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Abstract— We consider the problem of providing flexible, rate-
based, quality of service guarantees for a particular class of
multistage switch networks that includes Banyan networks. We
focus on solving a type of on-line, traffic scheduling problem,
whose input at each time step is a set of desired traffic rates
through the switch network. These traffic rates in general cannot
be exactly achieved since they treat the incoming data as fluid,
that is, they assume arbitrarily small fractions of packets can be
transmitted at each time step. The goal of the traffic scheduling
problem is to closely approximate the given sequence of traffic
rates by a sequence of switch uses throughout the network in
which only whole packets are sent. The focus of this paper is
bounding the costs incurred in using such an approximation, in
terms of the additional buffer size, called backlog, required.

Our contributions in this paper apply to a class of multistage
switch networks that includes Banyan networks. We first prove
that bounded backlog results of the type developed in Rosenblum
et al. [1] do not exist for arbitrary switch networks or even for
4×4 or larger Banyan networks. However, if the switch network
is allowed to run faster than the input line rates, it is possible
to maintain bounded backlog. We prove that if speedup s is
sufficient to maintain bounded backlog for any constant fluid
policy, then speedup s is also sufficient to maintain bounded
backlog for any time-varying fluid policy. We proceed to bound
the speedup required to keep backlog bounded in terms of the
number of stages in the multistage switch network. In particular,
we give a polynomial time algorithm that for a Banyan network
with N input ports keeps backlog bounded using speedup at
most log2 N + 1.

I. INTRODUCTION AND RELATED WORK

Multistage switching fabrics, based on the interconnection
of small switch components, allow for the efficient, modular
construction of high-performance routers. We look at the
resources, in terms of buffer size and switch speedup, required
to provide flexible, rate-based, quality of service guarantees for
multistage switch networks.
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Numerous approaches to scheduling for switches exist in the
literature both for crossbar switches and for general switch
networks. In one approach, the designer first ignores the
packet nature of traffic and constructs a schedule under the
assumption that packets can be broken into arbitrarily small
pieces and sent at different time slots (e.g. [1]–[14]). At each
step in the schedule the designer specifies the number of
fractional packets sent and received, such that the usage of
each link in the network is at most 100%. This schedule is
referred to as a fluid policy. Next, the designer constructs a
packetized policy, which approximates the behavior of the fluid
policy in order to send packet data.

In [12], Tabatabaee, Georgiadis, and Tassiulas consider the
problem of packetizing time-varying fluid policies in an N×N
crossbar switch. In [1], the additional buffer requirement due
to approximating a fluid schedule with one that sends only
whole packets is considered. Backlog is introduced as a metric
for how much additional buffer space is used by a packetized
policy than is used by the fluid policy it is emulating. A packe-
tizing algorithm is presented that guarantees 100% throughput
with a buffer requirement of at most (N + 1)2/4 packets per
input port with no speedup.

It turns out that the design of scheduling algorithms for
multistage switch networks is significantly more difficult than
for crossbar switches, because of internal collisions: packets
routed to the same outgoing link of an individual switch
element compete for use of that link.

Our focus is constructing algorithms that approximate fluid
schedules so as to provide quality of service guarantees.
Specifically, we focus on bounding the costs incurred in using
such an approximation, in terms of the additional buffer size,
or backlog, required.

The analysis of packetizing fluid policies in this paper, as
in most of the related work cited above, focuses on worst-case
bounds rather than probabilistic bounds. Thus the bounds on
backlog proved here are universal in that they do not depend on
any statistical properties of the input traffic. Furthermore, these
bounds on required, additional buffer size are not asymptotic;
they apply to time increments of any finite duration.

While our results extend to any multistage switch network
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with the property that there is a unique-path between any
input–output pair, here we focus on bounding backlog in
Banyan networks.

II. NOTATIONS AND DEFINITIONS

A. Structure of Banyan Networks

Banyan networks have been studied extensively in the liter-
ature due to their parallel capacity, modularity, expandability,
and because they lend themselves to efficient implementation
(see for instance, [15], [16], and references therein). Figure 1
depicts a 16× 16 Banyan network.
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Fig. 1. A 16 by 16 Banyan Network built from 2 by 2 crossbar
switch components.

In order to establish the notation, we consider an N × N
Banyan network with log2 N stages with N2 input–output
pairs. One of the defining properties of the Banyan switch
fabric is that there is a unique path linking any input-output
pair. Since we consider Banyan networks without buffers in the
intermediate stages, this means that if input i is transmitting to
output j, then any input-output pair (k, l) whose (unique) path
shares at least one link with the path from i to j, is blocked.
We refer to the set of input-output pairs (k, l) that are blocked
by pair (i, j), as the neighborhood of (i, j). Therefore at any
time, if (i, j) is utilized, then no other input-output pair in its
neighborhood can be utilized.

We can visualize this blocking relationship in a graph-
theoretic context. We define the link graph G = (V,E) of a
unique-path switch network (and in particular for the Banyan
network) as follows: the link graph has a node for every input-
output pair (i, j). Two nodes (i, j), (k, l) are connected by an
edge in the graph, if the unique path from input i to output j
intersects the path from k to l. In Figures 2 and 3 we show the
4× 4 Banyan network, and the associated link graph G. Con-
sider link 2 in Figure 2. Link 2 is required for any transmission
from input 2 to outputs 1,2,3 or 4. Therefore in a packetized
model, at most one of these four transmissions can occur per
time period. In the link graph, this constraint is represented
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Fig. 2. A 4× 4 Banyan Network.
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Fig. 3. The link graph corresponding to the above 4 × 4 Banyan
Network. Note that all rows and columns actually form a clique.
Edges are omitted to avoid cluttering.

by a clique1 among nodes {(2, 1), (2, 2), (2, 3), (2, 4)}, i.e.
those nodes are all interconnected as in clique A in Figure
3. Similarly, link 8 is required for transmission from 3 to 3, 3
to 4, 4 to 3, and 4 to 4, so among these input-output pairs, at
most one transmission can take place. In the link graph, we
have a clique among nodes {(3, 3), (3, 4), (4, 3), (4, 4)}. This
corresponds to clique B in the figure. In general, each link in
an N ×N Banyan network corresponds to a constraint on N
input-output pairs, which is represented by a clique in the link
graph G (since the pairs that use a particular link all mutually
block each other). A valid one-time transmission, therefore,
is one which requires the use of each link at most once. In the
case of fractional transmissions, or fluid policies, a valid policy
is again one where at each step, the link usage totals to at most
one for each link. Therefore, a one-time transmission schedule
sending xij from input i to output j is valid if for each clique
Q in the graph G, the total transmission corresponding to the
nodes in the clique is at most one:

∑

(i,j)∈Q

xij ≤ 1. (1)

We see that the structure of link graph G (which is derived
from the switch-network topology) has an intimate connection
with the bounded backlog trackability of the switch network.

B. Traffic Model

We consider input queued Banyan networks with a total of
N input ports at the first-stage, with N output ports at the last-

1A clique is a complete subgraph.
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stage, and with log2 N stages. See Fig. 1 for an example. The
switch network operates in discrete time, and all packets are
assumed to have the same size. The line rate (capacity) at the
first-stage input ports is one packet per time step. The switch
uses virtual output queueing to avoid head-of-line blocking.

A Fluid Policy for an N×N Banyan network is a sequence
of transmissions specifying the number of fractional packets
that ideally would be sent over the multistage switch. This
is represented by a sequence of N ×N non-negative-valued,
fluid matrices {F (k)}k>0, where F

(k)
ij represents the fraction

of a packet sent from input i of the first stage to output j of
the last stage at time step k. Each fluid matrix must satisfy the
constraint that the total fluid traversing any link in the Banyan
network is at most 1. A constant fluid policy is a fluid policy
where for some fluid step F , F (k) = F for all k.

A Packetized Policy for an N × N Banyan network is a
sequence of transmissions where only whole packets are sent
and received at each time step. It is represented by a sequence
of N × N packetized matrices, {P (k)}k>0 where P

(k)
ij has

value 1 if a packet is sent from input i of the first-stage
to output j of the last-stage at time step k; otherwise it has
value 0. Each packetized matrix must obey the constraint that
for each link in the network, at most one packet traverses
it; in other words, no packet collisions are tolerated in the
packetized policy. Note that a {0, 1}-valued matrix is a valid
packetized matrix if and only if the entries with value 1 form
a stable set2 in the link graph of the switch network.

It is convenient to record, for each first-stage input port i and
last-stage output port j, the difference between the cumulative
number of fractional packets scheduled by the fluid policy up
to and including time k, and the cumulative number of whole
packets sent by the packetized policy up to and including time
k. This information is stored in the N×N matrix C(k), for k ≥
0. In particular, C(0) := 0, and C(k) :=

∑k

l=1(F
(l) − P (l))

for k ≥ 1. For time step k, and for a set of pairs of first-
stage input ports and last-stage output ports, we define their
backlog to be the sum of corresponding entries in (C(k))+.3

Following Tabatabaee et al. [12], we require that a packet can
only be scheduled in a packetized matrix if some fluid for that
packet has been scheduled at or before the current time step
by the fluid policy. In other words, the packetizing algorithm
can only schedule a packet at time t from first-stage input port
i to last-stage output port j if C

(t−1)
ij + F

(t)
ij > 0.

We focus on solving the on-line, traffic scheduling problem,
whose input at each time step is the corresponding fluid matrix
from a fluid policy. The goal at each time step is to choose a
packetized matrix so that backlog remains bounded for all time
steps. If a packet-scheduling algorithm maintains bounded
backlog for a given fluid policy, we say that it tracks the given
fluid policy with bounded backlog.

In general, a switch is said to use speedup s ≥ 1 if it
processes packets s times as fast as the input line rate. In

2A set of nodes in a graph is called a stable set if there are no edges
between any of these nodes.

3The positive part of a matrix M is denoted M+, where M+

ij
:=

max{Mij , 0}.

this paper, it will be more convenient to use an equivalent
definition; we say that a scheduling algorithm uses speedup
s ≥ 1 if for each fluid policy, each of its fluid matrices is
multiplied by 1/s. We say that an algorithm uses no speedup
if s = 1.

III. RESULTS AND CONTRIBUTIONS

Our contributions in this paper begin with a negative result.
Specifically, we prove that bounded backlog results of the type
developed in [1] do not exist for arbitrary switch networks.
In fact, this is true even for Banyan networks, for the simple
case of a constant fluid policy. This motivates us to develop the
concept of necessary speedup for tracking with bounded back-
log. Specifically, given a Banyan network (or any multistage
unique-path switch network) we seek the minimum amount of
speedup required so that any fluid policy can be tracked by
a packetized policy, with bounded backlog. Universal bounds
for this required speedup are established.

First, as concrete motivation for the sequel, in Section IV,
we show that already for small Banyan networks, speedup is
necessary for tracking with bounded backlog. For the 4 × 4
Banyan network, we show we need speedup at least 4/3.

Section V contains the core of our methodology. We
establish a natural connection between unique-path switch
networks and their link graphs, as defined above. This graph
formulation allows us to exactly characterize the convex hull
of the set of valid packetized matrices, and the set of valid
fluid matrices. These sets are polyhedral, and we refer to
them as the Packetized Polytope of a network, and the Fluid
Polytope of a network, respectively. These polytopes have
been studied extensively in a more general setting in the
combinatorics literature where they are referred to respectively
as the stable set polytope and the fractional stable set polytope
of a graph (see [17],[18] for details). It is the introduction of
this machinery from the combinatorics literature that allows
us to obtain some of our bounds.

Our first theorem is a polyhedral characterization of the
speedup necessary and sufficient for tracking constant fluid
policies with bounded backlog. Our second theorem strength-
ens the first, and proves that if speedup s is sufficient for
tracking constant fluid policies, then in fact it is sufficient for
tracking arbitrary fluid policies with bounded backlog.

In Section VI we revisit the 4×4 Banyan network, and show,
using the machinery developed in Section V, that speedup 4/3
is in fact necessary and sufficient for tracking arbitrary fluid
policies with bounded backlog.

In Section VII we specialize our results for unique path
networks, and show that for a Banyan network with N first-
stage input ports, speedup s = log2 N +1 is sufficient to track
an arbitrary fluid policy with bounded backlog. Furthermore,
in this case we show how to implement the packetizing
algorithm of Section V to compute each packetized matrix
in time polynomial in N .

IV. SPEEDUP IS REQUIRED

In this section, we exhibit a behavior of the Banyan network
that is fundamentally different from the crossbar switch. We
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exhibit a constant fluid policy that, using no speedup, is
impossible to track with bounded backlog. Recall the 4 × 4
Banyan network in Figure 2. Consider the constant fluid policy,
with each fluid step F (k) equal to the matrix

F = (xij) =









1
2 0 0 1

2
0 1

2
1
2 0

1
2 0 1

2 0
0 1

2 0 1
2









.

Note that each link in the network has total demand equal to
unity. In other words, for every clique Q in the graph G (see
Figure 3 above) we have

∑

(i,j)∈Q

xij = 1,

and the above is indeed a valid fluid step. Suppose that at
each time step, this fluid step is requested, and knowing
this stationary policy in advance, we wish to choose a valid
packetized policy so that the total backlog after M time steps,
is minimized. While we cannot transmit fractional values with
packetized policies, if we could transmit unit value along four
of the eight pairs of positive entries in the fluid step at one time
step, and then transmit the remaining four at the next time step,
then the backlog would remain bounded. However, one can
verify that a packetized policy cannot transmit any more than
three of the eight pairs of positive entries of the fluid policy,
at any given step. For instance, if (1, 1) is transmitted, this
rules out (1, 4), (3, 1), (2, 2). Then if, say, (2, 3) is transmitted,
(3, 3) is ruled out, and of the two that remain, {(4, 2), (4, 4)},
only one can be transmitted. The same can be seen to be
true for any possible set of choices. Therefore any packetized
policy can only transmit 3 units per time step, while the fluid
policy transmits 4 units each time step. Thus regardless of what
packetized policy we choose, the backlog becomes unbounded.
In fact, we have proved that the minimum speedup required
for a 4× 4 Banyan network to track any constant fluid policy
with bounded backlog is at least 4/3. In Section VI we show
that this result is tight.

V. CHARACTERIZATION OF REQUIRED SPEEDUP

In this section we give a characterization of the required
speedup for a general unique-path switch network. In addition,
we develop the essential elements of our polyhedral and
combinatorial methodology which we use throughout. We
define P , the Packetized Polytope of a Switch Network, to
be the convex hull of the set of valid packetized steps, and F ,
the Fluid Polytope of a Switch Network, to be the set of valid
fluid steps. In general, we always have that P ⊆ F (since
a valid packetized step is also a valid fluid step and F , like
all polytopes, is convex). The example of the 4 × 4 Banyan
network in Section IV above shows that this inclusion can be
strict.

If P = F then every fluid step can be seen as a con-
vex combination of packetized matrices and any constant
fluid policy can be packetized with bounded backlog and no
speedup (by simply scheduling the packetized matrices in the

decomposition at the right frequencies). In graph theoretic
terms, P = F is equivalent to the link graph being perfect
(see [17]). Many classes of perfect graphs are known, and in
particular, the link graph of a crossbar switch is perfect, as
it can be seen to be the line graph of a complete bipartite
graph. This is a graph-theoretic explanation of the fact that
no speedup is required for tracking crossbar switches with
bounded backlog.

Theorem 1: All constant fluid policies can be tracked with
bounded backlog and speedup s if and only if F ⊆ sP .
Proof: If F ∈ F ⊆ sP then 1

s
F can be decomposed into

a convex combination of packetized matrices. On the other
hand, if F 6⊆ sP then there exists a constant fluid policy
which cannot be tracked with bounded backlog and speedup
s. Consider a matrix F ∈ F , such that F /∈ sP . Then

δ := inf
P∈P

∑

i,j

(
F

s
− P )+ij ,

is strictly positive since P , like all polytopes, is closed. Now,
for any packetized policy {P (k)}k>0, consider the cumulative
difference matrix at time step k. We have

C(k) =
kF

s
−

k
∑

i=1

P (i).

Since (
∑k

i=1 P (i))/k ∈ P , we have that the sum of positive

entries of
(

F
s
− (

∑k

i=1 P (i))/k
)

is at least δ. Thus, the sum of

positive entries of C(k) is at least kδ, which grows unbounded
as k →∞. Therefore, the constant fluid policy that schedules
F at each time step cannot be tracked with bounded backlog.
This proves Theorem 1.

Next, we use ideas similar to those in [1], to show that
the necessary speedup s for tracking constant fluid policies is
the same as that required for tracking arbitrary fluid policies
with bounded backlog. This implies, for any switch network
operating strictly slower than the minimum required speedup,
even constant fluid policies are not trackable with bounded
backlog; as soon as the switch runs at least as fast as the
minimum required speedup, then any fluid policy is trackable
with bounded backlog.

Theorem 2: All arbitrary fluid policies can be tracked with
bounded backlog and speedup s if and only if F ⊆ sP .
Proof: Assume F ⊆ sP holds, so that for each fluid step
(which is multiplied by 1/s before being packetized) we have
F ∈ P . We present a packetizing algorithm using speedup s
that tracks any fluid policy with backlog at most N 2 per input
port. The algorithm maintains the invariant (C(k))+ ∈ N2P ,
which in turn means that no input port can have backlog more
than N2.

Algorithm 1: Given a fluid policy, this packetizing algo-
rithm computes the packetized policy as follows:

First, calculate C(k−1) :=
∑k−1

i=1 (F (i) − P (i)). By our
assumption above that F (k) ∈ P , we have (F (k) +
C(k−1))+ ∈ (N2 + 1)P . Since P is an N2-dimensional
polytope, Caratheodory’s theorem gives that any point in P
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can be written as a convex combination of at most N 2 + 1
vertices, which in this case are packetized matrices. Thus, we
can decompose (F (k)+C(k−1))+ into a convex combination of
at most N2+1 vertices of (N2+1)P . Augment the weight on
the first of these matrices until the sum of the weights equals
(N2 + 1), and denote the resulting weighted sum of matrices
by D. At least one matrix in the decomposition must now
have weight at least 1. Let π be one such matrix. We set the
packetized step P (k) to be π restricted4 to the set of entries
that have positive values in F (k) + C(k−1).

It follows that F (k)+C(k−1)−P (k) is dominated by D−π,
and D−π ∈ N2P , and thus the invariant is maintained at time
step k, that is (C(k))+ = (C(k−1) + F (k) − P (k))+ ∈ N2P .
In other words, Algorithm 1 tracks any fluid policy with at
most N2 backlog per input port.

In the proof of the above result, we use Caratheodory’s
Theorem to decompose (F (k) + C(k−1))+ into a convex
combination of packetized matrices. Caratheodory’s Theorem,
however, is not constructive (unless one has a description of
the Packetized Polytope in terms of linear inequalities). We
give a modified packetizing algorithm below that only requires
decomposing each fluid matrix Fk into a convex combination
of packetized matrices, and that tracks any fluid policy with
bounded backlog. We show in Section VII that for the case of
a Banyan Network with N first-stage input ports and speedup
s = log2 N+1, such a decomposition can be computed in time
polynomial in N ; thus, in this case the packetizing algorithm
below runs in time polynomial in N and tracks any fluid policy
with bounded backlog.

Again we assume that F ⊆ sP , so if we take each step
F (i) of the fluid policy to be in 1

s
F , then each step satisfies

F (i) ∈ P . The algorithm maintains the invariant for all time
steps k that we have stored matrices Q(i), which are vertices
of P , and non-negative constants λi such that

C(k) ≤
N2+1
∑

i=1

λiQ
(i),

and
N2+1
∑

i=1

λi = N2.

The invariant implies (C(k))+ ∈ N2P for all time steps k. In
other words, the packetizing algorithm tracks any fluid policy
with backlog at most N2 per input port at all time steps.

Algorithm 2: Given C(k), and fluid step F (k+1), construct
packetized step P (k+1) as follows:

Since F (k+1) ∈ 1
s
F ⊆ P , it can be decomposed as follows,

F (k+1) =

N2+1
∑

j=1

γjR
(j),

where for all j, γj ≥ 0, the γj sum to 1, and R(j) are vertices
of P . It is this decomposition that we compute in polynomial

4We call the matrix D formed by replacing a set of elements E with 0’s
the matrix D restricted to Ec, the complement of E.

time for Banyan networks in Section VII. Now, since C(k) ≤
∑N2+1

i=1 λiQ
(i) holds by the invariant above, we have

C(k) + F (k+1) ≤
N2+1
∑

i=1

λiQ
(i) +

N2+1
∑

j=1

γjR
(j).

The sum of coefficients λi and γj is N2 + 1. Let

T :=

N2+1
∑

i=1

λiQ
(i) +

N2+1
∑

j=1

γjR
(j).

Caratheodory’s theorem now tells us that T can also be
expressed as a weighted sum of just N 2 +1 matrices from the
set {Q(i)}∪{R(j)}, with the weights summing to N 2+1. This
follows from the fact that we have N 2 equalities defining T
and one equality constraining the sum of the λi’s and the γj’s,
all these equalities being defined on the variables {λi}∪{γj}.
Here, the decomposition can be done in polynomial time: as
long as there are more than N 2 + 1 matrices with positive
weights, we can reduce this number by taking any nonzero
vector y in the null space of the matrix defining the N 2 + 1
equalities and modifying the variables {λi} ∪ {γj} in the
direction y until one more variable becomes 0. This variable is
then removed from consideration and the process is repeated
until we are down to at most N 2 + 1 matrices with positive
weights. Rename these matrices to be {Q(i)} and the corre-
sponding weights to be {λi}. One of these coefficients must
be at least 1, so we can set P (k+1) to be the corresponding
matrix Ql ∈ P , restricted to the set of entries that have positive
values in F (k+1) + C(k). For this particular l, decrement λl

by 1. Then,

C(k+1) = C(k) + F (k+1) − P (k+1) ≤
N2+1
∑

i=1

λiQ
(i),

with
∑N2+1

i=1 λi ≤ N2 as desired, maintaining the invariant.
Thus, the packetizing algorithm tracks any fluid policy with
backlog at most N2 per input port.

VI. SPEEDUP REQUIRED FOR 4× 4

In Section IV we exhibited a constant fluid policy for a
4×4 Banyan network, that required speedup 4/3 to be tracked
with bounded backlog. Using the results of Section V above,
we show that in fact speedup s = 4/3 is necessary and
sufficient for tracking arbitrary fluid policies on the 4 × 4
Banyan network.

From the above discussion, it is sufficient to show that
F ⊆ 4

3P for the 4 × 4 Banyan network. To show this,
decompose any fluid step F into a linear combination of four
matrices, each with the four entries in one corner set to 0,
as shown in Figure 4. The weight of each matrix is 1/3.
We then use the fact that one can further decompose any of
these four matrices into a convex combination of packetized
steps. This follows since the subgraph corresponding to one
of these matrices with a corner deleted, is the complement
of a so-called comparability graph. A comparability graph is
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Fig. 4. 4× 4 Banyan network: We obtain the upper bound by decomposing any 4× 4 fluid policy into four parts.

such that its edges can be oriented so they form a directed,
acyclic, transitive graph D = (V,A). Here transitive means
that for any nodes u, v, w, if (u, v) ∈ A and (v, w) ∈ A, then
also (u,w) ∈ A. In figure 5 we exhibit such an orientation
of the complement of the subgraph obtained when the bottom
right corner of the link graph of the 4 × 4 Banyan network
is removed. It is well known (see e.g. [17]) that complements

����������

	
���

Fig. 5. This is the complement of a 4 × 4 Banyan network link
graph with the corner removed. The edges are oriented so that edges
between nodes in U and nodes in V are directed towards V , edges
between U and W are directed towards W , and edges between V

and W are directed towards W . Therefore this is a directed, acyclic,
transitive graph.

of comparability graphs are perfect. Thus any fluid step can
be written as a convex combination of packetized steps. Doing
this for all four quadrants results in a nonnegative combination
of incidence matrices of packetized steps, with the sum of
weights at most 4/3. This shows that F ⊆ 4

3P . We can then
use Packetizing Algorithm 1 above with 4/3 speedup to build,
for any given fluid policy, a packetized policy that is at most
16-backlogged per input port.

VII. A GREEDY ALGORITHM FOR DECOMPOSING FLUID

MATRICES

We now prove our main result about Banyan networks.

Theorem 3: For a Banyan network with N first-stage input
ports, F ⊆ (log2 N+1)P . In particular, speedup s = log2 N+
1 is sufficient to track an arbitrary fluid policy with bounded
backlog. Moreover, the tracking algorithm runs in polynomial
time.
Proof: By Algorithm 2 of Section V, it suffices to show for any
F ∈ F , that one can decompose F into a linear combination
∑

λlA
(l), with ∀l, λl ≥ 0, A(l) representing a valid packetized

matrix, and
∑

λl ≤ log2 N + 1. The greedy algorithm below
obtains such a decomposition, where for a stable set S of
the link graph G of a Banyan network, χS denotes the N ×
N packetized matrix with value 1 at entries corresponding to
elements of S and 0 otherwise.

Algorithm 3: Let F be a given constant fluid matrix.

1) Set M ← F and set l← 1.
2) Repeat while M 6= 0:

• Find a maximal stable set in the link graph G
restricted to the set of nodes with positive value
in M . Call it Sl.

• Set λl ← min(i,j)∈Sl
Mij .

• Set M ←M − λlχ
Sl and then increment l by 1.

Since at each iteration, at least one entry of M is set to
0, the algorithm terminates after at most N 2 iterations. For a
fixed node (i, j) in G, we denote the neighborhood of (i, j)
as N ((i, j)) :=

{(k, l) : (k, l) = (i, j) or an edge connects (k, l) to (i, j)}.

Denote the last iteration of the algorithm by t. For any node
(i, j) in stable set St, for any iteration t′ ≤ t we have that St′

either contains (i, j) or contains a node (k, l) that is connected
to (i, j) by an edge in the link graph. Thus we have

t
∑

t′=1

λt′ ≤
∑

(k,l)∈N ((i,j))

Fkl.

The sum on the right hand side is the sum of fluid whose
path through the switch network includes at least some link
in the (unique) path from input i of the first stage to output
j of the last stage. Since for any valid fluid step, the total
fluid traversing any link in the switch network is at most 1,
the total fluid sharing at least one link with the path from
i to j is at most the number of links on this path. For a
Banyan network with N first-stage input ports and last-stage
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output ports (so with log2 N stages), all path lengths are one
more than the number of stages in the network. Thus, we have
bounded

∑t

t′=1 λt′ by log2 N + 1 as desired. By a similar
argument, it can be shown for a general, unique-path switch
network that speedup equal to the longest path length in the
network is sufficient to track with bounded backlog.

We now bound the running time of Algorithm 3. First, we
show that it is possible to construct all the maximal stable sets
Sl from step 2 in total time O(N3 log2 N). As a subroutine
to the construction, we check whether adding a new node to
a stable set of the link graph G of a Banyan network results
in a stable set. In order to do this efficiently, we keep track
of which of the N(log2 N + 1) constraints in the link graph
G are covered by the stable set S under consideration, where
we say that a set S of nodes covers a constraint if at least
one node in S is in the corresponding clique. Then we can
check, for any node (i, j) in G, whether {(i, j)}∪S is a stable
set by checking if none of the log2 N + 1 constraints whose
corresponding cliques contain (i, j) are covered by S.

We construct maximal stable set S1 by sequentially con-
sidering each of the nodes of G with positive corresponding
entries in M , keeping those with no constraints currently
covered and then setting all their constraints to “covered.” This
takes time O(N2 log N). For l ≥ 2, we construct the maximal
stable set Sl by starting with the stable set Sl−1 and removing
the set of nodes (call it Rl−1) whose corresponding entries in
M were set to 0 during iteration l − 1. Also, all constraints
covered by a node in Rl−1 are set to “not covered.” We then
augment Sl−1 \ Rl−1 to form a maximal stable set in G
restricted to the nodes with positive value in M , by considering
in turn each node in ∪(i,j)∈Rl−1

N ((i, j)) with positive value
in M ; for each such node, if all its constraints are not covered,
we add it to the stable set and cover all its constraints. The
resulting stable set Sl is maximal since adding any node
with positive value in M and not in ∪(i,j)∈Rl−1

N ((i, j)) to
Sl−1 \Rl−1 would result in a set that is not stable (otherwise
Sl−1 is not maximal).

Computing the maximal stable set at iteration l ≥ 2 takes
time O(|Rl|N log2 N), since the algorithm checks, for each
node (i, j) in Rl, for each node (k,m) in the neighborhood
of (i, j), whether the log2 N + 1 constraints of (k,m) are
covered. Since for each node (i, j), there is at most a single
l ≥ 2 such that (i, j) ∈ Rl, we have

∑

l≥2 |Rl| ≤ N2. Because
the maximum size of a stable set of G is N , the other parts
of step 2 can be computed in time O(N) per iteration. Thus,
the total run time of Algorithm 3 is O(N 3 log2 N).

VIII. CONCLUSIONS

In this paper, we have considered packetized policies in or-
der to track with bounded backlog arbitrary time varying fluid
policies for an N ×N Banyan network. First, we showed that
in contrast to the crossbar switch, Banyan networks require
speedup in order to track arbitrary fluid policies with bounded
backlog. Next, we developed the concept of required speedup,
and computed the exact speedup required for the 4×4 Banyan
network, and obtained logarithmic bounds on the speedup

required for a general N×N Banyan network. Computing the
exact speedup required for general Banyan networks, and other
networks of interest, remains an interesting and stimulating
open problem.

In addition, we introduced a natural relationship to graph
theory and combinatorics, allowing us to develop significant
machinery. We believe that many more benefits can be reaped
from this relationship between switch networks and polyhedral
combinatorics.
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