradigm: the
rates fluctuate arbitrarilyin a given uncertainty set, and the
solution must be robust to all allowed variations. The second
model is afixed arrival rates ratiomodel in which the total
arrival rate fluctuates while the fraction of each arrival rate
for each base station and class is fixed. We use a stochastic
optimization approach. The arrival rate varies according to a
stochastic process, and the solution minimizes the expected
customer delay. In both models, we deterministically enforce
stability constraints. We believe that many other models, and
combinations of the ones we treat here, can be approached
using the methods we present in this paper.

We illustrate the main two-stage optimization formulation
using the robust model. The stochastic model is considered in
detail in Section IV-C. Let~λ denote the (unknown) offered
load, varying in an uncertainty setZ. The decision vari-
ables{αl}

L
l=1 represent the joint decisions on power profile

coordination, with eachl = 1, . . . , L denoting a different
joint power profile. The second stage decisions are given by
p l
bk(

~λ). Note that unlike the formulation in (1), here these
decisions depend on the realization of the uncertainty,~λ.
This explicit dependence on~λ indicates that they are second-
stage decisions, made after the uncertainty realization. The
variables{αl}

L
l=1, on the other hand, have no dependence

on ~λ, as they are made in the coordination phase, before the
realization of the uncertainty. We write the variablesp l

bk(
~λ) as

general functions here for clarity of exposition. To solve the
optimization, we must restrict the class of functions, so asto
maintain tractability (in particular, convexity) of the problem.
In the next two sections (for both stochastic and robust
formulations), we restrict toaffine functions of the uncertainty.
We obtain the following robust optimization problem, which
is the robust analog to the optimization given in (1) above:

min
~α,~p(~λ) f(~α, ~p(~λ))

s.t. ρbk ≤ Rbk(~α, ~p(~λ)) ∀b, k ∀~λ ∈ Z
∑Kb

k=1 p
l
bk(

~λ) ≤ αl ∀b, l ∀~λ ∈ Z
∑L

l=1 αl ≤ 1

p l
bk(

~λ) ≥ 0 ∀b, k, l ∀~λ ∈ Z
αl ≥ 0 ∀l.

, (7)

As in (1),Rbk(~α, ~p(~λ)) denotes the capacity allocated to class
k in base stationb by schedule~α, ~p(~λ)4. System stability is
enforced in the first constraint. The second constraint enforces
consistency of the class scheduling decisions with respectto
the first stage power profile schedule. The third constraint says
that the power profile schedule cannot take more than100%
of time, and the final two nonnegativity constraints say that
fractions of time must be nonnegative.

Note that with a singleton uncertainty set, we recover
the original single-stage formulation in (1), and the original
formulation in [1].

4If base stations use processor sharing to serve users withineach class,Rbk

is given by a harmonic mean (see [1]). Optimizing using the harmonic mean
may be difficult, as it is nonconvex, and for this reason, we use an arithmetic
mean approximation.

As mentioned above, we use two different objectives for
the optimization problems following [1]. Minimizingf =
∑L

l=1 αl corresponds to a capacity maximizing schedule,

while f =
∑N

b=1

∑Kb

k=1

ρbk

Rbk(~α,~p(~λ))

1−
ρbk

Rbk(~α,~p(~λ))

minimizes the total

average delay. Because capacity maximization can be ex-
pressed as a linear function of the decision variables, it
offers computational advantages. However, the resulting power
profile schedule and class schedule has worse average-delay
performance than the schedule resulting from minimizing the
delay explicitly.

We use the formulation above, and both the capacity
maximization and delay minimization objective functions,
combined with different optimization paradigms in different
uncertainty models, to explore tractability, effectiveness and
applicability of various approaches to our problem. As space
limitations prohibit an exhaustive exploration of all combi-
nations of optimization model, noise model, and objective
function, we state why we choose one over the other for each
models:

1) First, in Section IV-B we consider the case of fixed total
arrival rate. We use the robust optimization paradigm,
modeling the uncertainty in a deterministic way. We
consider capacity maximization, and show that in this
case the optimal adaptable functions are in fact affine.
Thus we obtain the optimal adaptable functions solving a
convex optimization problem. This is largely made pos-
sible because capacity maximization is a linear objective
function.

2) Next, in Section IV-C, we consider the case of uncertain
total arrival rate, but fixed ratio across customer classes.
Due to the very low dimensionality (1-dimension) of the
uncertainty set of the problem which is not the case in 1),
we can sample and approximate the distribution of the
uncertainty to use a stochastic optimization formulation,
minimizing the expected customer delay that results in
better average delay than the capacity maximization.

3) Finally, in Section IV-D, we revisit the case of fixed
total arrival rate, this time minimizing delay rather than
maximizing capacity. Because of the form of the delay
minimization objective, a robust optimization formu-
lation for the noise, along with an affine model for
adaptability, is no longer tractable. We use a stochastic
model for the uncertainty, and develop a new piecewise
linear model for the adaptability.

B. Uncertain Arrival Rates Ratio Model with Fixed Total
Arrival Rate

1) Assumptions and an Adjustable Counterpart:In this
section, we consider afixed total arrival ratemodel. If load
fluctuations are independent across classes, by LLN results,
fixed total arrival rate holds in the limit of many classes. While
we do not address it in this paper, we note that one can treat the
case where the sum of fluctuations is small but not necessarily
zero, in a precisely analogous manner.
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Let us define an uncertainty set,Zb for base stationb

Zb =

{ ~λb = (λb1, · · · , λbKb
)|

∀k, λbk ∈ [(1− θ)λ∗
bk, (1 + θ)λ∗

bk],
∑Kb

k=1 λbk =
∑Kb

k=1 λ
∗
bk ≡ λ∗

b

}

(8)
whereλ∗

bk is the nominal arrival rate of user classk in base
station b. Thus the true rates must satisfy two properties:
individually they cannot deviate by more thanθ% of the
nominal value; and moreover the aggregate deviation must be
rate neutral, that is, the sum of the realizations must equalthe
sum of the nominal rates.

Note that the level of deviation is controlled by the pa-
rameterθ. This parameter is under the control of the system
designer, who adjusts thisθ parameter in order to balance the
conservatism and robustness of the solution. Since we enforce
feasibility for all realizations in the uncertainty set, larger θ
results in a more robust, but also more conservative solution.
For θ = 0, we recover the nominal optimal solution, which
corresponds to knowing the exact rates to be{λ∗

bk}. For each
base stationb, ~p depends on the arrival rates in its cell. Thus
second stage decision variables tune themselves accordingto
the offered loads, and no additional communication overhead
is required.

2) Affinely Adjustable Robust Counterpart (AARC):Adapt-
ability allows the second stage solutions to respond to the
realized uncertainty. Yet as discussed in Section III-B, for
computational reasons, we must restrict the structure of the
functions representing the second stage decisions in (7), in
order to be able to solve the resulting optimization problem.
Restrictingp l

bk to be an affine function of~λb, as in [7], [12],
we havep l

bk(
~λb) = π l

bk0 +
∑Kb

m=1 π
l

bkmλbm. Using this for-
mulation, and setting capacity maximization as our objective
function, we obtain a linear two-stage robust optimization
problem:

min~α,~π

∑L
l=1 αl

s.t. ρbk ≤
∑L

l=1(π
l

bk0 +
∑Kb

m=1 π
l

bkmλbm)EI [R
l
I |b, k]

∀b, k , ∀~λb ∈ Zb
∑Kb

k=1(π
l

bk0 +
∑Kb

m=1 π
l

bkmλbm) ≤ αl

∀b, l , ∀~λb ∈ Zb
∑L

l=1 αl ≤ 1

π l
bk0 +

∑Kb

m=1 π
l

bkmλbm ≥ 0

∀b, k, l , ∀~λb ∈ Zb

αl ≥ 0 ∀l
(9)

Theorem 1:The AARC (9) is equivalent to the following
linear optimization problem.

min
~α,~π,~β,~ζ,~µ,~σ,~ν

F

s.t. β l
bk0 − β l

bkm ≤ π l
bkm ≤ β l

bk0 + β l
bkm ∀b, k, l,m

ζbkm =
∑L

l=1 π
l

bkmE[Rl
I |b, k] ∀b, k,m, k 6= m

ζbkm =
∑L

l=1 π
l

bkmE[Rl
I |b, k]− F bk

∀b, k,m, k = m
µbk0 − µbkm ≤ ζbkm ≤ µbk0 + µbkm ∀b, k,m

σ l
bm =

∑Kb

k=1 π
l

bkm ∀b, l,m
ν l
b0 − ν l

bm ≤ σ l
bm ≤ ν l

b0 + ν l
bm ∀b, l,m

∑L
l=1 π

l
bk0EI [R

l
I |b, k]

+
∑Kb

m=1 ζbkmλ∗
bm

− θ
∑Kb

m=1 µbkmλ∗
bm ≥ 0 ∀b, k

∑Kb

k=1 π
l

bk0 +
∑Kb

m=1 σ
l

bmλ∗
bm

+ θ
∑Kb

m=1 ν
l

bmλ∗
bm ≤ αl ∀b, l

π l
bk0 +

∑Kb

m=1 π
l

bkmλ∗
bm

− θ
∑Kb

m=1 β
l

bkmλ∗
bm ≥ 0 ∀b, k, l

βl
bkm ≥ 0 ∀b, k,m, l,m 6= 0

µbkm ≥ 0 ∀b, k,m,m 6= 0
νlbm ≥ 0 ∀b,m, l,m 6= 0
∑L

l=1 αl ≤ F
∑L

l=1 αl ≤ 1
αl ≥ 0 ∀l

(10)
Proof: Consider the4th constraint of (9) :

π l
bk0 +

Kb
∑

m=1

π l
bkmλbm ≥ 0 ∀b, k, l, ∀~λb ∈ Zb.

This constraint holds if and only if the optimal value in the
following problem

min~λb
π l
bk0 +

∑Kb

m=1 π
l

bkmλbm

s.t. λbm ≥ (1− θ)λ∗
bm ∀m ∈ [1, · · · ,Kb]

λbm ≤ (1 + θ)λ∗
bm ∀m ∈ [1, · · · ,Kb]

∑Kb

m=1 λbm = λ∗
b

(11)
is nonnegative.

By strong duality for linear programming (e.g., [?]), the
optimal value is nonnegative if and only if the corresponding
dual problem

max
~γ,~δ,ξ

∑Kb

m=1(1− θ)λ∗
bmγm

−
∑Kb

m=1(1 + θ)λ∗
bmδm + λ∗

bξ + π l
bko

s.t. γm − δm + ξ = π l
bkm ∀m ∈ [1, · · · ,Kb]

~γ ≥ 0
~δ ≥ 0

(12)
has a nonnegative optimal value., i.e.,∃~γ,~δ, andξ s.t.

∑Kb

m=1(1− θ)λ∗
bmγm

−
∑Kb

m=1(1 + θ)λ∗
bmδm + λ∗

bξ + π l
bko ≥ 0

γm − δm + ξ = π l
bkm ∀m ∈ [1, · · · ,Kb]

~γ ≥ 0
~δ ≥ 0

(13)
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Let β l
bkm = γm + δm andβ l

bk0 = ξ. Then (13) is equivalent
to

∑Kb

m=1 λ
∗
bm(π l

bkm − β l
bk0)

− θ
∑Kb

m=1 λ
∗
bmβ l

bkm + λ∗
bβ

l
bk0 + π l

bko ≥ 0
2γm = β l

bkm − β l
bk0 + π l

bkm ≥ 0
2δm = β l

bkm − β l
bk0 − π l

bkm ≥ 0

(14)

which is equivalent to

π l
bk0 +

∑Kb

m=1 π
l

bkmλ∗
bm − θ

∑Kb

m=1 β
l

bkmλ∗
bm ≥ 0

β l
bk0 − β l

bkm ≤ π l
bkm ≤ β l

bk0 − β l
bkm

β l
bkm ≥ 0

(15)

Similar arguments can be applied for the rest of the constraints
in (9).

Solving the resulting LP, we obtain an affine policy for
determining the class profile schedule for each base station,
as a function of its local offered load variation.

Moreover we claim that with this affine policy, this Affinely
Adjustable Robust Counterpart is actually equivalent to the
Adjustable Robust Counterpart of the nominal optimization
problem which means that we get no penalty by restricting
the second stage policy to be an affine function.

Proposition 1: In this model, the AARC is equivalent to
the ARC, and is hence optimal.

Proof: Note that the AARC and the ARC have the same
objectives. Therefore it suffices to show the equivalence of
constraint sets of those two problems.

Let X (ARC) be the constraint set of ARC andX (AARC)
be the constraint set of AARC. First we show thatX (ARC)⊇
X (AARC). Since the ARC has no restriction on the class
of second stage policies while the AARC restrict the class
of functions into affine functions, obviously, the ARC has a
bigger feasible set which includes that of the AARC. Hence,
if a solution is feasible to the constraint set of the AARC, it
is also feasible to the constraint set of the ARC. Therefore
X (ARC)⊇ X (AARC).

Now we show thatX (ARC)⊆ X (AARC). Notice that for
each base stationb, the uncertainty setZb is a polytope given
by a list of linear inequalities and an equality. Although the
uncertainty set is inRKb , because of the equality constraint, it
is in aKb − 1 dimensional subspace. Letn be the number of
extreme points ofZb and~λ1, · · · , ~λn be the extreme points.
ThenZb = Conv{~λ1, · · · , ~λn}. In the case of fixed recourse
and a convex hull uncertainty set of a finite set, the ARC is
given by the following LP.

min ~α,~pλ1
,··· ,~pλn

∑L
l=1 αl

s.t. ρbk ≤
∑L

l=1(pλj
)lbkEI [R

l
I |b, k] ∀b, k ∀j

∑Kb

k=1(pλj
)lbk ≤ αl ∀b, l ∀j

∑L
l=1 αl ≤ 1

(pλj
)lbk ≥ 0 ∀b, k, l ∀j

αl ≥ 0 ∀l

(16)

For each extreme point~λj , the second stage solution is given
by ~pλj

. For a pointλ inside the uncertainty set, we know
that it can be represented by a convex combination ofKb

extreme points,~λ =
∑Kb

j=1 cj
~λj , since the uncertainty set is

in a Kb− 1 dimensional subspace (Without loss of generality,
let those points be the firstKb extreme points.) Moreover the
solution for this pointλ is given by a convex combination of
the solutions of those extreme points,~pλ =

∑Kb

j=1 cj~pλj
.

Let’s focus on a specific time fraction for base stationb,
customer classk under power profilel, plbk. For this proof
we further restrict our AARC policy so that it does not have
a constant term. We haveplbk =

∑Kb

m=1 π
l
bkmλbm. Then by

solving the following equation, we get an affine policy which
agrees on every extreme point.











λ11 λ12 · · · λ1Kb

λ21 λ22 · · · λ2Kb

...
...

. . .
...

λn1 λn2 · · · λnKb











·











πl
bk1

πl
bk2
...

πl
bkKb











=











(pλ1)
l
bk

(pλ2)
l
bk

...
(pλn

)lbk











,

where λij is jth coordinate of ith extreme point. Since
the uncertainty set is inKb − 1 dimensional subspace, the
following matrix has rank at mostKb, hence we can get an
exact solution forπl

bk1, π
l
bk2, · · · , π

l
bkKb

so that every pair of
extreme point and its solution can be represented by our affine
policy.











λ11 λ12 · · · λ1Kb
(pλ1)

l
bk

λ21 λ22 · · · λ2Kb
(pλ2)

l
bk

...
...

. . .
...

...
λn1 λn2 · · · λnKb

(pλn
)lbk











Moreover for a general pointλ inside the uncertainty set, the
solution is given by

~pλ = ~λ · ~π

= (
∑Kb

j=1 cjλj) · ~π

=
∑Kb

j=1 cj(λj · ~π)

=
∑Kb

j=1 cj~pλj

Therefore, any feasible solution of ARC can be represented
by a feasible solution of AARC, which meansX (ARC)⊆
X (AARC).

3) Simulations and Results:For purposes of comparison,
we evaluate the performance of our affine policy using the
same simulation model of Rengarajan and de Veciana [1]. We
consider three base stations facing each other in a hexagonal
layout with radius 250m. A carrier frequency of 1GHz and
a bandwidth of 10MHz are assumed. The base stations are
assumed to be able to transmit at three different power levels:
0, 5 and 10W. The mean file size is 2MB.

We use different total arrival rates ranging from 0.5 to 2.2
and different protection levels,θ, restricting the uncertainty to
an interval ranging from 0% to 40% of the nominal value.
We use 100,000 customer samples to estimate the harmonic
formula capacities and the mean delay. For each pair of total
arrival rate and protection level, we randomly pickλbk ’s in
their bounds and compute the estimated delay 1,000 times
to get average performance under the proposed uncertainties.
Out of 1,000 experiments, we count the number of cases that
the system becomes unstable and compute the average mean
delay under the proposed uncertainties. As shown in Fig. 1(a),
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at higher loads and higher uncertainty levels the number of
unstable experiments is larger with the solution of the nominal
optimization problem, i.e.,θ = 0. On the other hand, as shown
in Fig. 1(b), with the solution of the AARC, the number of
unstable experiments remains at zero until very high load,
2.0/sec. Note that even without fluctuations of arrival rates,
the system is unstable around that point.

Fig. 2(a) and Fig. 2(b) show the average mean delay
with the solution of the nominal optimization problem and
the solution of the AARC respectively, at each load and
uncertainty level. Since we cannot compute the mean delay of
unstable systems, we draw average delay plots assigning the
delay of an unstable experiment to be as large as the maximum
delay over all delays of stable experiments. Thus the results
we report are conservative, in the sense that since algorithms
result in fewer unstable experiments, we are underreporting
the decrease in average delay. At lower loads, even with high
uncertainty levels the nominal solutions slightly outperform
the AARC solutions. However, at higher loads, while the
AARC solutions give acceptable low average mean delays, the
nominal solutions give extremely high average mean delays
even if the system is stable.

As we typically do not know precisely the uncertainty level
in reality, we must balance the tradeoff between building
in protection to uncertainty, and the loss of performance
in the nominal setting, i.e., the cost of over-protection. To
compare these factors, we pick three protection levels, 0%
(nominal), 20% and 40%, and we consider the performance
of these three solutions in different uncertainty regimes.Figure
3(a) shows the load at which stability breaks down for each
solution, under large (40%) uncertainty. The nominal solution
becomes unstable at a much lower average arrival rate than the
20%-protection and 40%-protection solutions. Interestingly,
the 20%-protection solution remains stable for very heavy
loads – essentially its stability performance is comparable to
the 40%-protection solution. Figures 3(b,c,d) show the average
mean delay (from simulation) of our three solutions. Figure
3(b) shows the delay curves when there isno uncertainty
in arrival rates, i.e., the simulations are generated according
to the nominal (and known) offered load. This shows the
price of robustness. Indeed, as expected, the nominal solution
outperforms both robust solutions giving lower delay – but
the difference becomes pronounced only at very high loads.
Meanwhile, Figures 3(c) and (d) illustrate the relatively quick
deterioration of the nominal solution’s delay performance
under 20% and 40% uncertainty in the offered load. These
results illustrate that the 20%-protection solution appears to
have a low price of robustness, i.e., performance comparable
to the nominal solution in the no-uncertainty regime, and yet
captures most of the robustness properties of even the 40%-
protection solution, outperforming the latter, except when both
the load and the uncertainty level are high.

C. Uncertain Total Arrival Rate Model with Fixed Arrival
Rates Ratio

1) Assumptions and an Adjustable Counterpart:In this
section we consider a stochastic uncertainty model. We assume

the arrival process is Poisson with rateλ and users arrive
uniformly over the entire area. Thus for each classk and base
stationb, the fraction of arrival rate seen is fixed regardless
of the change of the total arrival rate. We assume the total
arrival rate,λ, changes according to a Markov process with
drift towards the nominal rate. We discretize this process,
approximating it via a Discrete Markov chain. We show
that using this approximation preserves the convexity of the
nominal problem.

We let∆ represent the quantization level for the arrival rate
process, with probabilities̄p and q̄ representing the drift away
from and towards the nominal rate, respectively. The following
is the transition matrix of the Markov chain we use:

∀i ≥ 0,
P r(λ(t + 1) = λ∗(1 + (i+ 1)∆)|λ(t) = λ∗(1 + i∆)) = p̄
P r(λ(t + 1) = λ∗(1 + i∆)|λ(t) = λ∗(1 + (i + 1)∆)) = q̄

∀i ≤ 0,
P r(λ(t + 1) = λ∗(1 + i∆)|λ(t) = λ∗(1 + (i − 1)∆)) = q̄
P r(λ(t + 1) = λ∗(1 + (i− 1)∆)|λ(t) = λ∗(1 + i∆)) = p̄,

(17)
Although we know the full distribution of the arrival rate, we
accept some error probabilityǫ and truncate the distribution
of the arrival rate into a finitely supported distribution. We do
this because stability needs to be enforced deterministically,
and hence must be enforced over the full support of the
distribution. Letn be a number such thatPr(λ ∈ [λ∗(1 −
n∆), λ∗(1 + n∆)]) ≥ 1− ǫ.

2) Affinely Adjustable Stochastic Counterpart of Objective:
Computational experiments in [1] reveal that the solution
obtained by minimizing delay indeed has improved delay per-
formance over the solution obtained by maximizing capacity.
In the stochastic formulation, the objective is an expectedvalue
over a discretely supported distribution, and hence becomes a
sum of weighted variations. If the original objective is convex,
then so is its expectation. Exploiting this fact and taking
advantage of the knowledge of the distribution, we use the
delay-minimizing objective rather than the capacity-optimizing
objective we use in the robust formulation.

Then the objective of the stochastic optimization problem
is as follows.

Eλ

[

∑N
b=1

∑Kb

k=1

ρbk
Rbk(~pbk(λ))

1−
ρbk

Rbk(~pbk(λ))

]

=
∑

i∈{−n,n} Pr(λ = λ∗(1 + i∆))

×

(

1
λ

∑N
b=1

∑Kb

k=1

ρbk
Rbk(~pbk(λ))

1−
ρbk

Rbk(~pbk(λ))

)

.

3) Affinely Adjustable Robust Counterpart of Constraints:
Although we use a sampling method for the objective to
preserve the convexity of the problem, we choose the similar
robust optimization techniques we used in Section IV-B for
the constraints. The stability constraints must be enforced de-
terministically. That is, we want to make the solution feasible
for every realization of the arrival rate, hence the constraints
must remain feasible for all arrival rates in the support of
the truncated distribution, not only for the sample points on
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Fig. 1. AARC with capacity optimizing and affine policy onfixed total arrival ratemodel : Number of unstable experiments out of 1000 simulations against
different actual uncertainty levels ranging from 0% to 40%:(a) the nominal solution, (b) each AARC solution runs against its predicted uncertainty level.
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Fig. 2. AARC with capacity optimizing and affine policy onfixed total arrival ratemodel : Average file transfer delay against different actualuncertainty
levels ranging from 0% to 40%: (a) the nominal solution, (b) each AARC solution runs against its predicted uncertainty level.

the discretized distribution. In the truncated distribution, the
support of the total arrival rate,λ, is [λ∗(1−n∆), λ∗(1+n∆)].
Next, we restrictp l

bk to be an affine function ofλ, i.e., p l
bk =

π l
bk0 + π l

bk1λ. Let θ = n∆ andY = [λ∗(1 − θ), λ∗(1 + θ)].
Then as we discussed in Section IV-B1,θ represents the
conservatism of the solution andY is the support of the
uncertainty set. We can controlθ by adjusting the truncation
error ǫ. If we allow smaller truncation error, then the support
of the uncertainty set gets larger, i.e.,n gets larger, hence the
conservatism levelθ becomes higher. Let̃λbk be the fraction of
arrival rate of user classk in base stationb. Thenλbk = λ̃bkλ,
and the resulting optimization problem is as follows.

min ~α,~π

∑

i∈{−n,n} Pr(λ = λ∗(1 + i∆))

×

(

1
λ

∑N
b=1

∑Kb

k=1

ρbk
Rbk(~pbk(λ))

1−
ρbk

Rbk(~pbk(λ))

)

s.t. λ̃bkλF bk ≤
∑L

l=1(π
l

bk0 + π l
bk1λ)EI [R

l
I |b, k]

∀b, k ∀λ ∈ Y
∑Kb

k=1(π
l

bk0 + π l
bk1λ) ≤ αl ∀b, l ∀λ ∈ Y

∑L
l=1 αl ≤ 1

π l
bk0 + π l

bk1λ ≥ 0 ∀b, k, l ∀λ ∈ Y
αl ≥ 0 ∀l

,

(18)
Since we use an arithmetic mean approximation forRbk,

and since~pbk(λ) is linear in ~π, Rbk is linear in ~π. The

term
ρbk

Rbk(~pbk(λ))

1−
ρbk

Rbk(~pbk(λ))

in the objective function is convex in~π
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Fig. 3. AARC with capacity optimizing and affine policy onfixed total arrival ratemodel : (a) Number of unstable experiments out of 1000 simulations
against 40% uncertainty level of offered loads, (b), (c) and(d) Average file transfer delay : (b) at the nominal offered loads, (c) against 20% uncertainty level
of offered loads, (d) against 40% uncertainty level of offered loads.

if ρbk

Rbk(~pbk(λ))
≤ 1 ( [1]) and indeed, this is the stability

condition, and hence enforced for everyλ in the support of
its truncated distribution. Moreover, the infinite constraints
(“∀λ ∈ Y ”) can be transformed into a finite collection of
linear constraints, again by employing a duality argument as
in the previous section. Therefore this problem is a convex
optimization problem with linear constraints.

4) Simulations and Results:We evaluate the performance
of our optimization using the same simulation model of [1],
and as before, using stability and delay as our evaluation met-
rics. We use different nominal arrival rates ranging from 0.5 to
2.2 and different truncation error,ǫ ranging from 1% to 20%.
As we see in Section IV-C3,lower truncation error means
higher protection level. We use 100,000 customer samples to
estimate the harmonic formula capacities and the mean delay.
At each simulation, we choose an arrival rate randomly from
the stationary distribution of our Markov chain model. For
each pair of nominal arrival rate and error probability, we run
1,000 experiments. We count the number of cases that the
system is unstable and compute the average mean delay under

the Markov chain model. We use the transition matrix (17)
with p̄ = 1/3, q̄ = 2/3, and∆ = 6%.

As shown in Fig. 4(a), under nominal arrival rates, our
uncertainty-protected solutions perform comparably to the
nominal solution, hence the price of robustness is very low
in this model.

Fig. 5(a) shows the number of unstable experiments for
each solution and Fig. 5(b) shows the average delay under
the uncertain arrival rates process changing acording to the
Markov process described earlier. At higher loads, the number
of unstable experiments is larger with the nominal solution.
But, even the 20% truncation error model shows better results
than the nominal solution in terms of stability and optimality.
This is because the distribution of the uncertainty is concen-
trated around its mean. Even the truncated distribution with
20% error captures the original distribution well. The original
distribution of the Markov chain with transition matrix (17)
and the truncated distributions under different truncation errors
are shown in Fig. 4(b). On the other hand, the constraints with
less than 20% truncation error models (i.e., biggerθ) are overly
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protective, and the conservativeness of the solution results in
infeasibility at higher loads.

D. Revisiting the Uncertain Arrival Rates Ratio Model with
Fixed Total Arrival Rate

Now we consider anew thefixed total arrival ratemodel
of Section IV-B. Recall that there, although minimizing delay
directly is more effective than maximizing capacity (as demon-
strated by empirical results – see [1] for details), we have used
the capacity maximization because the delay minimization is
non-linear, and thus its AARC is not computationally tractable
[9]. Tractability requires either convexity in the uncertain
variables, or concavity along with an uncertainty set with a
small set of extreme points. Neither of these hold for our
model. To overcome this difficulty, in this section we use
the stochastic optimization paradigm, following Section IV-C.
First we briefly state our method and formulate the optimiza-
tion problem. Then we show that the resulting problem is com-
putationally tractable. Finally, we give some computational
results.

1) Piecewise Linear Adaptability:In the AARC approach,
we try to compute the optimal affine adaptable solution,
however, as discussed above, this approach is intractable in
this setting. Instead, we take advantage of the low dimension-
ality of the uncertainty set, and choose a finite collection of
representative points. For each point, we choose the optimal
value for the adaptable variables, and then extend to the full
uncertainty set by interpolating between these points using
bilinear functions.

The uncertainty set is determined by simple range con-
straints and one equality constraint, hence it is easy to findthe
extreme points of the uncertainty set. We use points uniformly
distributed on the grid whose end points are those extreme
points of the uncertainty set. This procedure is similar to
the discretizing distribution method we use in Section IV-C.
However, the uncertainty set is not one-dimensional as in the
fixed ratio model, but rather has dimension equal to the number
of customer classes. The number of points in the grid grows
exponentially in the dimension. Therefore it is necessary to
use a sparse grid, and use bilinearity to interpolate between
the grid points, as explained below.

The grid effectively selects a finite number of represen-
tative uncertainty realizations from the uncertainty set.We
enumerate the points on the grid as{λ1, . . . , λM}. We select a
single power profile variable~α (first stage solution, that cannot
depend on the realization of the uncertainty) andM customer
profile variables,{~pλ1 , . . . , ~pλM

}, corresponding to each of
the M points on the grid, i.e., each of the realizations of
the uncertainty. Assuming a uniform distribution over theM
points {λ1, . . . , λM}, we choose~α, {~pλ1 , . . . , ~pλM

} in order
to minimize the mean delay over the points on the grid, and so
that the power-profile/customer-profile pair(~α, ~pλk

) is feasible
for the uncertainty realizationλk, for k = 1, . . . ,M , where
feaibility again means stability.

We accomplish this by solving the following optimization
problem.

min ~α,~pλ1
,~pλ1

,··· ,~pλM
∑M

j=1

∑B
b=1

∑K
k=1 −1 + 1

/(

1− ρbk

Rbk(~pλj
)

)

s.t. (λj)bkF bk ≤
∑L

l=1(pλj
)lbkEI [R

l
I |b, k]

∀b, k , ∀j ∈ {1, · · · ,M}
∑Kb

k=1(pλj
)lbk ≤ αl ∀b, l , ∀j ∈ {1, · · · ,M}

∑L
l=1 αl ≤ 1

~pλj
≥ 0 ∀b, k, l , ∀j ∈ {1, · · · ,M}

αl ≥ 0 ∀l
(19)

Now, if the realized uncertainty is someλk, we have already
computed the optimal adaptable policy, namely,~pλk

. For a
realized point which is not on the grid (as will typically be
the case), we use bilinear interpolation using the solutions
of sample points on the grid. If the realized point is outside
the uncertainty set, we use the solution of nearest boundary
sample point. This way, we obtain an approximation of the
optimal second stage policy of the stochastic optimization
problem, for the entire uncertainty. Since the optimal adaptable
solution can be shown to be continuous, successively refining
the grid allows arbitrary approximation of the optimal solution,
although this comes at an increased computational cost, asM
grows.

2) Simulations and Results:We use the same simulation
model and uncertainty model of Section IV-B3. In order to
approximate the uncertainty set, we use 5 by 5 size grids.

Fig. 6 shows comparisons of the performances of the AARC
solution with capacity optimizing schedule we’ve obtainedin
Section IV-B and the stochastic solution with delay minimizing
schedule of this section. One comparison without uncertainty
in arrival rate(Fig. 6(a)) and the other with high uncer-
tainty(Fig. 6(b)). As shown in the figures, the delay minimizing
schedule outperforms the capacity optimizing schedule as we
expected. The performance gap increases as total arrival rate
increases.

Next we compare the performances of the nominal problem
solution and the solutions of stochastic problems with 20%
and 40% protection levels to see the cost of over-protection.
As shown in Fig. 7(a), the cost is negligible. Then we compare
the performances of those three solutions under large (40%)
uncertainty to see the benefit of robustness. Fig. 7(b) shows
a big performance gap between the original solution and the
approximated stochastic solution with 40% protection level at
higher loads.

V. DISCUSSION, CONCLUSION, AND FUTURE
WORK

We proposed several different approaches that attempt to
make the solution of the system level coordination optimiza-
tion problem robust to the variations of offered loads under
different models of uncertain data. In the case that each offered
load fluctuates individually but the sum of variations is zero,
we first used two-stage robust optimization with affine second-
stage decisions, obtaining tractable optimization formulations
to obtain solutions robust to variations in the offered load.
Later we used approximated stochastic optimization with
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Fig. 4. (a) Stochastic problem with delay minimizing and affine policy onfixed arrival rates ratiomodel : Number of unstable experiments out of 1000
simulations at the nominal arrival rates, (b) Distributionof the uncertain arrival rate: Original distribution of theMarkov chain v.s. Truncated distributions
under different truncation errors.
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Fig. 5. Stochastic problem with delay minimizing and affine policy on fixed arrival rates ratiomodel : against the Discrete Markov chain uncertainty model
of arrival rates with transition matrix (17) : (a) Number of unstable experiments, (b) Average file transfer delay.

sample points and interpolation. We also considered variation
in the total arrival rate. There, we combined the stochastic
optimization and the robust optimization paradigms, againob-
taining solutions that remain stable under heavy loads, andget
better average performance. In our simulation results, we have
shown that nominal solutions are vulnerable to the fluctuations
of the offered loads while properly tuned robust solutions
capture the best of both worlds: resilience to uncertainty,with
good performance even under the nominal setting.

Resilience to load variation could potentially help reduce
coordination and hence communication requirements, without
severely compromising the performance. Understanding the
tradeoffs involved, between the benefits and costs of more
frequent coordination is a key step towards understanding the
viability of implementation of such a system-level optimiza-
tion approach to interference mitigation, and is a topic of
future work.

An issue we have not addressed here, and the subject of
future work, is to treat the stochastic variation in the customer
arrival process. Particularly in the low-load regime, thiscould
result in empty customer classes, allowing base stations to
(briefly) turn off, thus increasing the rates observed by cus-
tomers of neighboring base stations. Optimizing coordination
schemes to take advantage of this effect is a natural domain for
multi-stage optimization models, although some considerable
challenges stand in the way of immediate extensions of the
methods presented here.
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