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Abstract—We consider a robust-optimization-driven system- a scheme would require full knowledge of the behavior of
level approach to interference management in a cellular brad-  arriving customers over the entire system at all time, thus
band system operating in an interference-limited and high} dy- yaqyiring base stations to communicate all information of
namic regime. Here, base stations in neighboring cells (p&ally) - . o .
coordinate their transmission schedules in an attempt to asid gny change |n_ the spatial .Ioa(.j — arguably prOh'b't'VGIY high
simultaneous max-power transmission to their mutual cell dge.  inter-base station communication overhead. To overconmse th
Limits on communication overhead and use of the backhaul difficulty, Rengarajan and de Veciana [1] propose a novel
require base station coordination to occur at a slower time sale  framework in which customers are aggregated into classes,
than the customer arrival process. . and then base stations coordinate at this coarse levetlyjoin

The central challenge is to properly structure coordinatian Lo . . .
decisions at the slow time scale, as these subsequently rist optimizing a transmlss!on schedule using only the_StaBSt'
the actions of each base station until the next coordination Of customer (class) arrivals, and offered load, allowingeba
period. A further challenge comes from the fact that over lomer station coordination to occur at a much slower time scala tha
coordination intervals, the statistics of the arriving cusomers, customer arrival.

e.g., the load, may themselves vary or be only approximately  \yhen the offered load is known at the time of coordination
known. Indeed, we show that performance of existing approdtes the techni din M1h b h to i '
degrades rapidly as the uncertainty in the arrival process e tec nllques propose in [ ]_ ave been s OW”_ o_lpcrease
increases. the stability region, decrease file transfer delay signitiga

In this paper we show that a two-stage robust optimization at all load levels, while also increasing the uniformity in
framework is a natural way to model two-time-scale decision the coverage. As we demonstrate in the sequel, this exact
problems. We provide tractable formulations for the base-tation knowledge of the offered load at each time seems to be cyucial

coordination problem, and show that our formulation is robust as performance quickly dearades as uncertaintv in theasffer
to fluctuations (uncertainties) in the arriving load. This tolerance P q y deg y

to load fluctuation also serves to reduce the need for frequen load increases.

re-optimization across base stations, thus helping mininzie the In this paper we develop tools from multi-stage robust
communication overhead required for system level interfeence and stochastic optimization to tackle this problem of load
ra?lc(j)L\:\;:igonl:IS?(l)Jrccl)’r?gglsihgpég?liszs‘:\i/c;]isigrg}l‘{[ll‘?gc;r(])slut?(l)’?l ‘;')eﬁgr'ﬁ' uncertainty. Most approaches to solve resource allocation
uIationsg show that we can build in robustness without signifiant problems n W|rele§s networks are based on exaCt anWIedge
degradation of nominal performance. of environment variables, e.g., channel state informatisn
fered load, noise power, etc. as in [2], [3] and [4] and some
use robust optimization paradigms to handle uncertainaimnd
variables, see e.g. [5]. However, to the best of our knowdedg
there have been no attempts to model adaptability by using

|. INTRODUCTION techniques from multi-stage adjustable robust and stdichas

N down-link cellular systems with small cells and fulloptimization in wireless cellular systerhs.

frequency re-use, base station service rates are Coup|e@ur first contribution is in showing that multi-stage (forrou
by inter-cell interference, thus jeopardizing their perfopurposes here, two-stage) robust and stochastic optionzat
mance. Thus minimizing the effect of inter-cell interfeceris provide the right optimization framework for considering
paramount. Rather than physical-level approaches thatreeq distributed decision-making with coordination and unaity
millisecond-scale inter-base-station coordination,, iat the at different time scales in wireless cellular systems. We
time scale of channel fluctuations, (e.g., zero-forcing) &@onsider uncertainty in the load, as well as uncertainty in
frequency partitioning (increasingly undesirable as tbenn its distribution among base stations. We formulate trdetab
ber of base stations increases), we consider hesysteem (in particular, convex) optimization formulations for resi
level algorithmic approach, that aims to determine an optimgpordination considering both capacity-maximizing anthye
scheduling policy of the whole system simultaneously, t@inimizing formulations. In extensive simulation expeeints,
minimize joint transmissions of base stations to their rbutuwe show that our robust and stochastic optimization formu-
boundary. While avoiding the requirement to communicate l@tions successfully immunize our solutions to variatioms

the millisecond time scale, a naive implementation of sudh€e load, both in terms of the stability region, and also in
terms of average delay. At the same time, we investigate the

Index Terms—Robust Optimization, System Level Optimiza-
tion, Interference Management.
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so-called price of robustness, or conservatism, by coriegle The operating decisions at each base station consist of
the degradation of the nominal performance (how well do#ise transmit power level, and the customer class served.
the robust solution do when there are no variations?). OUhe interference seen at a particular cell, depends only on
simulation results indicate that we can build in robustnefise power level at which its neighboring base stations are
without significant degradation from the nominal performen transmitting, and in particular does not depend on the custo
(i.e., when there is no deviation, the robust solution daats rclass being served.

sacrifice much in terms of performance).

We focus on two models for the variation in the customer | S Simple observation forms the basis for the low-
arrival process. In the first, we assume that the arrival tate °Vernead coordination schemes we propose: base statiens us

base station cells is fixed, while the distribution of custosn CUStomer load statistics to coordinate via slow-scale eisag
and their location within each cell varies. This models th‘é‘c the _backhaul, deciding on a_ power ‘_schedule (who will
scenario where total traffic is unaffected, but some everttde traljsmlt at w_hat poyver, at what _tlme). Th's_ decouplt_as t_he the
to variation in traffic distribution patterns. Next, we cates ctions of neighboring base stations, allowing each inlial

the case where the distribution of customers among ba@S€ Station to serve its customer classes optimally, subje
station cells, and within cells is as expected, but the aggee © the ?gre_ed-u?on power ?onstralnt, I?] order to best §e|:ve
level of traffic varies. This models a scenario where customtge realization of customer load at each moment. Crucially,

location is unaffected, but some event leads to increased mformatlon abou_t the _reallzed cust_omer 'O_a‘?' n(_aed be
decreased total traffic. communicated to neighboring base stations, eliminatiregg th

The structure of this paper is as follows. In Section II wheed for high-bandwidth, low-lattency backhaul usage.

provide the basic system model and setup of our problem.hig paper is about optimally deciding upon the slow-scale
In Section l1ll, we briefly summarize some previous resu'ﬁower-level schedule, when the offered logd= {py} is

and give background on Adjustable Robust Optimization angt known exactly. We define “optimality” with respect to
Stochastic Optimization problems. In Section IV-A, we motiyyo objectives: maximizing the stability of the system.,.,i.e
vate the robust and stochastic optimization counterpathef ine offered load at which delay remains bounded, and also
system-level network optimization problem [1]. In Sec8onminimizing average customer delay at all loads. We approach
IV-B, IV-C and IV-D, we consider three different formulatis, these two tasks by formulating optimization problems mod-
each designed for different models for the uncertainty @ling capacity maximization and delay minimization. While
the arrival process, and different objective functionsna, - gelay minimization is directly related to the quantity westvi
capacity maximization, and delay minimization. We providg, control, capacity maximization is an indirect proxy that
simulations to illustrate the performance of each. Finallyffers computational advantages because it can be exgrasse
Section V concludes this paper. a linear function of our decision variables. This is patecly

true for our two-stage optimization formulations.

I[l. SYSTEM MODEL AND SETUP . . N .
We now give the single stage optimization formulation

Rengarajan and de Veciana [1] propose a novel solutiiith no uncertainty, using a generic objective function, to
to enhance wireless broadband capacity in the case whse¢the stage for the multi-stage formulations in the foifmyv
neighboring cell transmissions are the limiting sourcentéii- sections.
ference. To take advantage of the diversity in users’ seitgit o .
to interference from the neighboring cells, they first group WWe assume that there are total joint power profiles at -
customers in each base station into several classes amgorMYh'Ch the base stations can transmit, and we define decision
to their interference sensitivities and system loads. These Vvariablesa = {ou}iz, to denote the fraction of time the base
stations jointly optimize a transmission policy determini Stations spend broadcasting at each power profile. Themeaso
which class of customers each base station should servetat &4€ réquire joint power profile variables, rather than indal
time and at what power levelising only statistics of channel power profile varlalples for e.ach. base station, is that .thlls Wi
quality and load distributionTheir model is the starting place€"abPle power profile coord|nalt|on across base stations. We
for our work here, and therefore we use similar notation @€fine decision variables = {p,, } to denote the fraction of
theirs wherever possible. time base statioh serves customer clags when joint power

Let N be the number of base stations. Each base statjonProfile f € {1,..., L} is being used.
serves customers that are aggregated ffy@ustomer classes. As defined above, leh denote the customer arrival rate,

We assume that each customer is served by a single bag€nat 7 is the vector of offered loads. In the formulation
station. The clustering of customers into a smaller ”Um_bﬁélow, there is no uncertainty iR (and hence in the offered
of classes serves to reduce the complexity of the requiredyy | et f(, 7 denote the objective function. The objective
commun_lcatlon and coo.rd|nat|o.n,.as yvell as the CompUtat'orfunctionf(&,ﬁ) is at this point generic, but below we provide
complexity of the resulting optimization problems. We adog,,o formulations, differing only in our choice of, with one

the same aggregation model and approach as in [1], and hepgeling capacity maximization, the other delay minimiza-
refer the reader there for the details. Arrivals to clasdg base tion.

stationb are Poisson with rate\bk_and mean file size&',y,.
Thus the offered load igyr, = Aok Flok- We obtain the following optimization problem:
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A. Robust and Stochastic Optimization

ming. 7 a, . . o
ap [(@P) Consider a, for now linear, optimization problem:

S.t. ook < Rpk: (&,m Vb, k
ZkKL Py <ou Vb1 (1) min, , cu+ qu
S <1 ' s.t. Uu+Vo<b @
Py, = 0 Vb, k, 1 u>0
ar >0 Vi v > 0.

We useR, (@, p) to denote the capacity allocated to class Robust and Stochastic Optimization address the setting
base statioh by schedule?, 7. Therefore the constraints, < Wherein the parameted§ and V' are only partially known,

Ry (d, ) are the system stability constraints. The remainir@f &re noisy or corrupteti Stochastic optimization treats the
constraints merely say that the fractions of time spent gheatncertainty as driven by a distribution, and requires the-co
power profile cannot add to more than 100% of time, and thglfaints to be satisfied in some probabilistic sense, eititér
amount of time each base station wishes to serve customf@ig probability, or by penalizing constraint violationdathen

under power profilé must not exceed the total amount of timéninimizing the expected penalty (e.g7,[[?], [11]). Robust
allocated to power profilé, namely,a;. optimization, on the other hand, assumeseterministic, set-

In this formulation, the schedule of power profiles (oPaseduncertainty modet. Usingw to denote uncertainty, the
power levels) is determined simultaneously with the decisi obust optimization formulation of the nominal problem ago
of which class each base station will serve. The novel ofkes the following form:

timization concept we propose here, is to separate power- min, , cu+ qu

level decisions from serving-class decisions, into a tteqs st Uwu+V(ww <b YweQ

design: the former decisions (power profile) are our coardin w>0 )
tion decisions, taken before the uncertainty is realizeijev v >0

the latter decisions (serving class) are made only after the ) ] )
uncertainty is realized (i.e., after the base stations kew t FOr @ variety of uncertainty sets}, the above problem is

own realized load in each customer class). These form difficiently solvable and in fact is again a linear program for
first and second stage decisions, as discussed below. polyhedralQ). For further details, we refer the reader to [9],
[10] and the survey] and references therein.

Whether or notv is treated as a stochastic or a deterministic

i o (worst-case) parameter, a key element of the formulation is
Stochastic and Robust Optimization have recently fouRfat decisions: and v are fixedbeforethe realization of the

successful application in select signal processing and- Coffhcertainty.w. If, however, the second stage decisionsare
munication problems (7, [?]) where they have been impor-implemented onlyafter the realization of the uncertainty,
tant in dealing with parameter uncertainty. One of the majiy_ if the decision maker can obsenvebefore implementing
optimization-based contributions of this paper is to idtroe ,, then the above formulation is potentially very consemeti
multi-stage robust and stochastic optimization as a usefdl |+ jeans that the decision-maker is giving up any opporunit
important modeling methodology and a computational tog) agapt to the realized uncertainty. One may also consider
for problems in wireless networks. In particular, we aim tg,e so-calledreceding-horizorapproach, wherein one solves
illustrate its use in dealing with dynamic problems affélctehe apove problemand then reoptimizesnce additional infor-
with uncertainty, yet where coordination among agents (in omation about the uncertainty becomes known. This approach
case, neighboring base stations) occurs at a slower tinle sqgs two disadvantages: first, it requires potentially Sigatly
than the realization of the uncertainty (in our case, th&tian jncreased computation since optimization problems must be
in customer arrivals). solved at the faster time scale, and second, the first-stage
The purpose of this section is to provide a brief revieyecisions may still be suboptimal, since they are obtained b
of robust and stochastic optimization, and then to intredugo|ving the above problem that does not explicitly take into

multi-stage (particularly two-stage) robust and stodbasp- account any second-stage adaptability.
timization problems. We first review the single-stage (non-
adaptable) robust optimization paradigm. To make the conne s Optimizat
tion to our subsequent discussion on two-stage optimizatif: TWO-Stage Optimization
clear, we write the optimization variables asand v. In The two-stage optimization paradigm addresses precisely
the sequel, the former will denote first-stage decisionseo Hese two short-comings of the above model. It allows us to
implemented immediately, while the latter will denote seto decide only the first stage, non-adjustable variahlesind
stage decisions, implemented at a later time. In our context o .
first stage decisions will represent coordination decisimade __The case of unknown, g, or b can be treated similarly, through a simple

. .. . . . transformation of the problem.
prior to the realization of the customer arrivals ("e" IbElt SNumerous papers have shown that despite the worst-casellfgion of
power level schedulej«;}), and our second stage decisiongobust optimization as opposed to the probabilistic natfiriae uncertainty
will represent scheduling decisions made by each baserstail stochastic optimization, the performance of solutianthe former typically

v af h ival of . lized (which compares very favorably to that of the latter. Indeed, the fovmulations are
only after the arrival of customers is realized (which costo often differentiated by suitability of the formulation, ciras we discuss at

classes to serve under each power proﬁ}ék}). length in this paper, tractability of the resulting optimtibn problem.

I11. ADJUSTABLE ROBUST/STOCHASTIC OPTIMIZATION
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instead of optimizing ovep, we can optimize ovepolicies piecewise bilinear approach can be computed via a tractable
for adaptability for the second stage solution. Moving theonvex optimization problem, and further show that its per-
objective function into the constraints, we can write thiblyf formance is very close to that of optimal adaptability. Like
adaptable optimization formulation as: affine adaptability, this approach also has the implemiemtat
advantage of not requiring reoptimization at the secongesta

;n,in“” gusuch thatvw € Q and henc_e at the fast time scale, thus _providi_ng significant
¥ > cu J; o(w) . computational advantages over the receding horizon approa
2w with Uw)u+V(wh(w) <b ) _ .
u>0 C. Advantages of Different Two-Stage Formulations
v(w) =0 We have discussed several variants of stochastic and robust
Equivalently, this can be written as: optimization, with different formulations of adaptabylitAlso,
) as mentioned in the introduction, we consider two different
min, max, cu+ qu(w) noise models for the customer arrival process. Some com-
S.t. Uw)u+V(wo(w) <b Vw (5) binations of uncertainty model and adaptability formuati
u=>0 prove more tractable than others. We try to elucidate this
v(w) =0 vw in the following section. In addition, we try to illustratbe

The second formulation is an optimization over first stage dereadth of the modeling and computational techniques we
cisions, and second stage functions of uncertainty, ocjesli introduce, even though space constraints make it imp@ssibl
Following [7], [8], we refer to these equivalent formulat® to exhaustively explore every combination of adaptability

as theAdaptable Robust Counterpa@ARC). formulation and uncertainty model.
Similarly, we may consider the two-stage model for stochas-
tic optimization, where the uncertainty, is chosen according IV. UNCERTAIN ARRIVAL RATES

to sorrt;ﬁ_ d|st][|but|on. In our sgtu?]g, ﬁonstramts corr.empo When the loads are known exactly, simulations reveal that
to stapility o _our system,_ an there ore we MUSt IMPO§Re sojution of [1] demonstrates remarkable improvements
these constraints deterministically, obtaining a crossveen over a simple baseline no-coordination solution. Yet these

the rlqbust aln_d StOChaSt.'C _Optl_m|zat|ol;: wewiomtsh. Tfhbe, tgains deteriorate when the offered loads change over time at
resulting multi-stage optimization problem takes the form - aster scale than the base stations can re-optimize. $n thi

min, cu+ E,[min, ) qu(w)] paper, by using robust and stochastic optimization techasq
s.t. Uw)u+ Vo(w) <b Yw ©) ( [7],_[9], [10] and [11]), we propose an approach to make the
u>0 solution robust to the changes of the offered loads.
v(w) >0 Yw.
In general, for both robust and stochastic optimization foA. Two-stage Optimization
mulations, obtaining the optimal policy(w) exactly is in-  |n [1], base stations coordinate, choosing joint power-

tractable, and we must be content to look for solutions #hd-class transmission schedules. We consider sepatagely
restricted classes of functions. In this paper, we considgjo different elements of the transmission profile: a power
two techniques for accomplishing this in a computationallyrofile and a class profile. The power profile represents the
tractable manner. First, following [7] and adapting tecfu@s transmit power level for each base station; the class profile
that have been used in inventory management problems, M@resents the class that each base station will servee Sinc
consider affine functions of the uncertainty, the interference level seen by a base station depends only on
the power level of its neighbors, and not which classes they
might be serving, fixing a power profile also fixes interferenc
While even this restriction may in general be NP-hard, we each base station. Therefore class scheduling decisions
show that in our application, such an affine rule is (a) tlaleta become decoupled as soon as power profiles are fixed, and
reducing to a linear optimization, (b) easily implementetha hence inter-base-station communication is not needednoeyo
fast time-scale, requiring only evaluation of an affine fisrt, power profile scheduling. Hence, the two-stage optimizatio
thus much more computationally efficient than reoptimiati setting becomes natural: before the actual offered loads fo
required in the receding horizon approach, and (c) in oeach class in each base station become known, base stations
important case we consider (see Section IV-B), this affirmordinate and decide upon the power profile schedule; next
policy does not restrict the adaptability and hence for thise base stations decide on the class profile schedule after the
is equivalent to the ARC. offered loads become known without further communication
We next consider an approach allowing for more genenaith other base stations.
non-affine functions of the uncertainty. Here, we essdntial This two-stage formulation allows us to consider robustnes
fit a piecewise bilinear function to the optimal adaptapilitto uncertainty in the offered load. We consider two différen
function. This approach is important for the case where affinincertainty models for the variation in the offered loads,
adaptability is not optimal, or the resulting optimizatiprob- exploiting the strengths of robust and stochastic optitiona
lem for affine adaptability is not tractable. We show that ouespectively. The first model is fixed total arrival rate

v(w) =w+ Ww.
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model: while the actual arrival rates of user classes fluetua As mentioned above, we use two different objectives for
in each base station, the sum of fluctuations is always zetioe optimization problems following [1]. Minimizingf =
We handle this using the robust optimization paradigm: t@l L o corresponds to a capaC|ty maximizing schedule,
rates fluctuate arbitrarilyn a given uncertainty setand the SRS
solution must be robust to all allowed variations. The secor while £ = 35,0, 3t 1- % minimizes  the total
model is afixed arrival rates ratiomodel in which the total average delay. Because capamty maximization can be ex-
arrival rate fluctuates while the fraction of each arrivalerapressed as a linear function of the decision variables, it
for each base station and class is fixed. We use a stochagfférs computational advantages. However, the resultovgep
optimization approach. The arrival rate varies accordmgt Profile schedule and class schedule has worse average-delay
stochastic process, and the solution minimizes the exgecierformance than the schedule resulting from minimizirgy th
customer delay. In both models, we deterministically ezdor delay explicitly.
stability constraints. We believe that many other modetsl a We use the formulation above, and both the capacity
combinations of the ones we treat here, can be approacheakimization and delay minimization objective functions,
using the methods we present in this paper. combined with different optimization paradigms in diffate

We illustrate the main two-stage optimization formulatiomncertainty models, to explore tractability, effectiveseand
using the robust model. The stochastic model is consideredaipplicability of various approaches to our problem. As gpac
detail in Section IV-C. Letx denote the (unknown) offeredlimitations prohibit an exhaustive exploration of all coimb
load, varying in an uncertainty se. The decision vari- nations of optimization model, noise model, and objective
ables{a;}%_, represent the joint decisions on power profiléunction, we state why we choose one over the other for each
coordination, with eaci = 1,...,L denoting a different models:
joint power profile. The second stage decisions are given by
pyi (V). Note that unlike the formulation in (1), here these
decisions depend on the realization of the uncertaiﬁty,
This explicit dependence oh indicates that they are second-
stage decisions, made after the uncertainty realizatitve T
variables{a;}} ,, on the other hand, have no dependence
on X, as they are made in the coordination phase, before the
realization of the uncertainty. We write the variablgs()) as
general functions here for clarity of exposition. To solhe t
optimization, we must restrict the class of functions, sdoas 2)
maintain tractability (in particular, convexity) of theqgirlem.
In the next two sections (for both stochastic and robust
formulations), we restrict taffine functions of the uncertainty
We obtain the following robust optimization problem, which
is the robust analog to the optimization given in (1) above:

1) First, in Section IV-B we consider the case of fixed total
arrival rate. We use the robust optimization paradigm,
modeling the uncertainty in a deterministic way. We
consider capacity maximization, and show that in this
case the optimal adaptable functions are in fact affine.
Thus we obtain the optimal adaptable functions solving a
convex optimization problem. This is largely made pos-
sible because capacity maximization is a linear objective
function.

Next, in Section IV-C, we consider the case of uncertain
total arrival rate, but fixed ratio across customer classes.
Due to the very low dimensionality (1-dimension) of the
uncertainty set of the problem which is not the case in 1),
we can sample and approximate the distribution of the
uncertainty to use a stochastic optimization formulation,

gy FEAN) q pininizngtheexpecid cusomer dely it esis i
st pkabS Rl}k(g’p(/\)) Vo,k VA€ Z 3) Finally, in Section IV-D, we revisit the case of fixed
ko1 Pok(A) < Wb, vae 2 , (1) total arrival rate, this time minimizing delay rather than

Zl:g o<1 . maximizing capacity. Because of the form of the delay

Py(A) >0 Vb, k.l VAe Z minimization objective, a robust optimization formu-

o =0 vi. lation for the noise, along with an affine model for

adaptability, is no longer tractable. We use a stochastic
model for the uncertainty, and develop a new piecewise
linear model for the adaptability.

As in (1), Ry (@, 7(X)) denotes the capacity allocated to class

k in base statiorb by schedule®, p(A ) System stability is

enforced in the first constraint. The second constraintrea

consistency of the class scheduling decisions with resjpect

the first stage power profile schedule. The third constraips s

that the power profile schedule cannot take more théi¥ B. Uncertain Arrival Rates Ratio Model with Fixed Total

of time, and the final two nonnegativity constraints say thalrrival Rate

fractions of time must be nonnegative.

Note that with a singleton uncertainty set, we recover 1) Assumptions and an Adjustable Counterpalt: this

the original single-stage formulation in (1), and the arali Section, we consider fixed total arrival ratemodel. If load

formulation in [1]. fluctuations are independent across classes, by LLN results
fixed total arrival rate holds in the limit of many classes.iwh

_“If base stations use processor sharing to serve users witbinclassiy: e do not address it in this paper, we note that one can treat th

is given by a harmonic mean (see [1]). Optimizing using themtaic mean . . .
case where the sum of fluctuations is small but not necegsaril

may be difficult, as it is nonconvex, and for this reason, we ars arithmetic ' g
mean approximation. zero, in a precisely analogous manner.
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Let us define an uncertainty sef;, for base statior

min ... F
S.t. 5171@0 Bbkm < ﬂ-bkm < Byko + Byt Vb K, 1m0
. Cokm = Zz 17Tbkm E[RY|b,k] Vb, k,m.k #m
{ Ao = (A1, Aoy )| } Cokm = Zl | Tokem BIR71D, K] = Foi
Zy =

VE, ok € [(1 — 9)/\zk, (1+ Q)A;k], Vb, k,m,k=m
Zk 1 Abk - Zk bl /\bk = Hbk0 — Mbkm S Cbkm S Hbk0 + Hbkm va ka m
| o . ® Oy = Dkt Ty b, 1,m
where \;,. is the nominal arrival rate of user classin base v =l <ol <uyl+uy! vb, 1, m
. : o )
station b. Thus the true rates must satisfy two properties: S E L m Lo Er[RY|b, k]

individually they cannot deviate by more tha% of the

. .. + Z,Knb_l Cbkm)\zm
nominal value; and moreover the aggregate deviation must be K

Ky

rate neutral, that is, the sum of the realizations must etingal " 92’” 1 m’km/\bm =0 Vo, k
sum of the nominal rates. Z kao + Zm 1 %bmAlm

—|—92m 1I/bm Ao Loy Vb, [

Note that the level of deviation is controlled by the pa- Tybo + Zle kam/\bm

rameterd. This parameter is under the control of the system - 9251’:1 Bk A5 >0 Vb, k, 1
designer, who adjusts thisparameter in order to balance the B, >0 Vb, k,m,l,m # 0
conservatism and robustness of the solution. Since we @nfor Lpkm > 0 Vb, k,m,m # 0
feasibility for all realizations in the uncertainty setrdar 0 yll)m >0 Vb, m,l,m # 0
results in a more robust, but also more conservative solutio Zz{l aq <F
For 6 = 0, we recover the nominal optimal solution, which ZL_ a <1
corresponds to knowing the exact rates to{bé, }. For each a 1;10 - v

base statiord, p depends on the arrival rates in its cell. Thus - (10)
second stage decision vanabl_e_s tune themse_lve_s accaaling Proof: Consider thet" constraint of (9) :
the offered loads, and no additional communication ovethea
is required. K
Toko + D TpkmAom > 0 Vb, k.1, YA, € 2.

2) Affinely Adjustable Robust Counterpart (AAR@dapt- m=1
ability allows the second stage solutions to respond to the
realized uncertainty. Yet as discussed in Section IlI-B, fgrhis constraint holds if and only if the optimal value in the
computational reasons, we must restrict the structure ef tfpllowing problem
functions representing the second stage decisions in 1f7), i
order to be able to solve the resulting opt|m|zat|on problem mlnA kao + Z 1 kam/\b

Restrlctmgpbk to be an affine function of,, as in [71, [12], s.t. Xom > (1= 0)X;,, Ym e [1,---, Kp]

we havep,i (\o) = mko + S5 mk Apm. Using this for- Aom < (14 0)A;,, Vm € [1,- -+, Kb
mulation, and setting capacity maximization as our obyjecti Zi’;l Aom = A}

function, we obtain a linear two-stage robust optimization (11)
problem: is nonnegative.

By strong duality for linear programming (e.g7?]), the
optimal value is nonnegative if and only if the correspogdin
dual problem

mingz YL o maxy 5 >t (1= 0N
S.t. Pok < Zz 1(7Tbko + Z kam/\bm)El [R1|b k] - Z1Knb:1(1 + O)A 5 0m + ALE + bew
Vb,k ,V}\bGZb S.t. ’ym—6m+§:7fb§€m Vme[l’ 7Kb]
Sl 1 (b + Sy Ty Aom) < 1 . 720
Vb,l,V)\bEZb 0>0 1
zf yor <1 } (12)

has a nonnegative optimal value., i.83, 9, and¢ s.t.
Toko + Z ) Tyt Ao > 0 9 P & ¢

Vb, k1 YN € 2,

Z (1 - 9)/\17 Tm
>0 Vi m
= (9) - Zm:l(l + G)Abmém + /\Z§ + ﬂ—b%co 2 0
V’m_(sm'i_g:wb;qm vme[lvaKb] (13)
Theorem 1:The AARC (9) is equivalent to the following 7=>0

linear optimization problem. §>0
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Let Byt = ¥m + 6 and B,L, = & Then (13) is equivalent in a K, — 1 dimensional subspace (Without loss of generality,

to let those points be the firdt}, extreme points.) Moreover the
ZKb X (ml — Bl solution for this point\ is given by_a convechombination of
mzel b f\’j]" | PkO Y LS the solutions of those extreme poins, = >~/ ¢, -
= 0% 1 Mo Bt + X Boko + Moo 2 (14)  Lets focus on a specific time fraction for base statign
2Ym = ﬁb;@m N ﬁblko + Wblkm =0 customer class under power profild, pl,. For this proof
20m = Bykm — Boko — T = 0 we further restrict our AARC policy so that it does not have
which is equivalent to a constant term. We have, = S°%" #l  \y,.. Then by
. K, L K, L solving the following equation, we get an affine policy which
Toko T 2t TokmAbm — 0 2 im1 Bom Apm = 0 agrees on every extreme point.
5171}0 = Bokm < Totm < Boko — Bokom (15)
>
. ?bkm =" _ A Az o ik, Tt (A1 )k
Slmllar arguments can be applied for the rest of the comggai [ )\,; X,y - Aok, o (Pas)b
in (9). ] . . . = . ;
Solving the resulting LP, we obtain an affine policy for : L .
determining the class profile schedule for each base statio Anl Anz o Ank, Tk K, (P2 )b

as a function of |ts. local oﬁgred ]oad .var|at|9n. . . where A;; is jth coordinate ofit" extreme point. Since
Moreover we claim that with this affine policy, this Afﬂnelythe uncertainty set is i, — 1 dimensional subspace, the

Adjustable Robust Counterpart is actually equivalent te t'?ollowing matrix has rank at mosk,, hence we can get an

Adjustable Robust Counterpart of the nominal optimizatioQ .t solution forrl 7wl 7l . so that every pair of
) ) 7 Y b

the second stage policy to be an affine function.

olicy.
Proposition 1: In this model, the AARC is equivalent top y
the ARC, and is hence optimal. M1 A2 o Ak | (a0

Proof: Note that the AARC and the ARC have the same Aot Azz o Aek, | (Pag)be
objectives. Therefore it suffices to show the equivalence of : : . : :
constraint sets of those two problems.

Let X(ARC) be the constraint set of ARC amd(AARC)
be the constraint set of AARC. First we show ttARC)D>  Moreover for a general point inside the uncertainty set, the
X(AARC). Since the ARC has no restriction on the classolution is given by

A1 A2 Aaky | (a0

of second stage policies while the AARC restrict the class . -

of functions into affine functions, obviously, the ARC has a Pxo=A 7;% .
bigger feasible set which includes that of the AARC. Hence, = 21321 cjAj) -
if a solution is feasible to the constraint set of the AARC, it = j:bl cj(Aj - 7)
is also feasible to the constraint set of the ARC. Therefore = Zf:bl CiPx,

X(ARC)D> X(AARC). . .
Now we show that¥(ARC)C X(AARC). Notice that for Therefore,_ any feas_lble solution of ARC can be represented
each base statio the uncertainty seg, is a polytope given by a feasible solution of AARC, which mean8(ARC)C

by a list of linear inequalities and an equality. AIthougrethX(AAR_C)‘ _ _ u
uncertainty set is ilRX*, because of the equality constraint, it ) Simulations and Resultszor purposes of comparison,

is in a K, — 1 dimensional subspace. Letbe the number of W€ €valuate the performance of our affine policy using the
extreme points o2, and X1, . ,Xn be the extreme points. same simulation model of Rengarajan and de Veciana [1]. We

Then 2, — Conv{Xl Y 1. In the case of fixed recourseconsider three base stations facing each other in a hexagona

and a convex hull uncertainty set of a finite set, the ARC [@Yout with radius 250m. A carrier frequency of 1GHz and

given by the following LP. a bandwidth of 10MHz are assumed. The base stations are
assumed to be able to transmit at three different powerdevel
0, 5 and 10W. The mean file size is 2MB.

. L
Min G5, P, 2aiet O We use different total arrival rates ranging from 0.5 to 2.2
st pp < Zle(pkj)ékEI[RHb’ k] Vb k Yy and different protection level$, restricting the uncertainty to
ZkK:bl(ij)ék < o Vb, 1 Vg (16) an interval ranging from 0% to 40% of th_e nominal value. _
Zszl a <1 We use 100,000 customer samples to estimate the harmonic
(ij_)ék >0 Vb, k,l Vj formula capacities and Fhe mean delay. For each pair pf total
a; >0 i arrival rate and protection level, we randomly pigks's in

. their bounds and compute the estimated delay 1,000 times
For each extreme poind;, the second stage solution is givenio get average performance under the proposed uncergintie
by py,. For a point) inside the uncertainty set, we knowOut of 1,000 experiments, we count the number of cases that
that it can be represented by a convex combinationkef the system becomes unstable and compute the average mean
extreme points)\ = ji”l ¢jAj, since the uncertainty set isdelay under the proposed uncertainties. As shown in Fig, 1(a
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at higher loads and higher uncertainty levels the number thie arrival process is Poisson with rateand users arrive
unstable experiments is larger with the solution of the mahi uniformly over the entire area. Thus for each clasand base
optimization problem, i.eq = 0. On the other hand, as shownstation b, the fraction of arrival rate seen is fixed regardless
in Fig. 1(b), with the solution of the AARC, the number ofof the change of the total arrival rate. We assume the total
unstable experiments remains at zero until very high loaakrival rate,\, changes according to a Markov process with
2.0/sec. Note that even without fluctuations of arrival satedrift towards the nominal rate. We discretize this process,
the system is unstable around that point. approximating it via a Discrete Markov chain. We show
Fig. 2(a) and Fig. 2(b) show the average mean deldyat using this approximation preserves the convexity ef th
with the solution of the nominal optimization problem anghominal problem.
the solution of the AARC respectively, at each load and We letA represent the quantization level for the arrival rate
uncertainty level. Since we cannot compute the mean delaypbcess, with probabilities and g representing the drift away
unstable systems, we draw average delay plots assigning fiteen and towards the nominal rate, respectively. The faithgw
delay of an unstable experiment to be as large as the maximignthe transition matrix of the Markov chain we use:
delay over all delays of stable experiments. Thus the @sulty; > o

we report are conservative, in the sense that since algwith Pr(/\(t +1) =M1+ G+ DA = X (1+iA) =p
result in fewer unstable experiments, we are underrer@prtlnpr(/\(t +1) = M1 +iA)AE) = M1+ (i +1)A) =q
the decrease in average delay. At lower loads, even with high

uncertainty levels the nominal solutions slightly outpem  /,; - 0,

the AARC solutions. However, at higher loads, while thepr(/\(tJr 1) =XM1 +iA)NE) =1+ (G —1)A)=q
AARC solutions give acceptable low average mean delays, thpr( At+1) =M1+ (i — DA)A®) = A (1 +iA)) = p,
nominal solutions give extremely high average mean delays (17)
even if the system is stable. Although we know the full distribution of the arrival rate gw

As we typically do not know precisely the uncertainty levehccept some error probability and truncate the distribution
in reality, we must balance the tradeoff between buildingf the arrival rate into a finitely supported distributione\ifo
in protection to uncertainty, and the loss of performanghis because stability needs to be enforced determiniistica
in the nominal setting, i.e., the cost of over-protection. Tand hence must be enforced over the full support of the
compare these factors, we pick three protection levels, Qdistribution. Letn be a number such tha®r(\ € [M\*(1 —
(nominal), 20% and 40%, and we consider the performang@), \*(1 +nA)]) > 1 —e.
of these three solutions in different uncertainty reginfiégure  2) Affinely Adjustable Stochastic Counterpart of Objective
3(a) shows the load at which stability breaks down for eactomputational experiments in [1] reveal that the solution
solution, under large (40%) uncertainty. The nominal sotut obtained by minimizing delay indeed has improved delay per-
becomes unstable at a much lower average arrival rate teanfdymance over the solution obtained by maximizing capacity
20%-protection and 40%-protection solutions. Interggyin In the stochastic formulation, the objective is an expeutdde
the 20%-protection solution remains stable for very heawyer a discretely supported distribution, and hence besame
loads — essentially its stability performance is compadbl sum of weighted variations. If the original objective is zer,
the 40%-protection solution. Figures 3(b,c,d) show theaye then so is its expectation. Exploiting this fact and taking
mean delay (from simulation) of our three solutions. Figurgdvantage of the knowledge of the distribution, we use the
3(b) shows the delay curves when therenis uncertainty delay-minimizing objective rather than the capacity-oyiting
in arrival rates, i.e., the simulations are generated @wegr objective we use in the robust formulation.
to the nominal (and known) offered load. This shows the Then the objective of the stochastic optimization problem
price of robustness. Indeed, as expected, the nominali@olutis as follows.
outperforms both robust solutions giving lower delay — but
the difference becomes pronounced only at very high loads.
Meanwhile, Figures 3(c) and (d) illustrate the relativelyak E\ Zb . Zk . :mm
deterioration of the nominal solution’s delay performance Ry (Ppr (0D
under 20% and 40% uncertainty in the offered load. These =2 ;c(_,, 3 Pr(A = A"(1 +iA))
results illustrate that the 20%-protection solution appda ek

. . Rpg (Ppr V)

have a low price of robustness, i.e., performance comparabl X Zb 1 Zk 1 1_M>-
to the nominal solution in the no-uncertainty regime, antd ye o)
captures most of the robustness properties of even the 40%3) Affinely Adjustable Robust Counterpart of Constraints:
protection solution, outperforming the latter, except wheth Although we use a sampling method for the objective to
the load and the uncertainty level are high. preserve the convexity of the problem, we choose the similar
robust optimization techniques we used in Section IV-B for
the constraints. The stability constraints must be enfbde
terministically That is, we want to make the solution feasible
for every realization of the arrival rate, hence the comstsa

1) Assumptions and an Adjustable Counterpahtt this must remain feasible for all arrival rates in the support of
section we consider a stochastic uncertainty model. Wenassuthe truncated distribution, not only for the sample points o

C. Uncertain Total Arrival Rate Model with Fixed Arrival
Rates Ratio
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Fig. 1. AARC with capacity optimizing and affine policy dixed total arrival ratemodel : Number of unstable experiments out of 1000 simuiatiagainst
different actual uncertainty levels ranging from 0% to 40%): the nominal solution, (b) each AARC solution runs adaitsspredicted uncertainty level.
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Fig. 2. AARC with capacity optimizing and affine policy dixed total arrival ratemodel : Average file transfer delay against different actuatertainty
levels ranging from 0% to 40%: (a) the nominal solution, (afle AARC solution runs against its predicted uncertaintelle

the discretized distribution. In the truncated distribati the

support of the total arrival rate\, is [A\*(1—nA), A*(1+nA)]. min &z Zie{fn oy PrOV= A (1+i4))

Next, we restricp,!. to be an affine function o, i.e., p,} = " o

Tobo + M A Let§ = nA andY = [\*(1 — 6), \*(1 + 0)]. A DI N T
bk (Pbk

Then as we discussed in Section IV-B4,represents the
conservatism of the solution and is the support of the
uncertainty set. We can contrélby adjusting the truncation
errore. If we allow smaller truncation error, then the support

St MpAFor < 00 (Myho + Ty N Er[RY (D, K]
Vb k YAEY

5 (ko + TEA) < ay Vbl YAEY

of the uncertainty set gets larger, i.e.gets larger, hence the Zle o <1
conservatism levell becomes higher. Let,;. be the fraction of Tyto + Ty A >0 Vb, k,l VAeY
arrival rate of user class in base statio. Theny, = Api A, a; >0 vi

(18)

and the resulting optimization problem is as follows.
Since we use an arithmetic mean approximation Ry,

and sincepp, () is linear in @, Ry is linear in 7. The
Pblk

term L) in the objective function is convex i
T Ry B (V)
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Fig. 3. AARC with capacity optimizing and affine policy dixed total arrival ratemodel : (a) Number of unstable experiments out of 1000 sitiwuis
against 40% uncertainty level of offered loads, (b), (c) éf)}dAverage file transfer delay : (b) at the nominal offeredds, (c) against 20% uncertainty level

of offered loads, (d) against 40% uncertainty level of aftetoads.

if m < 1 ( [1]) and indeed, this is the stabilitythe Markov chain model. We use the transition matrix (17)
condition, and hence enforced for evexyin the support of with p=1/3, ¢ =2/3, andA = 6%.

its truncated distribution. Moreover, the infinite constta As shown in F|g 4(a)’ under nominal arrival ratesi our
(“vA € Y") can be transformed into a finite collection ofuncertainty-protected solutions perform comparably te th

linear constraints, again by employing a duality argument gominal solution, hence the price of robustness is very low
in the previous section. Therefore this problem is a convex this model.

optimization problem with linear constraints. Fig. 5(a) shows the number of unstable experiments for

4) Simulations and Result3\e evaluate the performanceeach solution and Fig. 5(b) shows the average delay under
of our optimization using the same simulation model of [1}he uncertain arrival rates process changing acording ¢o th
and as before, using stability and delay as our evaluatidan milarkov process described earlier. At higher loads, the rermb
rics. We use different nominal arrival rates ranging from@. of unstable experiments is larger with the nominal solution
2.2 and different truncation errar,ranging from 1% to 20%. But, even the 20% truncation error model shows better result
As we see in Section IV-C3pwer truncation error means than the nominal solution in terms of stability and optirhali
higher protection levelWe use 100,000 customer samples tdhis is because the distribution of the uncertainty is cance
estimate the harmonic formula capacities and the mean.delagted around its mean. Even the truncated distributiom wit
At each simulation, we choose an arrival rate randomly fro20% error captures the original distribution well. The o1
the stationary distribution of our Markov chain model. Fodistribution of the Markov chain with transition matrix (17
each pair of nominal arrival rate and error probability, we r and the truncated distributions under different truncaéioors
1,000 experiments. We count the number of cases that #re shown in Fig. 4(b). On the other hand, the constraints wit
system is unstable and compute the average mean delay uheles than 20% truncation error models (i.e., bigeare overly
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protective, and the conservativeness of the solution tegul
infeasibility at higher loads. .
y 9 MIN & 5y, Py Pagy

M B K
Zj:l Zb:l Zk:l -1+ 1/(1 o #;%j))
D. Revisiting the Uncertain Arrival Rates Ratio Model with s.t. — (\;)sxFor < o1 (pa, )b Er[RY[b, K]
Fixed Total Arrival Rate Vb, k ,Vje{l,---, M}

K .
Now we consider anew thfixed total arrival ratemodel Zizzbl(wj)ék <o vb,l,Vje{l,---, M}
of Section IV-B. Recall that there, although minimizing alel dutin <1
directly is more effective than maximizing capacity (as dem Py 20 Vb, k1 ,Vje{l,--- , M}
strated by empirical results — see [1] for details), we hasedu o 20 vl

the capacity maximization because the delay minimization j (19)

non-linear, and thus its AARC is not computationally trétta Now, |fttréet:1eal|zet_d ur;cec;talr;tyélls SO?))GC, we have allzlready
[9]. Tractability requires either convexity in the uncémta COMPUted the optimal adaptable policy, namety,. For a

variables, or concavity along with an uncertainty set with rpalized point which 'S not on the gri_d (as \,Ni" typically t,)e
small set of extreme points. Neither of these hold for olPe case), we use b|I|near_ mterpolatlon usmg_the_ solst|_on
model. To overcome this difficulty, in this section we us%f sample pomts on the grid. If the re_zallzed point is outside
the stochastic optimization paradigm, following Sectidhd. the uncertglnty S?t’ we use the s_olutlon of ne_ares_t boundary
First we briefly state our method and formulate the optimizgfg1mp|e point. This way, we obtain an approximation of the

tion problem. Then we show that the resulting problem is corﬂptimal second stage policy of the stochastic optimization

putationally tractable. Finally, we give some computamjlonpmblem'fo”he entire uncertainty. Since the optimal daldle
results solution can be shown to be continuous, successively refinin

1) Piecewise Linear Adaptabilitytn the AARC approach, the grid allows arbitrary approximation of the optimal gaia,

. i . although this comes at an increased computational cost/ as
we try to compute the optimal affine adaptable solutlon,OWSg P 3

. . o r
however, as discussed above, this approach is mtractableglz) Simulations and ResultsiVe use the same simulation

this setting. Instead, we take advantage of the low dimenrsiq ) .
. : . -~ model and uncertainty model of Section IV-B3. In order to
ality of the uncertainty set, and choose a finite collectién Q ; . . .
. ) . . approximate the uncertainty set, we use 5 by 5 size grids.
representative points. For each point, we choose the optima_. .
i Fig. 6 shows comparisons of the performances of the AARC
value for the adaptable variables, and then extend to the ful = . ! L ) -
solution with capacity optimizing schedule we've obtaired

gﬁi%ir;u?&zc?iitnsy interpolating between these IOOInthJSIgection IV-B and the stochastic solution with delay miniimiz
. _ . . schedule of this section. One comparison without uncegtain
T_he uncertainty set. IS determlned by §|r_nple range Cofl arrival rate(Fig. 6(a)) and the other with high uncer-
straints and one equality constraint, hence it is easy totfiad tainty(Fig. 6(b)). As shown in the figures, the delay miniing

extreme points of the uncertainty set. We use points unifpr'ﬁnschedule outperforms the capacity optimizing scheduleas w

dls_tnbuted on the gr|d_ whose enc_i points are those_ e_xtre pected. The performance gap increases as total arrieal ra
points of the uncertainty set. This procedure is similar é?\creases

the discretizing distribution method we use in Section IV- Next we compare the performances of the nominal problem
However, the uncertainty set is not one-dimensional asén th

fixed rati del. but rather has di X Lo th B lution and the solutions of stochastic problems with 20%
Ixed ratio modet, butratner has dimension equa’ to the NUMJE, 4 4, protection levels to see the cost of over-protection

of Cus“’”_‘er cl_asses. The m_meer of pomts_ n the grid 9" shown in Fig. 7(a), the cost is negligible. Then we compare
exponentially in _t(;we dl(;nensul))rjl: The_refore_ It s nlecessary ﬁﬁe performances of those three solutions under large (40%)
uhse a_jpar_se gnd, anl .us% b|||near|ty to interpolate Gl'rtwelﬁencertainty to see the benefit of robustness. Fig. 7(b) shows
the grid points, as explained below. a big performance gap between the original solution and the

'_I'he grid ef_fectwely_selgcts a finite number ‘_)f represer%\'pproximated stochastic solution with 40% protection llete
tative uncertainty realizations from the uncertainty 38k higher loads

enumerate the points on the gridf@s, ..., Ay }. We select a

single power profile variabl& (first stage solution, that cannot

depend on the realization of the uncertainty) addcustomer V. DISCUSSION, CONCLUSION, AND FUTURE

profile variables,{py,,...,Px, },» corresponding to each of WORK

the M points on the grid, i.e., each of the realizations of We proposed several different approaches that attempt to

the uncertainty. Assuming a uniform distribution over the make the solution of the system level coordination optimiza

points {A1,..., Ay}, we choosed, {p),,...,P\, } in order tion problem robust to the variations of offered loads under

to minimize the mean delay over the points on the grid, and gffferent models of uncertain data. In the case that eacexdf

that the power-profile/customer-profile p&ir, 77, ) is feasible |oad fluctuates individually but the sum of variations is@er

for the uncertainty realizationy, for £ = 1,..., M, where we first used two-stage robust optimization with affine seeon

feaibility again means stability. stage decisions, obtaining tractable optimization foatiahs
We accomplish this by solving the following optimizationto obtain solutions robust to variations in the offered load

problem. Later we used approximated stochastic optimization with
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Fig. 4. (a) Stochastic problem with delay minimizing andreffipolicy onfixed arrival rates ratiomodel : Number of unstable experiments out of 1000
simulations at the nominal arrival rates, (b) Distributiohthe uncertain arrival rate: Original distribution of thvarkov chain v.s. Truncated distributions
under different truncation errors.
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Fig. 5. Stochastic problem with delay minimizing and affir@iqy on fixed arrival rates ratiomodel : against the Discrete Markov chain uncertainty model
of arrival rates with transition matrix (17) : (a) Number aistable experiments, (b) Average file transfer delay.

sample points and interpolation. We also considered vaniat An issue we have not addressed here, and the subject of
in the total arrival rate. There, we combined the stochasfigture work, is to treat the stochastic variation in the oostr
optimization and the robust optimization paradigms, agdén arrival process. Particularly in the low-load regime, tbisild
taining solutions that remain stable under heavy loadsgand result in empty customer classes, allowing base stations to
better average performance. In our simulation results, ave h (briefly) turn off, thus increasing the rates observed by- cus
shown that nominal solutions are vulnerable to the fluctusti tomers of neighboring base stations. Optimizing coordbmat

of the offered loads while properly tuned robust solutionschemes to take advantage of this effect is a natural doroain f
capture the best of both worlds: resilience to uncertaimithy multi-stage optimization models, although some conshlera
good performance even under the nominal setting. challenges stand in the way of immediate extensions of the

Resilience to load variation could potentially help reduc@ethods presented here.
coordination and hence communication requirements, witho
severely compromising the performance. Understanding the ACKNOWLEDGEMENTS
tradeoffs involved, between the benefits and costs of moreThe authors would like to acknowledge Balaji Rengarajan
frequent coordination is a key step towards understandiieg tand Gustavo de Veciana for stimulating discussion on the
viability of implementation of such a system-level optiaz topic, as well as for sharing past results and in particular
tion approach to interference mitigation, and is a topic &imulation results, that made comparison on an even footing
future work. possible.
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