
Binary Embedding: Fundamental Limits and Fast
Algorithm

Xinyang Yi
The University of Texas at Austin

yixy@utexas.edu

Constantine Caramanis
The University of Texas at Austin

constantine@utexas.edu

Eric Price
The University of Texas at Austin

ecprice@cs.utexas.edu

Abstract

Binary embedding is a nonlinear dimension reduction methodology where high dimensional
data are embedded into the Hamming cube while preserving the structure of the original space.
Specifically, for an arbitrary N distinct points in Sp−1, our goal is to encode each point using m-
dimensional binary strings such that we can reconstruct their geodesic distance up to δ uniform
distortion. Existing binary embedding algorithms either lack theoretical guarantees or suffer
from running time O

(
mp
)
. We make three contributions: (1) we establish a lower bound that

shows any binary embedding oblivious to the set of points requires m = Ω(1
δ2 logN) bits and

a similar lower bound for non-oblivious embeddings into Hamming distance; (2) we propose a
novel fast binary embedding algorithm with provably optimal bit complexity m = O

(
1
δ2 logN

)
and near linear running time O(p log p) whenever logN � δ

√
p, with a slightly worse running

time for larger logN ; (3) we also provide an analytic result about embedding a general set
of points K ⊆ Sp−1 with even infinite size. Our theoretical findings are supported through
experiments on both synthetic and real data sets.

1 Introduction

Low distortion embeddings that transform high-dimensional points to low-dimensional space have
played an important role in dealing with storage, information retrieval and machine learning prob-
lems for modern datasets. Perhaps one of the most famous results along these lines is the Johnson-
Lindenstrauss (JL) lemma Johnson and Lindenstrauss (1984), which shows that N points can be
embedded into a O

(
δ−2 logN

)
-dimensional space while preserving pairwise Euclidean distance up to

δ-Lipschitz distortion. This δ−2 dependence has been shown to be information-theoretically optimal
Alon (2003). Significant work has focused on fast algorithms for computing the embeddings, e.g.,
(Ailon and Chazelle, 2006; Krahmer and Ward, 2011; Ailon and Liberty, 2013; Cheraghchi et al.,
2013; Nelson et al., 2014).

1

More recently, there has been a growing interest in designing binary codes for high dimensional
points with low distortion, i.e., embeddings into the binary cube (Weiss et al., 2009; Raginsky and
Lazebnik, 2009; Salakhutdinov and Hinton, 2009; Liu et al., 2011; Gong and Lazebnik, 2011; Yu
et al., 2014). Compared to JL embedding, embedding into the binary cube (also called binary
embedding) has two advantages in practice: (i) As each data point is represented by a binary code,
the disk size for storing the entire dataset is reduced considerably. (ii) Distance in binary cube
is some function of the Hamming distance, which can be computed quickly using computationally
efficient bit-wise operators. As a consequence, binary embedding can be applied to a large number of
domains such as biology, finance and computer vision where the data are usually high dimensional.

While most JL embeddings are linear maps, any binary embedding is fundamentally a nonlinear
transformation. As we detail below, this nonlinearity poses significant new technical challenges for
both upper and lower bounds. In particular, our understanding of the landscape is significantly less
complete. To the best of our knowledge, lower bounds are not known; embedding algorithms for
infinite sets have distortion-dependence δ significantly exceeding their finite-set counterparts; and
perhaps most significantly, there are no fast (near linear-time) embedding algorithms with strong
performance guarantees. As we explain below, this paper contributes to each of these three areas.
First, we detail some recent work and state of the art results.
Recent Work. A common approach pursued by several existing works, considers the natural
extension of JL embedding techniques via one bit quantization of the projections:

b(x) = sign(Ax), (1.1)

where x ∈ Rp is input data point, A ∈ Rm×p is a projection matrix and b(x) is the embedded binary
code. In particular, Jacques et al. (2011) shows when each entry of A is generated independently
from N (0, 1), with m > 1

δ2
logN it with high probability achieves at most δ (additive) distortion

for N points. Work in Plan and Vershynin (2014) extend these results to arbitrary sets K ⊆ Sp−1

where |K| can be infinite. They prove that the embedding with δ-distortion can be obtained
when m & w(K)2/δ6 where w(K) is the Gaussian Mean Width of K. It is unknown whether the
unusual δ−6 dependence is optimal or not. Despite provable sample complexity guarantees, one bit
quantization of random projection as in (1.1), suffers from O

(
mp
)
running time for a single point.

This quadratic dependence can result in a prohibitive computational cost for high-dimensional data.
Analogously to the developments in “fast” JL embeddings, there are several algorithms proposed
to overcome this computational issue. Work in Gong et al. (2013) proposes a bilinear projection
method. By setting m = O(p), their method reduces the running time from O(p2) to O(p1.5). More
recently, work in Yu et al. (2014) introduces a circulant random projection algorithm that requires
running time O

(
p log p

)
. While these algorithms have reduced running time, as of yet they come

without performance guarantees: to the best of our knowledge, the measurement complexities of
the two algorithms are still unknown. Another line of work considers learning binary codes from
data by solving certain optimization problems (Weiss et al., 2009; Salakhutdinov and Hinton, 2009;
Norouzi et al., 2012; Yu et al., 2014). Unfortunately, there is no known provable bits complexity
result for these algorithms. It is also worth noting that Raginsky and Lazebnik (2009) provide
a binary code design for preserving shift-invariant kernels. Their method suffers from the same
quadratic computational issue compared with the fully random Gaussian projection method.

2

Another related dimension reduction technique is locality sensitive hashing (LSH) where the
goal is to compute a discrete data structure such that similar points are mapped into the same
bucket with high probability (see, e.g., Andoni and Indyk (2006)). The key difference is that LSH
preserves short distances, but binary embedding preserves both short and far distances. For points
that are far apart, LSH only cares that the hashings are different while binary embedding cares how
different they are.
Contributions of this paper. In this paper, we address several unanswered problems about
binary embedding. We provide lower bounds for both data-oblivious and data-aware embeddings;
we provide a fast algorithm for binary embedding; and finally we consider the setting of infinite
sets, and prove that in some of the most common cases we can improve the state-of-the-art sample
complexity guarantees by a factor of δ−2:

1. We provide two lower bounds for binary embeddings. The first shows that any method for
embedding and for recovering a distance estimate from the embedded points that is indepen-
dent of the data being embedded must use Ω(1

δ2
logN) bits. This is based on a bound on the

communication complexity of Hamming distance used by Jayram and Woodruff (2013) for
a lower bound on the “distributional” JL embedding. Separately, we give a lower bound for
arbitrarily data-dependent methods that embed into (any function of) the Hamming distance,
showing such algorithms requirem = Ω(1

δ2 log (1/δ)
logN). This bound is similar to Alon (2003)

which gets the same result for JL, but the binary embedding requires a different construction.

2. We provide the first provable fast algorithm with optimal measurement complexityO
(

1
δ2

logN
)
.

The proposed algorithm has running time O
(

1
δ2

log 1
δ log2N log p log3 logN + p log p

)
thus has

almost linear time complexity when logN . δ
√
p. Our algorithm is based on two key novel

ideas. First, our similarity is based on the median Hamming distance of sub-blocks of the bi-
nary code; second, our new embedding takes advantage of a pair-wise independence argument
of Gaussian Toeplitz projection that could be of independent interest.

3. For arbitrary set K ⊆ Sp−1 and the fully random Gaussian projection algorithm, we prove
thatm = O(w(K+)2/δ4) is sufficient to achieve δ uniform distortion. Here K+ is an expanded
set of K. Although in general K ⊆ K+ and hence w(K) ≤ w(K+), for interesting K such as
sparse or low rank sets, one can show w(K+) = Θ(w(K))� p. Therefore applying our theory
to these sets results in an improved dependence on δ compared to a recent result in Plan and
Vershynin (2014). See Section 3.3 for a detailed discussion.

Discussion. For the fast binary embedding, one simple solution, to the best of our knowledge
not previously stated, is to combine a Gaussian projection and the well known results about
fast JL. In detail, consider the strategy b(x) = sign(AFx), where A is a Gaussian matrix and
F is any fast JL construction such as subsampled Walsh-Hadamard matrix Rudelson and Ver-
shynin (2008) or partial circulant matrix Krahmer et al. (2014) with column flips. A simple anal-
ysis shows that this approach achieves measurement complexity O(1

δ2
logN) and running time

O(1
δ4

log2N log p log3 logN + p log p) by following the best known fast JL results. Our fast binary
embedding algorithm builds on this simple but effective thought. Instead of using a Gaussian ma-
trix after the fast JL transform, we use a series of Gaussian Toeplitz matrices that have fast matrix

3

vector multiplication. This novel construction improves the running time by δ2 while keeping mea-
surement complexity the same. In order for this to work, we need to change the estimator from
straight Hamming distance to one based on the median of several Hamming distances.

An interesting point of comparison is Ailon and Rauhut (2014), which considers “RIP-optimal”
distributions that give JL embeddings with optimal measurement complexity O(1

δ2
logN) and run-

ning time O(p log p). They show the existence of such embeddings whenever logN < δ2p1/2−γ for
any constant γ > 0, which is essentially no better than the bound given by the folklore method
of composing a Gaussian projection with a subsampled Fourier matrix. In our binary setting, we
show how to improve the region of optimality by a factor of δ. It would be interesting to try and
translate this result back to the JL setting.
Notation. We use [n] to denote natural number set {1, 2, . . . , n}. For natural numbers a < b, let
[a, b] denote the consecutive set {a, a + 1, . . . , b}. A vector in Rn is denoted as x or equivalently
(x1, x2, . . . , xn)>. We use xI to denote the sub-vector of x with index set I ⊆ [n]. We denote
entry-wise vector multiplication as x� y = (x1y1, x2y2, . . . , xnyn)>. A matrix is typically denoted
as M. Term (i, j) of M is denoted as Mi,j . Row i of M is denoted as Mi. An n-by-n identity
matrix is denoted as In. For two random variables X,Y , we denote the statement that X and Y
are independent as X⊥Y . For two binary strings a, b ∈ {0, 1}m, we use dH(a, b) to denote the
normalized Hamming distance, i.e., dH(a, b) := 1

m

∑m
i=1 1(ai 6= bi).

2 Organization, Problem Setup and Preliminaries

In this section, we state our problem formally, give some key definitions and present a simple
(known) algorithm that sets the stage for the main results of this paper. The algorithm (Algorithm
1), discussed in detail below, is simply the one-bit quantization of a standard JL embedding. Its
performance on finite sets is easy to analyze, and we state it in Proposition 2.2 below. Three
important questions remain unanswered: (i) Lower Bounds – is the performance guaranteed by
Proposition 2.2 optimal? We answer this affirmatively in Section 3.1. (ii) Fast Embedding – whereas
Algorithm 1 is quadratic (depending on the product mp), fast JL algorithms are nearly linear in p;
does something similar exist for binary embedding? We develop a new algorithm in Section 3.2 that
addresses the complexity issue, while at the same time guaranteeing δ-embedding with dimension
scaling that matches our lower bound. Interestingly, a key aspect of our contribution is that we use
a slightly modified similarity function, using the median of the normalized Hamming distance on
sub-blocks. (iii) Infinite Sets – recent work analyzing the setting of infinite sets K ⊆ Sp−1 shows a
dependence of δ−6 on the distortion. Is this optimal? We show in Section 3.3 that in many settings
this can be improved by a factor of δ−2. In Section 4, we provide numerical results. We give most
proofs in Section 5.

2.1 Problem Setup

Given a set of p-dimensional points, our goal is to find a transformation f : Rp 7→ {0, 1}m such
that the Hamming distance (or other related, easily computable metric) between two binary codes
is close to their similarity in the original space. We consider points on the unit sphere Sp−1 and use

4

the normalized geodesic distance (occasionally, and somewhat misleadingly, called cosine similarity)
as the input space similarity metric. For two points x,y ∈ Rp, we use d(x,y) to denote the geodesic
distance, defined as

d(x,y) :=
∠(x/‖x‖2,y/‖y‖2)

π
,

where ∠(·, ·) denotes the angle between two vectors. For x,y ∈ Sp−1, the metric d(x,y) is propor-
tional to the length of the shortest path connecting x,y on the sphere.

Given the success of JL embedding, a natural approach is to consider the one bit quantization
of a random projection:

b = sign(Ax), (2.1)

where A is some random projection matrix. Given two points x,y with embedding vectors b, and
c, we have bi 6= ci if and only if

〈
Ai,x

〉〈
Ai,y

〉
< 0. The traditional metric in the embedded space

has been the so-called normalized Hamming distance, which we done by dA(x,y) and is defined as
follows.

dA(x,y) :=
1

m

m∑
i=1

1

{
sign

(〈
Ai,x

〉)
6= sign

(〈
Ai,y

〉)}
. (2.2)

Definition 2.1. (δ-uniform Embedding) Given a set K ⊆ Sp−1 and projection matrix A ∈ Rm×p,
we say the embedding b = sign(Ax) provides a δ-uniform embedding for points in K if∣∣dA(x,y)− d(x,y)

∣∣ ≤ δ, ∀ x, y ∈ K. (2.3)

Note that unlike for JL, we aim to control additive error instead of relative error. Due to
the inherently limited resolution of binary embedding, controlling relative error would force the
embedding dimension m to scale inversely with the minimum distance of the original points, and
in particular would be impossible for any infinite set.

2.2 Uniform Random Projection

Algorithm 1 Uniform Random Projection

input Finite number of points K = {xi}|K|i=1 where K ⊆ Sp−1, embedding target dimension m.
1: Construct matrix A ∈ Rm×p where each entry Ai,j is drawn independently from N (0, 1).
2: for i = 1, 2, . . . , |K| do
3: bi ← sign(Axi).
4: end for
output {bi}|K|i=1

Algorithm 1 presents (2.1) formally, when A is an i.i.d. Gaussian random matrix, i.e., Ai ∼
N (0, Ip) for any i ∈ [m]. It is easy to observe that for two fixed points x,y ∈ Sp−1 we have

E
(
1

{
sign

(〈
Ai,x

〉)
6= sign

(〈
Ai,y

〉)})
= d(x,y), ∀ i ∈ [m]. (2.4)

5

The above equality has a geometric explanation: each Ai actually represents a uniformly distributed
random hyperplane in Rp. Then sign

(〈
Ai,x

〉)
6= sign

(〈
Ai,y

〉)
holds if and only if hyperplane Ai

intersects the arc between x and y. In fact, dA(x,y) is equal to the fraction of such hyperplanes.
Under such uniform tessellation, the probability with which the aforementioned event occurs is
d(x,y). Applying Hoeffding’s inequality and probabilistic union bound over N2 pairs of points, we
have the following straightforward guarantee.

Proposition 2.2. Given a set K ⊆ Sp−1 with finite size |K|, consider Algorithm 1 with m ≥
c(1/δ2) log |K|. Then with probability at least 1− 2 exp(−δ2m), we have∣∣dA(x,y)− d(x,y)

∣∣ ≤ δ, ∀ x,y ∈ K.
Here c is some absolute constant.

Proof. The proof idea is standard and follows from the above; we omit the details.

3 Main Results

We now present our main results on lower bounds, on fast binary embedding, and finally, on a
general result for infinite sets.

3.1 Lower Bounds

We offer two different lower bounds. The first shows that any embedding technique that is obliv-
ious to the input points must use Ω(1

δ2
logN) bits, regardless of what method is used to estimate

geodesic distance from the embeddings. This shows that uniform random projection and our fast
binary embedding achieve optimal bit complexity (up to constants). The bound follows from results
by Jayram and Woodruff (2013) on the communication complexity of Hamming distance.

Theorem 3.1. Consider any distribution on embedding functions f : Sp−1 → {0, 1}m and recon-
struction algorithms g : {0, 1}m × {0, 1}m → R such that for any x1, . . . ,xN ∈ Sp−1 we have∣∣g(f(xi), f(xj))− d(xi,xj)

∣∣ ≤ δ
for all i, j ∈ [N] with probability 1− ε. Then m = Ω(1

δ2
log(N/ε)).

Proof. See Section 5.1 for detailed proof.

One could imagine, however, that an embedding could use knowledge of the input point set to
embed any specific set of points into a lower-dimensional space than is possible with an oblivious
algorithm. In the Johnson-Lindenstrauss setting, Alon (2003) showed that this is not possible
beyond (possibly) a log(1/δ) factor. We show the analogous result for binary embeddings. Relative
to Theorem 3.1, our second lower bound works for data-dependent embedding functions but loses a
log(1/δ) and requires the reconstruction function to depend only on the Hamming distance between
the two strings. This restriction is natural because an unrestricted data-dependent reconstruction
function could simply encode the answers and avoid any dependence on δ.

6

With the scheme given in (2.1), choosing A as a fully random Gaussian matrix yields dA(x,y) ≈
d(x,y). However, an arbitrary binary embedding algorithm may not yield a linear functional
relationship between Hamming distance and geodesic distance. Thus for this lower bound, we allow
the design of an algorithm with arbitrary link function L.

Definition 3.2. (Data-dependent binary embedding problem)
Let L : [0, 1]→ [0, 1] be a monotonic and continuous function. Given a set of points x1,x2, ...,xN ∈
Sp−1, we say a binary embedding mapping f solves the binary embedding problem in terms of link
function L, if ∣∣dH(f(xi), f(xj))− L

(
d(xi,xj)

)∣∣ ≤ δ, ∀ i, j ∈ [N]. (3.1)

Although the choice of L is flexible, note that for the same point, we always have dH(f(xi), f(xi)) =

d(xi,xi) = 0, thus (3.1) implies L(0) < δ. We can just let L(0) = 0. In particular, we let
Lmax = L(1). We have the following lower bound:

Theorem 3.3. There exist 2N points x1,x2, ...,x2N ∈ SN−1 such that for any binary embedding
algorithm f on {xi}2Ni=1, if it solves the data-dependent binary embedding problem defined in 3.2 in
terms of link function L and any δ ∈ (0, 1

16
√
e
Lmax), it must satisfy

m ≥ 1

128e

(
Lmax

δ

)2 logN

log Lmax
2δ

. (3.2)

Proof. See Section 5.2 for detailed proof.

Remark 3.4. We make two remarks for the above result. (1) When Lmax is some constant, our
result implies that for general N points, any binary embedding algorithm (even data-dependent
) must have Ω(1

δ2 log 1
δ

logN) number of measurements. This is analogous to Alon’s lower bound

in the JL setting. It is worth highlighting two differences: (i) The JL setting considers the same
metric (Euclidean distance) for both the input and the embedded spaces. In binary embedding,
however, we are interested in showing the relationship between Hamming distance and geodesic
distance. (ii) Our lower bound is applicable to a broader class of binary embedding algorithms as it
involves arbitrary, even data-dependent, link function L. Such an extension is not considered in the
lower bound of JL. (2) The stated lower bound only depends on Lmax and does not depend on any
curvature information of L. The constraint Lmax > 16

√
eδ is critical for our lower bound to hold,

but some such restriction is necessary because for Lmax < δ, we are able to embed all points into
just one bit. In this case dH(f(xi), f(xj)) = 0 for all pairs and condition (3.1) would hold trivially.

3.2 Fast Binary Embedding

In this section, we present a novel fast binary embedding algorithm. We then establish its theoretical
guarantees. There are two key ideas that we leverage: (i) instead of normalized Hamming distance,
we use a related metric, the median of the normalized Hamming distance applied to sub-blocks;
and (ii) we show a key pair-wise independence lemma for partial Gaussian Toeplitz projection, that
allows us to use a concentration bound that then implies nearness in the median-metric we use.

7

3.2.1 Method

Our algorithm builds on sub-sampled Walsh-Hadamard matrix and partial Gaussian Toeplitz ma-
trices with random column flips. In particular, an m-by-p partial Walsh-Hadamard matrix has the
form

Φ := P ·H ·D. (3.3)

The above construction has three components. We characterize each term as follows:

• Term D is a p-by-p diagonal matrix with diagonal terms {ζi}pi=1 that are drawn from i.i.d.
Rademacher sequence, i.e, for any i ∈ [p], Pr(ζi = 1) = Pr(ζi = −1) = 1/2.

• Term H is a p-by-p scaled Walsh-Hadamard matrix such that H>H = Ip.

• Term P is an m-by-p sparse matrix where one entry of each row is set to be 1 while the rest
are 0. The nonzero coordinate of each row is drawn independently from uniform distribution.
In fact, the role of P is to randomly select p rows of H ·D.

An m-by-n partial Gaussian Toeplitz matrix has the form

Ψ := P ·T ·D. (3.4)

We introduce each term as follows:

• Term D a is n-by-n diagonal matrix with diagonal terms {ζi}ni=1 that are drawn from i.i.d.
Rademacher sequence.

• Term T is a n-by-n Toeplitz matrix constructed from (2n− 1)-dimensional vector g such that
Ti,j = gi−j+n for any i, j ∈ [n]. In particular, g is drawn from N (0, I2n−1).

• Term P is an m-by-n sparse matrix where Pi = e>i for any i ∈ [m]. Equivalently, we use P to
select the first m rows of TD. It’s worth to note we actually only need to select any distinct
m rows.

With the above constructions in hand, we present our fast algorithm in Algorithm 2. At a high
level, Algorithm 2 consists of two parts: First, we apply column flipped partial Hadamard transform
to convert p-dimensional point into n-dimensional intermediate point. Second, we useB independent
(m/B)-by-n partial Gaussian Toeplitz matrices and sign operator to map an intermediate point
into B blocks of binary codes. In terms of similarity computation for the embedded codes, we use
the median of each block’s normalized Hamming distance. In detail, for b, c ∈ {0, 1}m, B-wise
normalized Hamming distance is defined as

dH(b, c;B) := median

({
dH
(
bTi , cTi

)}B−1

i=0

)
(3.5)

where Ti = [i+ 1, i+m/B].
It is worth noting that our first step is one construction of fast JL transform. In fact any fast JL

transform would work for our construction, but we choose a standard one with real value: based on

8

Rudelson and Vershynin (2008); Cheraghchi et al. (2013); Krahmer and Ward (2011), it is known
that with m = O

(
ε−2 logN log p log3(logN)

)
measurements, a subsampled Hadamard matrix with

column flips becomes an ε-JL matrix for N points.
The second part of our algorithm follows framework (2.1). By choosing a Gaussian random

vector in each row of Ψ, from our previous discussion in Section 2.2, the probability that such a
hyperplane intersects the arc between two points is equal to their geodesic distance. Compared to
a fully random Gaussian matrix, as used in Algorithm 1, the key difference is that the hyperplanes
represented by rows of Ψ are not independent to each other; this imposes the main analytical
challenge.

Algorithm 2 Fast Binary Embedding
input Finite number of points {xi}Ni=1 where each point xi ∈ Sp−1, embedded dimension m, inter-

mediate dimension n, number of blocks B.
1: Draw a n-by-p sub-sampled Walsh-Hadamard matrix Φ according to (3.3). Draw B independent

partial Gaussian Toeplitz matrices
{
Ψ(j)

}B
j=1

with size (m/B)-by-n according to (3.4).
2: {Part I: Fast JL}
3: for i = 1, 2, . . . , N do
4: yi ← Φ · xi.
5: end for
6: {Part II: Partial Gaussian Toeplitz Projection}
7: for i = 1, 2, . . . , N do
8: for j = 1, 2, . . . , B do
9: cj ← sign

(
Ψ(j) · yi

)
.

10: end for
11: bi ← [c1; c2; . . . ; cB]

12: end for
output {bi}Ni=1

3.2.2 Analysis

We give the analysis for Algorithm 2. We first review a well known result about fast JL transform.

Lemma 3.5. Consider the column flipped partial Hadamard matrix defined in (3.3) with size m-
by-p. For N points x1,x2, ...,xN ∈ Sp−1, let yi =

√
p
mΦ(ζ) · xi, ∀ i ∈ [N]. For some absolute

constant c, suppose m ≥ cδ−2 logN log p log3(logN), then with probability at least 0.99, we have
that for any i, j ∈ [N] ∣∣‖yi − yj‖2 − ‖xi − xj‖2∣∣ ≤ δ‖xi − xj‖2, (3.6)

and for any i ∈ [N] ∣∣‖yi‖2 − 1
∣∣ ≤ δ. (3.7)

Proof. It can be proved by combining Theorem 14 in Cheraghchi et al. (2013) and Theorem 3.1 in
Krahmer and Ward (2011).

9

The above result suggests that the first part of our algorithm reduces the dimension while
preserving well the Euclidean distance of each pair. Under this condition, all the pairwise geodesic
distances are also well preserved as confirmed by the following result.

Lemma 3.6. Consider the set of embedded points {yi}Ni=1 defined in Lemma 3.5. Suppose condi-
tions (3.6)-(3.7) hold with δ > 0. Then for any i, j ∈ [N],∣∣d(yi,yj)− d(xi,xj)

∣∣ ≤ Cδ (3.8)

holds with some absolute constant C.

Proof. We postpone the proof to Appendix A.

The next result is our independence lemma, and is one of the key technical ideas that make our
result possible. The result shows that for any fixed x, Gaussian Toeplitz projection (with column
flips) plus sign(·) generate pair-wise independent binary codes.

Lemma 3.7. Let g ∼ N (0, I2n−1), ζ = {ζi}i=ni=1 be an i.i.d. Rademacher sequence. Let T be a
random Toeplitz matrix constructed from g such that Ti,j = gi−j+n. Consider any two distinct
rows of T say ξ, ξ′. For any two fixed vectors x,y ∈ Rn, we define the following random variables

X = sign
〈
ξ � ζ, x

〉
, X ′ = sign

〈
ξ′ � ζ,x

〉
;

Y = sign
〈
ξ � ζ, y

〉
, Y ′ = sign

〈
ξ′ � ζ,y

〉
.

We have
X⊥X ′, X⊥Y ′, Y⊥X ′, Y⊥Y ′.

Proof. See Section 5.3.1 for detailed proof.

We are ready to prove the following result about Algorithm 2.

Theorem 3.8. Consider Algorithm 2 with random matrices Φ, Ψ defined in (3.3) and (3.4) respec-
tively. For finite number of points {xi}Ni=1, let bi be the binary codes of xi generated by Algorithm
2. Suppose we set

B ≥ c logN, n ≥ c′(1/δ2) logN log p log3(logN), n ≥ m/B ≥ c′′(1/δ2),

with some absolute constants c, c′, c′′, then with probability at least 0.98, we have that for any
i, j ∈ [N] ∣∣dH(bi, bj ;B)− d(xi,xj)

∣∣ ≤ δ.
Similarity metric dH(·, ·;B) is the median of normalized Hamming distance defined in (3.5).

Proof. See Section 5.3.2 for detailed proof.

10

The above result suggests that the measurement complexity of our fast algorithm is O
(

1
δ2

logN
)

which matches the performance of Algorithm 1 based on fully random matrix. Note that this
measurement complexity can not be improved significantly by any data-oblivious binary embedding
with any similarity metric, as suggested by Theorem 3.1.
Running time: The first part of our algorithm takes time O

(
p log p

)
. Generating a single block

of binary codes from partial Toeplitz matrix takes time O
(
n log(1

δ)
)1. Thus the total running time

is O
(
Bn log 1

δ + p log p
)

= O
(

1
δ2

log 1
δ log2N log p log3(logN) + p log p

)
. By ignoring the polynomial

log log factor, the second term O
(
p log p

)
dominates when logN . δ

√
p/ log 1

δ .
Comparison to an alternative algorithm: Instead of utilizing the partial Gaussian Toeplitz
projection, an alternative method, to the best of our knowledge not previously stated, is to use
fully random Gaussian projection in the second part of our algorithm. We present the details in
Algorithm 3. By combining Proposition 2.2 and Lemma 3.5, it is straightforward to show this
algorithm still achieves the same measurement complexity O

(
1
δ2

logN
)
. The corresponding running

time is O
(

1
δ4

log2N log p log3(logN) + p log p
)
, so it is fast when logN . δ2√p. Therefore our

algorithm has an improved dependence on δ. This improvement comes from fast multiplication of
partial Toeplitz matrix and a pair-wise independence argument shown in Lemma 3.7.

Algorithm 3 Alternative Fast Binary Embedding
input Finite number of points {xi}Ni=1 where each point xi ∈ Sp−1, embedded dimension m, inter-

mediate dimension n.
1: Draw a n-by-p sub-sampled Walsh-Hadamard matrix Φ according to (3.3). Construct m-by-n

matrix A where each entry is drawn independently from N (0, 1).
2: for i = 1, 2, . . . , N do
3: bi ← sign(AΦxi)

4: end for
output {bi}Ni=1

3.3 δ-uniform Embedding for General K

In this section, we turn back to the fully random projection binary embedding (Algorithm 1). Recall
that in Proposition 2.2, we show for finite size K, m = O(1

δ2
log |K|) measurements are sufficient

to achieve δ-uniform embedding. For general K, the challenge is that there might be an infinite
number of distinct points inK, so Proposition 2.2 cannot be applied. In proving the JL lemma for an
infinite set K, the standard technique is either constructing an ε-net of K or reducing the distortion
to the deviation bound of a Gaussian process. However, due to the non-linearity essential for binary
embedding, these techniques cannot be directly extended to our setting. Therefore strengthening
Proposition 2.2 to infinite size K imposes significant technical challenges. Before stating our result,
we first give some definitions.

Definition 3.9. (Gaussian mean width) Let g ∼ N (0, Ip). For any set K ⊆ Sp−1, the Gaussian

1Matrix-vector multiplication for m-by-n partial Toeplitz matrix can be implemented in running time O
(
n logm

)
.

11

mean width of K is defined as
w(K) := Eg sup

x∈K

∣∣〈g,x〉∣∣.
Here, w(K)2 measures the effective dimension of set K. In the trivial case K = Sp−1, we have

w(K)2 . p. However, when K has some special structure, we may have w(K)2 � p. For instance,
when K = {x ∈ Sp−1 : | supp(x)| ≤ s}, it has been shown that w(K) = Θ(

√
s log(p/s)) (see Lemma

2.3 in Plan and Vershynin (2013)).
For a given δ, we define K+

δ , the expanded version of K ⊆ Sp−1 as:

K+
δ := K

⋃{
z ∈ Sp−1 : z =

x− y
‖x− y‖2

, ∀ x,y ∈ K if δ2 ≤ ‖x− y‖2 ≤ δ
}
. (3.9)

In other words, K+
δ is constructed from K by adding the normalized differences between pairs of

points in K that are within δ but not closer than δ2. Now we state the main result as follows.

Theorem 3.10. Consider any K ⊆ Sp−1. Let A ∈ Rm×p be an i.i.d. Gaussian matrix where each
row Ai ∼ N (0, Ip). For any two points x,y ∈ K, dA(x,y) is defined in (2.2). Expanded set K+

δ is
defined in (3.9). When

m ≥ c
w(K+

δ)2

δ4
,

with some absolute constant c, then we have that

sup
x,y∈K

∣∣dA(x,y)− d(x,y)
∣∣ ≤ δ

holds with probability at least 1− c1 exp(−c2δ
2m) where c1, c2 are absolute constants.

Proof. See Section 5.4 for detailed proof.

Remark 3.11. We compare the above result to Theorem 1.5 from the recent paper Plan and
Vershynin (2014) where it is proved that for m & w(K)2/δ6, Algorithm 1 is guaranteed to achieve
δ-uniform embedding for general K. Based on definition (3.9), we have

w(K) ≤ w(K+
δ) ≤ 1

δ2
w(K −K) .

1

δ2
w(K).

Thus in the worst case, Theorem 3.10 recovers the previous result up to a factor 1
δ2
. More impor-

tantly, for many interesting sets one can show w(K+
δ) . w(K); in such cases, our result leads to an

improved dependence on δ. We give several such examples as follows:

• Low rank set. For some U ∈ Rp×r such that U>U = Ir, let K = {x ∈ Sp−1 : x = Uc, ∀ c ∈
Sr−1}. We simply have K = K+

δ and w(K) .
√
r. Our result implies m = O

(
r/δ4

)
.

• Sparse set. K = {x ∈ Sp−1 : | supp(x)| ≤ s}. In this case we have K+
δ ⊆ {x ∈ Sp−1 :

| supp(x)| ≤ 2s}. Therefore w(K+
δ) = Θ(

√
s log(p/s)). Our result implies m = O

(s log(p/s)
δ4

)
.

• Set with finite size. |K| < ∞. As w(K) .
√

log |K| and |K+
δ | ≤ 2|K|, our result implies

m = O
(

log |K|/δ4
)
. We thus recover Proposition 2.2 up to factor 1/δ2.

Applying the result from Plan and Vershynin (2014) to the above sets implies similar results
but the dependence on δ becomes 1/δ6.

12

4 Numerical Results

In this section, we present the results of experiments we conduct to validate our theory and compare
the performance of the following three algorithms we discussed: uniform random projection (URP)
(Algorithm 1), fast binary embedding (FBE) (Algorithm 2) and the alternative fast binary embed-
ding (FBE-2) (Algorithm 3). We first apply these algorithms to synthetic datasets. In detail, given
parameters (N, p), a synthetic dataset is constructed by sampling N points from Sp−1 uniformly at
random. Recall that δ is the maximum embedding distortion among all pairs of points. We use m
to denote the number of binary measurements. Algorithm FBE needs parameters n,B, which are
intermediate dimension and number of blocks respectively. Based on Theorem 3.8, n is required
to be proportional to m (up to some logarithmic factors) and B is required to be proportional to
logN . We thus set n ≈ 1.3m, B ≈ 1.8 logN . We also set n ≈ 1.3m for FBE-2. In addition, we fix
p = 512. We report our first result showing the functional relationship between (m,N, δ) in Figure
1. In particular, panel 1(a) shows the the change of distortion δ over the number of measurements
m for fixed N . We observe that, for all the three algorithms, δ decays with m at the rate predicted
by Proposition 2.2 and Theorem 3.8. Panel 1(b) shows the empirical relationship between m and
logN for fixed δ. As predicted by our theory (lower bound and upper bound), m has a linear
dependence on logN .

m

50 100 150 200 250

δ

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

FBE

FBE-2

URP

(a) N = 300

logN
5 6 7 8

m

50

100

150

200

250

300

FBE

FBE-2

URP

(b) δ = 0.3

Figure 1: Results on synthetic datasets. (a) Each point, along with the standard deviation repre-
sented by the error bar, is an average of 50 trials each of which is based on a fresh synthetic dataset
with size N = 300 and newly constructed embedding mapping. (b) Each point is computed by
slicing at δ = 0.3 in similar plots like (a) but with the corresponding N .

A popular application of binary embedding is image retrieval, as considered in (Gong and Lazeb-
nik, 2011; Gong et al., 2013; Yu et al., 2014). We thus conduct an experiment on the Flickr-25600
dataset that consists of 10k images from Internet. Each image is represented by a 25600-dimensional
normalized Fisher vector. We take 500 randomly sampled images as query points and leave the rest
as base for retrieval. The relevant images of each query are defined as its 10 nearest neighbors

13

Number of retrieved images
20 40 60 80 100

R
ec

al
l

0.2

0.4

0.6

0.8

FBE

FBE-2

FBE-2(same time)

URP

URP(same time)

(a) m = 5000

Number of retrieved images
20 40 60 80 100

R
ec

al
l

0.4

0.6

0.8

1

FBE

FBE-2

FBE-2(same time)

URP

URP(same time)

(b) m = 10000

Number of retrieved images
20 40 60 80 100

R
ec

al
l

0.4

0.6

0.8

1

FBE

FBE-2

FBE-2(same time)

URP

URP(same time)

(c) m = 15000

Figure 2: Image retrieval results on Flickr-25600. Each panel presents the recall for specified number
of measurements m. Black and blue dot lines are respectively the recall of FBE-2 and URP with
less number of measurements but the same running time as FBE.

based on geodesic distance. Given m, we apply FBE, FBE-2 and URP to convert all images into
m-dimensional binary codes. In particular, we set B = 10 for FBE and n ≈ 1.3m for FBE and
FBE-2. Then we leverage the corresponding similarity metrics, (3.5) for FBE and Hamming dis-
tance for FBE-2 and URP, to retrieve the nearest images for each query. The performance of each
algorithm is characterized by recall, i.e., the number of retrieved relevant images divided by the total
number of relevant images. We report our second result in Figure 2. Each panel shows the average
recall of all queries for a specified m. We note that FBE-2, as a fast algorithm, performs as well as
URP with the same number of measurements. In order to show the running time advantage of our
fast algorithm FBE, we also present the performance of FBE-2 and URP with fewer measurements
such that they can be computed with the same time as FBE. As we observe, with large number of
measurements, FBE-2 and URP perform marginally better than FBE while FBE has a significant
improvement over the two algorithms under identical time constraint.

5 Proofs

5.1 Proof of Data-Oblivious Lower Bound (Theorem 3.1)

The proof of the data-oblivious lower bound is based on a lower bound for one-way communication
of Hamming distance due to Jayram and Woodruff (2013).

Definition 5.1 (One-way communication of Hamming distance). In the one-way communication
model, Alice is given a ∈ {0, 1}n and Bob is given b ∈ {0, 1}n. Alice sends Bob a message
c ∈ {0, 1}m, and Bob uses b and c to output a value x ∈ R. Alice and Bob have shared randomness.

Alice and Bob solve the (δ, ε) additive Hamming distance estimation problem if |x− dH(a, b)| ≤
δ with probability 1− ε.

The result proven in Jayram and Woodruff (2013) is a lower bound for the multiplicative Ham-
ming distance estimation problem, but their techniques readily yield a bound for the additive case

14

as well:

Lemma 5.2. Any algorithm that solves the (δ, ε) additive Hamming distance estimation problem
must have m = Ω((1/δ2) log(1/ε)) as long as this is less than n.

Proof. We apply Lemma 3.1 of Jayram and Woodruff (2013) with parameters α = 2, p = 1, b = 1,
ε = δ, and δ = ε. This encodes inputs from a problem they prove is hard (augmented indexing on
large domains) to inputs appropriate for Hamming estimation. In particular, for n′ = O(1

δ2
log(1/ε))

it gives a distribution on (a, b) ∈ {0, 1}n′×{0, 1}n′ that are divided into “NO” and “YES” instances,
such that:

• From the reduction, distinguishing NO instances from YES instances with probability 1 − ε
requires Alice to send m = Ω(1

δ2
log(1/ε)) bits of communication to Bob.

• In NO instances, dH(a, b) ≥ 1
2(1− δ/3).

• In YES instances, dH(a, b) ≤ 1
2(1− 2δ/3).

First, suppose n = n′. Then since solving the additive Hamming distance estimation problem
with δ/12 accuracy would distinguish NO instances from YES instances, it must involve m =

Ω(1
δ2

log(1/ε)) bits of communication.
For n > n′, simply duplicate the coordinates of a and b bn/n′c times, and zero-pad the remainder.

Less than half the coordinates are then part of the zero-padding, so the gap between YES and NO
instances remains at least δ/12 and a protocol for the (δ/24, ε) additive Hamming distance estimation
problem requires m = Ω(1

δ2
log(1/ε)) as desired.

With this in hand, we can prove Theorem 3.1:

Proof of Theorem 3.1. We reduce one-way communication of the (δ, ε) additive Hamming distance
estimation problem to the embedding problem. Let a, b ∈ {0, 1}p be drawn from the hard instance
for the communication problem defined in Lemma 5.2. Linearly transform them to u,v ∈ Sp−1 via
u = (2 · a− 1)/

√
p, v = (2 · b− 1)/

√
p. We have that 〈u,v〉 = 1− 2dH(a, b), so

d(u,v) = 1− arccos(〈u,v〉)
π

= 1− arccos(1− 2dH(a, b))

π

or
dH(a, b) =

1

2
(1− cos(π − πd(u,v)))

Given an estimate of d(u,v), we can therefore get an estimate of dH(a, b). In particular, since
|cos′(x)| ≤ 1, if we learn d(u,v) to ±δ then we learn dH(a, b) to ±δ π2 .

For now, consider the case of N = 2. Consider an oblivious embedding function f : Sp−1 →
{0, 1}m and reconstruction algorithm g : {0, 1}m × {0, 1}m → R that has

|g(f(u), f(v))− d(u,v)| ≤ δ 2

π

with probability 1−ε on the distribution of inputs (u,v). We can solve the one-way communication
problem for Hamming distance estimation by Alice sending f(u) to Bob, Bob learning d(u,v) ≈

15

g(f(u), f(v)), and then computing dH(a, b) to ±δ. By the lower bound for this problem, any such
f and g must have m = Ω(1

δ2
log 1

ε), proving the result for N = 2 (after rescaling δ).
For general N , we draw instances (u1,v1), (u2,v2), . . . , (uN/2,vN/2) independently from the

hard instance for binary embedding of N = 2 and ε′ = 4ε/N . Consider an oblivious embedding
function f : Sp−1 → {0, 1}m and reconstruction algorithm g : {0, 1}m × {0, 1}m → R that has for
all i ∈ [N/2] that

|g(f(ui), f(vi))− d(ui,vi)| ≤ δ

with probability 1−ε on this distribution. Define α to be the probability that |g(f(ui), f(vi))− d(ui,vi)| ≤
δ for any particular i. Because f and g are oblivious and the different instances are independent,
we have the probability that all instances succeed is αN/2 ≥ 1− ε, so

α > (1− ε)2/N > 1− 4ε/N.

In particular, this means f and g solve the hard instance of binary embedding and N = 2, ε′ = 4ε/N .
By the above lower bound for N = 2, this means

m = Ω(
1

δ2
log(N/ε))

as desired.

5.2 Proof of Data-Dependent Lower Bound (Theorem 3.3)

We need a few ingredients to show the lower bound. First, we define a matrix that is close to
identity matrix.

Definition 5.3. ((δ1, δ2)-near identity matrix) Symmetric matrix M ∈ Rp×p is called a (δ1, δ2)-near
identity matrix if it satisfies both of the following conditions:

1− δ1 ≤Mi,i ≤ 1,∀ i ∈ [p],∣∣Mi,j

∣∣ ≤ δ2,∀ i 6= j ∈ [p].

Next we give a lower bound on the rank of (δ1, δ2)-near identity matrix.

Lemma 5.4. Suppose positive semidefinite matrix M ∈ Rp×p is a (δ1, δ2)-near identity matrix with
rank d, and 0 < δ1, δ2 < 1. Then we have

d ≥ p(1− δ1)2

1 + (p− 1)δ2
2

.

Proof. We postpone the proof to Appendix B.

The above result is weak when it is applied to show our desired lower bound. We still need to
make use of the following combinatorial result.

16

Lemma 5.5. Suppose matrix M ∈ Rp×p has rank d. Let P (x) be any degree k polynomial function.
Consider matrix N ∈ Rp×p defined as N := P (M), where the Ni,j = P (Mi,j). We have

rank(N) ≤
(
k + d

k

)
.

Proof. See Lemma 9.2 of Alon (2003) for a detailed proof.

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. Let ei denote the i’th natural basis of RN , i.e., the i’th coordinate is 1 while
the rest are all zeros. ConsiderN points {e1, e2, ..., eN} and their opposite vectors {−e1,−e2, ...,−eN}.
For any binary embedding algorithm f , we let

bi := f(ei), ∀ i ∈ [N],

ci := f(−ei), ∀ i ∈ [N].

Under the condition that f solves the general binary embedding problem with link function L,
we have ∣∣dH(bi, ci)− L

(
d(ei,−ei)

)∣∣ ≤ δ, ∀ i ∈ [N]. (5.1)

As d(ei,−ei) = 1, we have
L(1) + δ ≥ dH(bi, ci) ≥ L(1)− δ. (5.2)

Similarly, note that

d(ei, ej) = d(ei,−ej) = d(−ei,−ej) =
1

2
, ∀ i 6= j,

we have ∀ i 6= j

L(1/2)− δ ≤ dH(bi, bj) ≤ L(1/2) + δ, (5.3)

L(1/2)− δ ≤ dH(ci, cj) ≤ L(1/2) + δ, (5.4)

L(1/2)− δ ≤ dH(bi, cj) ≤ L(1/2) + δ. (5.5)

From now on, we treat binary strings bi, ci as vectors in Rm. Let B denote the matrix with rows
bi and C denote the matrix with rows ci. Consider the outer product of the difference between B

and C, namely
M = (B−C)(B−C)>.

Note that ∀ i ∈ [N],

Mi,i = ‖bi − ci‖22 = 4m · dH(bi, ci) ≥ 4m
(
L(1)− δ

)
.

The last inequality follows from (5.2). For ∀ i 6= j, we have

Mi,j =
〈
bi − ci, bj − cj

〉
=
〈
bi, bj

〉
+
〈
ci, cj

〉
−
〈
bi, cj

〉
−
〈
bj , ci

〉
= 2m

(
dH(bi, cj) + dH(bj , ci)− dH(bi, bj)− dH(ci, cj)

)
,

17

where the third equality follows from

dH(b, c) =
1

4m

(
‖b‖22 + ‖c‖22 − 2

〈
b, c
〉)
∀ b, c ∈ {−1, 1}m

By using (5.3) to (5.5), we have ∣∣Mi,j

∣∣ ≤ 8δm.

Therefore, 1
4m·(L(1)+δ)M is actually a

(
2δ
L(1) ,

2δ
L(1)

)
-near identity matrix. Consider degree k polyno-

mial P (z) = zk. Let

N = P
(1

4m · L(1)
M
)
.

It is easy to observe that N is a (γ1, γ2)-near identity matrix where

γ1 = 1− (1− 2δ

L(1)
)k,

and
γ2 =

(2δ

L(1)

)k
.

Under the condition δ
L(1) ≤

1
4 , we have

γ1 = 1− (1− δ

L(1)
)k ≤ 1− (

1

2
)k.

By setting k = 1
2

logN

log
L(1)
2δ

, we have

γ2 ≤
√

1

N
.

We apply Lemma 5.4 by setting δ1, δ2, p in the statement to be γ1, γ2, N respectively. We get

rank(N) ≥
N(1

4)k

1 + (N − 1)/N
≥ 1

2
(
1

4
)kN ≥ (

1

8
)kN. (5.6)

On the other hand, 1
4m·L(1)M has rank at most m. By applying Lemma 5.5 we get

rank(N) ≤
(
m+ k

k

)
≤
(e(m+ k)

k

)k
.

Applying the above result and (5.6) directly yields that

(N)1/k ≤ 8e
m+ k

k
.

When k = 1
2

logN

log
L(1)
2δ

as we set, N1/k ≥ (L(1)
2δ)2. Therefore we have

m ≥ 1

32e

(L(1)

δ

)2
k − k ≥ 1

64e

(L(1)

2δ

)2
k =

1

128e

(L(1)

δ

)2 logN

log L(1)
2δ

,

where the second inequality holds when
(L(1)

2δ

)2 ≥ 64e.

18

5.3 Proofs about Fast Binary Embedding Algorithm

5.3.1 Proof of Lemma 3.7

Proof. It suffices to prove X⊥Y ′. One can check similarly that the proof holds for the remaining
three results. Note that X,Y ′ are binary random variables with values {−1, 1}. It is easy to
observe both of them are balanced, namely Pr(X = 1) = Pr(Y ′ = 1) = 1/2. If X⊥Y ′, then we have
Pr(X = Y ′) = 1/2. In the reverse direction, suppose Pr(X = Y ′) = 1/2. First we have

Pr(X = 1) = Pr(X = 1, Y ′ = 1) + Pr(X = 1, Y ′ = −1) = 1/2, (5.7)

Pr(Y ′ = 1) = Pr(X = 1, Y ′ = 1) + Pr(X = −1, Y ′ = 1) = 1/2. (5.8)

Combining the above two results, we have Pr(X = 1, Y ′ = −1) = Pr(X = −1, Y ′ = 1). Using
Pr(X = 1, Y ′ = −1) + Pr(X = −1, Y ′ = 1) = Pr(X 6= Y ′) = 1 − Pr(X = Y ′) = 1

2 , we thus have
Pr(X = 1, Y ′ = −1) = Pr(X = −1, Y ′ = 1) = 1/4. Plugging the above result into (5.7) and (5.8)
we have Pr(X = 1, Y ′ = 1) = Pr(X = −1, Y ′ = −1) = 1/4. Thus we have shown

Pr(X = v
∣∣Y ′ = u) =

Pr(X = v, Y ′ = u)

Pr(Y ′ = u)
= Pr(X = v), ∀ u, v ∈ {−1, 1},

which leads to X⊥Y ′.
Using the above arguments, we show that X⊥Y ′ if and only if

Pr(X = Y ′) = 1/2.

Recalling the definition of X,Y ′, the above condition holds if and only if

Pr

{〈
ξ � ζ,x

〉
·
〈
ξ′ � ζ,y

〉︸ ︷︷ ︸
Z

≥ 0

}
=

1

2
.

Next we prove Z has symmetric distribution around 0. Let I = [1, n], I ′ = [1, n − ∆], I0 =

[2n−∆, 2n− 1] for some natural number ∆ < n. Without loss of generality, we assume ξ = gI and
ξ′ = [gI0 ; gI′]. We split I into T = d n∆e consecutive disjoint subsets I1, I2, . . . , IT each of which
has size ∆ except |IT | = n− (T − 1)∆ ≤ ∆. Also, let I ′T−1 contain the first n− (T − 1)∆ entries
of IT−1. Then we have

Z =

(T∑
i=1

〈
gIi�ζIi ,xIi

〉)
·
(T−2∑

i=1

〈
gIi�ζIi+1 ,yIi+1

〉
+
〈
gI′T−1

�ζIT ,yIT
〉
+
〈
gI0�ζI1 ,yI1

〉)
. (5.9)

We now let ĝ be such random vector that is identical to g except that for any i ∈ {0} ∪ [T]

ĝIi = −gIi , if i mod 2 = 0

Let ζ̂ be such random vector that is identical to ζ except that for any i ∈ {0} ∪ [T]

ζ̂Ii = −ζIi , if i mod 2 = 1.

19

Replacing g, ζ in (5.9) with ĝ, ζ̂ yields

Ẑ

=

(T∑
i=1

〈
ĝIi � ζ̂Ii ,xIi

〉)
·
(T−2∑

i=1

〈
ĝIi � ζ̂Ii+1 ,yIi+1

〉
+
〈
ĝI′T−1

� ζ̂IT ,yIT
〉

+
〈
ĝI0 � ζ̂I1 ,yI1

〉)

=

(
−

T∑
i=1

〈
gIi � ζIi ,xIi

〉)
·
(T−2∑

i=1

〈
gIi � ζIi+1 ,yIi+1

〉
+
〈
gI′T−1

� ζIT ,yIT
〉

+
〈
gI0 � ζI1 ,yI1

〉)
=− Z.

As each entry of g is symmetric random variable around 0, therefore ĝ and g has the same probability
distribution. The same fact also holds for ζ̂ and ζ. So we conclude that Z has symmetric distribution
around 0, which implies Pr(Z > 0) = 1

2 and X⊥Y ′.

5.3.2 Proof of Theorem 3.8

Proof. Unspecified notations in this section are consistent with Algorithm 2. Using Lemma 3.6, we
have

Pr

{
sup
i,j∈[N]

∣∣d(yi,yj)− d(xi,xj)
∣∣ ≥ Cδ} ≤ 0.01. (5.10)

Now consider the first-block binary codes generated from Gaussian Toeplitz projection. We focus
on two intermediate points y1 and y2. Consider the first block of binary codes generated from the
second part of Algorithm 2. We let

u = sign
(
Ψ(1) · y1

)
,v = sign

(
Ψ(1) · y2

)
.

Suppose Ψ(1) contains Gaussian Toeplitz matrix T. For any i ∈ [m/B], we have

ui = sign
(〈

Ti � ζ, y1

〉)
= sign

(〈
Ti, y1 � ζ

〉)
.

vi = sign
(〈

Ti � ζ, y2

〉)
= sign

(〈
Ti, y2 � ζ

〉)
.

Since Ti is a Gaussian random vector, we have

Pr(ui 6= vi) = d(y1 � ζ, y2 � ζ) = d(y1, y2).

Let Zi = 1
(
ui 6= vi

)
,∀ i ∈ [m/B]. Following Lemma (3.7), we know that ∀ i 6= j

ui⊥uj , ui⊥vj , vi⊥vj , vi⊥uj .

Therefore {Zi}[m/B]
i=1 is a pair-wise independent sequence. By Markov’s inequality, we have

Pr

(∣∣ 1

m/B

m/B∑
i=1

Zi − E(Z1)
∣∣ ≥ δ) ≤ B

mV ar(Z1)

δ2
≤ 1

4

B

mδ2
≤ 1

4
. (5.11)

20

The last inequality holds by setting m
B ≥

1
δ2
. Therefore, we have

Pr

(∣∣dH(u,v)− d(y1,y2)
∣∣ ≥ δ) ≤ 1

4
.

Now consider total B block binary codes {ui}Bi=1 {vi}Bi=1 from y1 and y2 respectively. Let

Ei = 1
(
|dH(ui,vi)− d(y1,y2)| ≥ δ

)
, ∀ i ∈ [B].

From (5.11), we have Pr(Ei = 1) < 1
4 . If more than half of Ei are 0, then the median of

{dH(ui,vi)}Bi=1 is within δ away from d(y1,y2). Then we have

Pr

(
median

(
{dH(ui,vi)}Bi=1

)
− d(y1,y2)

∣∣ ≥ δ)
≤ Pr

(1

B

B∑
i=1

Ei ≥
1

2

)
≤ Pr

(1

B

B∑
i=1

Ei − E(Ei) >
1

4

)
≤ exp(−1

4
B).

In the second inequality, we use (5.11). The last step follows from Hoeffding’s inequality. Now we
use a union bound for N2 pairs

Pr

(
sup
i,j∈[N]

∣∣dH(bi, bj)− d(yi,yj)
∣∣ ≥ δ) ≤ N2 exp(−1

4
B) ≤ exp(−1

8
B).

The last inequality holds by setting B ≥ 16 logN . Combing the above result and (5.10) using
triangle inequality, we complete the proof.

5.4 Proof of Theorem 3.10

For any set K ⊆ Sp−1, we use Nδ(K) to denote a constructed δ-net of K, which is a δ-covering
set with minimum size. In particular, by Sudakov’s theorem (e.g., Theorem 3.18 in Ledoux and
Talagrand (1991))

logNδ(K) .
w(K)2

δ2
.

We first prove that for a fixed two dimensional space, m = O(1
δ2

) independent Gaussian mea-
surements are sufficient to achieve δ-uniform binary embedding.

Lemma 5.6. Suppose K is any fixed two-dimensional subspace in Sp−1. Let A ∈ Rm×p be a matrix
with independent rows Ai ∼ N (0, Ip), ∀i ∈ [m] . Suppose m ≥ 1

δ2
log 1

δ , then with probability at
least 1− 3 exp(−δ2m),

sup
x,y∈K

∣∣dA(x,y)− d(x,y)
∣∣ ≤ Cδ. (5.12)

Here C is some absolute constant.

Proof. We postpone the proof to Appendix C.

The next lemma shows that the normalized `1 norm of Ax provides decent approximation of
‖x‖2.

21

Lemma 5.7. Consider any set K ⊆ Rp. Let A be an m-by-p matrix with independent rows
Ai ∼ N (0, Ip) for any i ∈ [m] . Consider

Z = sup
x∈K

∣∣∣∣ 1

m

m∑
i=1

∣∣〈Ai,x
〉∣∣−√ 2

π
‖x‖2

∣∣∣∣.
We have

Pr
{
Z ≥ 4

w(K)√
m

+ t
}
≤ 2 exp

(
− mt2

2d(K)2

)
, ∀ t > 0.

where d(K) = maxx∈K ‖x‖2.

Proof. See the proof of Lemma 2.1 in Plan and Vershynin (2014).

In order to connect `1 norm to Hamming distance, we need the following result.

Lemma 5.8. Consider finite number of points K ⊆ Sp−1. Let A be an m-by-p matrix with
independent rows Ai ∼ N (0, Ip) for any i ∈ [m] . Suppose

m ≥ 1

δ2
log |K|,

then we have

sup
x∈|K|

1

m

m∑
i=1

1

{∣∣〈Ai,x
〉∣∣ ≤ δ} ≤ 2δ.

with probability at least 1− exp(−δ2m).

Proof. Let X ∼ N (0, 1). For any fixed point x ∈ K and any i ∈ [m], we have

Pr(
∣∣〈Ai,x

〉∣∣ ≤ δ) = Pr(|X| ≤ δ) ≤ δ.

Let Zi = 1(
∣∣〈Ai,x

〉∣∣ ≤ δ), ∀ i ∈ [m]. Then by using Hoeffding’s inequality,

Pr(
1

m

m∑
i=1

Zi − E(Z1) > δ) ≤ exp(−2δ2m).

As E(Z1) = Pr(
∣∣〈Ai,x

〉∣∣ ≤ δ) ≤ δ, we conclude that with probability at least 1− exp(−2δ2m),

1

m

m∑
i=1

Zi ≤ 2δ.

By applying union bound over |K| points and setting m ≥ 1
δ2

log |K|, we complete the proof.

Now we are ready to prove Theorem 3.10.

22

Proof of Theorem 3.10. We construct a δ-net of K that is denoted as Nδ. We assume m &
1
δ2

log |Nδ|. Applying Proposition 2.2 and setting K = Nδ, we have that

sup
x,y∈Nδ

∣∣dA(x,y)− d(x,y)
∣∣ ≤ δ (5.13)

with probability at least 1− 2 exp(−δ2m).
For any two fixed points x,y ∈ K, let x1,y1 be their nearest points in Nδ. Then we have

|d(x,y)− dA(x,y)| ≤ |d(x,y)− d(x1,y1)|+ |d(x1,y1)− dA(x,y)|
(a)

≤ |d(x1,y1)− dA(x,y)|+ 2δ ≤ |dA(x1,y1)− dA(x,y)|+ |d(x1,y1)− dA(x1,y1)|+ 2δ

(b)

≤ |dA(x1,y1)− dA(x,y)|+ 3δ ≤ |dA(x1,y1)− dA(x1,y)|+ |dA(x1,y)− dA(x,y)|+ 3δ

(c)

≤ dA(y1,y) + dA(x1,x) + 3δ, (5.14)

where (a) follows from

|d(x,y)− d(x1,y1)| ≤ |d(x,y)− d(x1,y)|+ |d(x1,y)− d(x,y1)| ≤ d(x,x1) + d(x1,y1) ≤ 2δ,

step (b) follows from (5.13), step (c) follows from the triangle inequality of Hamming distance.
Therefore we have

sup
x,y∈K

∣∣dA(x,y)− d(x,y)
∣∣ ≤ 2 sup

x1∈Nδ
sup
x∈K

‖x−x1‖2≤δ

dA(x,x1) + 3δ. (5.15)

Next we bound the tail term

T := sup
x1∈Nδ

sup
x∈K

‖x−x1‖2≤δ

dA(x,x1).

Recall that

K+
δ := K

⋃{
z ∈ Sp−1 : z =

x− y
‖x− y‖2

, ∀ x,y ∈ K if δ2 ≤ ‖x− y‖2 ≤ δ
}
.

Now we construct a δ-net for K+
δ \K denoted as N ′δ. For two distinct points x,y ∈ N ′δ

⋃
Nδ, let

C(x,y) denote the unit circle spanned by x,y. We construct δ2-net Cδ2(x,y) for each circle C(x,y).
For simplicity, we just let Cδ2(x,y) be the set of points that uniformly split C(x,y) with interval
δ2. We thus have |Cδ2(x,y)| . 1

δ2
. Let Gδ denote the union of all circle nets Cδ2(x,y) spanned by

points in N ′δ
⋃
Nδ, namely

Gδ :=
⋃

∀ x,y∈N ′δ
⋃
Nδ

Cδ2(x,y) ∪ {x,y}.

For any point x ∈ K, we can always find a point in Gδ that is O(δ2) away from x. To see
why the argument is true, we first let x1 be the nearest point to x in Nδ. If ‖x − x1‖2 ≤ δ2,

23

then x1 is the point we want. Otherwise, we have δ2 ≤ ‖x − x1‖2 ≤ δ. In this case, we have
(x−x1)/‖x−x1‖ ∈ K+. Following the definition of K+

δ , we can always find a point x′1 ∈ N ′δ
⋃
Nδ

such that ∥∥x′1 − x− x1

‖x− x1‖2
∥∥

2
≤ δ, (5.16)

thereby ∥∥x− (‖x− x1‖2x′1 + x1

)︸ ︷︷ ︸
z

∥∥
2
≤ δ‖x− x1‖2 ≤ δ2.

Note that ‖z‖2 is very close to 1 because

δ4 ≥ ‖x− z‖22 ≥ ‖z‖22 − 2
〈
z,x

〉
+ 1 ≥ ‖z‖22 − 2‖z‖2 + 1 = (‖z‖2 − 1)2.

We thus have∥∥x− z/‖z‖2∥∥2
≤ ‖x− z‖2 +

∥∥z − z/‖z‖2∥∥2
= ‖x− z‖2 +

∣∣‖z‖2 − 1
∣∣ ≤ 2δ2.

Note that z is in the unit circle C(x,x′1) spanned by x and x′1, thereby there exists u ∈ Cδ2(x1,x
′
1)

such that ‖u− x‖2 ≤ δ2. Point u thus satisfies

‖x− u‖ ≤ ‖x− z‖2 + ‖z − u‖2 ≤ 3δ2. (5.17)

So for any x ∈ K and its nearest point x1 ∈ Nδ, we define u as

u :=

{
x1, ‖x− x1‖2 ≤ δ2;

argminv∈Cδ2 (x1,x′1) ‖x− v‖2, otherwise.

where x′1 ∈ Nδ
⋃
N ′δ and satisfies (5.16). Based on (5.17), we always have ‖u − x‖2 ≤ 3δ2 and

‖u− x1‖2 ≤ ‖u− x‖2 + ‖x− x1‖2 ≤ 2δ.
By triangle inequality of Hamming distance,

dA(x,x1) ≤ dA(x,u) + dA(u,x1).

We thus have

T ≤ sup
x1∈Nδ

sup
x∈K
‖x−x1‖2

dA(x,u) + dA(u,x1)

≤ sup
u∈Gδ

sup
x∈K

‖x−u‖2≤3δ2

dA(x,u)

︸ ︷︷ ︸
T1

+ sup
x,y∈Nδ

⋃
N ′δ

sup
u,v∈C(x,y)
‖u−v‖2≤2δ

dA(u,v)

︸ ︷︷ ︸
T2

.

Next we bound term T1 and T2 respectively.
Term T1. For a fixed point u ∈ Gδ, using Lemma 5.7 by setting (K, t) in the statement to be
K ′ = (K − {u})

⋂
{u ∈ Rp : ‖u‖2 ≤ 3δ2} and δ2 respectively yields that

Pr

{
sup
x∈K

‖x−u‖2≤3δ2

∣∣∣∣ 1

m

m∑
i=1

∣∣〈Ai,x− u
〉∣∣−√ 2

π
‖x− u‖2

∣∣∣∣ ≥ 4w(K ′)√
m

+ δ2

}

≤2 exp
(
− mδ4

2d(K ′)2

)
≤ 2 exp(−m/18).

24

Then with probability greater than 1− 2 exp(−m/18),

sup
x∈K

‖x−u‖2≤3δ2

1

m

m∑
i=1

∣∣〈Ai,x− u
〉∣∣ ≤ 3

√
2

π
δ2 + 4w(K ′)/

√
m+ δ2 ≤ 5δ2,

where the last inequality follows from the fact that w(K ′) . w(K) and our assumption m &
w(K)2/δ4. We define event

E :=

{
sup
u∈Gδ

sup
x∈K

‖x−u‖2≤3δ2

1

m

m∑
i=1

∣∣〈Ai,x− u
〉∣∣ ≤ 5δ2

}
.

Applying union bound over all points in Gδ, we have

Pr(Ec) ≤ 2|Gδ| exp(−m/18) ≤ 2 exp(−m/36),

where the last inequality holds with m & log |Gδ|. Under condition event E happens, we have

sup
u∈Gδ

sup
x∈K

‖x−u‖2≤3δ2

1

m

m∑
i=1

1

{∣∣〈Ai,u− x
〉∣∣ ≤ 5δ

}
≥ 1− δ. (5.18)

If sign
(
〈Ai,u

〉)
6= sign

(
〈Ai,x

〉)
, we must have

∣∣〈Ai,u
〉∣∣ ≤ ∣∣〈Ai,u− x

〉∣∣. We then have

T1 ≤ sup
u∈Gδ

sup
x∈K

‖x−u‖2≤3δ2

1

m

m∑
i=1

1

{∣∣〈Ai,u
〉∣∣ ≤ ∣∣〈Ai,u− x

〉∣∣}

≤ sup
u∈Gδ

1

m

m∑
i=1

1

{∣∣〈Ai,u
〉∣∣ ≤ 5δ

}
+ δ,

where the last inequality follows from (5.18). Using Lemma 5.7 by setting K and δ in the statement
to be Gδ and 5δ respectively, we have that, when m ≥ c 1

δ2
log |Gδ| with some absolute constant c,

the following inequality

sup
u∈Gδ

1

m

m∑
i=1

1

{∣∣〈Ai,u
〉∣∣ ≤ 5δ

}
≤ 10δ

holds with probability at least 1−exp(−25δ2m). Putting all ingredients together, we have T1 ≤ 11δ

with high probability.
Term T2. There are at most |Nδ

⋃
N ′δ|2 different two-dimensional subspaces constructed from

Nδ
⋃
N ′δ. Applying Lemma 5.6 and probabilistic union bound over all subspaces yields that

Pr

(
T2 ≥ (C + 2)δ

)
≤ 3
∣∣Nδ⋃N ′δ∣∣2 exp(−δ2m) ≤ 3 exp(−δ2m/2),

where the last inequality holds by setting m & 1
δ2

log |Nδ
⋃
N ′δ|.

Putting (5.15) and the upper bounds of term T together, we conclude that by choosing

m & max

{
w(K)2/δ4, log |Gδ|,

1

δ2
log |Nδ

⋃
N ′δ|
}
,

25

we have
sup

x,y∈K
|dA(x,y)− d(x,y)| . δ.

with probability at least 1− c1 exp(−c2δ
2m) where c1, c2 are some absolute constants.

Using the fact that

|Gδ| .
1

δ2
|Nδ

⋃
N ′δ|

and
log |Nδ

⋃
N ′δ| .

1

δ2
w(Nδ

⋃
N ′δ)2 ≤ 1

δ2
w(K+

δ)2,

we complete the proof.

A Proof of Lemma 3.6

Proof. Recall that yi =
√

p
mΦ(ζ) · xi. We let

ŷi =
yi
‖yi‖2

, ŷj =
yj
‖yj‖2

.

From condition (3.7), we have

‖yi − ŷi‖2 ≤ δ, ‖yj − ŷj‖2 ≤ δ. (A.1)

Let θ = ∠(xi,xj), θ′ = ∠(ŷi, ŷj). Without loss of generality, we assume our set K = {xi}Ni=1

is symmetric, i.e., if x ∈ K then −x ∈ K. Suppose we show for any two points xi,xj with〈
xi,xj

〉
> 0, inequality (3.8) holds, then for xi,xj with

〈
xi,xj

〉
< 0, we immediately have∣∣d(yi,yj)− d(xi,xj)

∣∣ =
∣∣1− d(yi,yj)−

(
1− d(xi,xj)

)∣∣ =
∣∣d(−yi,yj)− d(−xi,xj)

∣∣ ≤ Cδ.
In the second equality, we use d(−x,y) + d(x,y) = 1, ∀ x,y ∈ Sp−1. In the last inequality, we use
the fact that fast JL transform

√
p
mΦ(ζ) is linear thus −yi =

√
p
mΦ(ζ)(−xi). Therefore, without

loss of generality, we assume 〈xi,xj〉 ≥ 0 thus θ ≤ π
2 .

Now we turn to the following quantity∥∥ŷi − ŷj∥∥2
=
∥∥ŷi − yi + yi − yj + yj − ŷj

∥∥
2

≤
∥∥ŷi − yi∥∥2

+
∥∥ŷj − yj∥∥2

+
∥∥yi − yj∥∥2

≤ 2δ + ‖xi − xj‖2(1 + δ).

The last inequality follows from (A.1) and condition (3.6). Similarly, we also have∥∥ŷi − ŷj∥∥2
≥ ‖xi − xj‖(1− δ)− 2δ.

Using the fact that

sin
θ′

2
=

∥∥ŷi − ŷj∥∥2

2
, sin

θ

2
=

∥∥xi − xj∥∥2

2
,

we have ∣∣ sin θ′
2
− sin

θ

2

∣∣ =
∣∣∥∥ŷi − ŷj∥∥2

2
−
∥∥xi − xj∥∥2

2

∣∣ ≤ δ + δ

∥∥xi − xj∥∥2

2
≤ 2δ.

26

When δ <
√

3−
√

2
4 , we have

sin
θ′

2
≤ sin

θ

2
+

√
3−
√

2

2
≤
√

3

2
.

In the last inequality, we use sin θ
2 ≤

√
2

2 , ∀ θ ∈ [0, π/2]. So θ′/2 ∈ [0, π/3]. Using the fact that, for
any two θ, θ′ ∈ [0, π/3], there exists constant c such that∣∣ sin θ − sin θ′

∣∣ ≥ c∣∣θ − θ′∣∣,
we have that ∣∣θ

2
− θ′

2

∣∣ ≤ 1

c

∣∣ sin θ′
2
− sin

θ

2

∣∣ ≤ 2δ

c
.

Therefore, ∣∣d(yi,yj)− d(xi,xj)
∣∣ =

1

π

∣∣θ − θ′∣∣ ≤ Cδ.
In the case δ >

√
3−
√

2
4 , trivially we have

∣∣d(yi,yj) − d(xi,xj)
∣∣ ≤ 2 ≤ Cδ with constant C =

8√
3−
√

2
.

B Proof of Lemma 5.4

Proof. For positive semidefinite matrix M ∈ Rp×p with rank d, let λ1, λ2, ...λd be its positive
eigenvalues. Using the definition of Frobenius norm, we have

‖M‖2F =

d∑
i=1

λ2
i =

∑
i,j∈[n]

(Mi,j)
2 ≤ p+ (p2 − p)δ2

2 .

On the other hand, considering the trace of M, we can obtain

d∑
i=1

λi = Trace(M) ≥ p(1− δ1). (B.1)

Using Cauchy-Schwarz inequality, we have

(
d∑
i=1

λi)
2 ≤ d

d∑
i=1

λ2
i . (B.2)

Plugging (B.1) and (B.2) into the above inequality yields

d ≥ p(1− δ1)2

1 + (p− 1)δ2
2

.

27

C Proof of Lemma 5.12

Proof. Without loss of any generality, we assume K = {x ∈ Sp−1 : supp(x) ⊆ {1, 2}}. We begin
with constructing a δ-net denoted as Nδ for set K. For simplicity, we can just let Nδ(K) be the set
of points that split the circle spanned by {e1, e2} uniformly. Therefore |Nδ(K)| = O(1

δ). Applying
Proposition 2.2 gives us

sup
x,y∈Nδ

|dA(x,y)− d(x,y)| ≤ δ, (C.1)

holds with probability at least 1− 2 exp (−δ2m) when m & 1
δ2

log(1
δ).

For any point x ∈ K,
〈
Ai,x

〉
only depends on the first two coordinates of Ai. Therefore, for

simplicity, we let A′i = Ai�(e1+e2)
‖Ai�(e1+e2)‖2 , ∀ i ∈ [m]. For any point say x1 ∈ Nδ, using the uniform

distribution of A′i, we have

Pr(
∣∣〈A′i,x1

〉∣∣ ≤ δ) . Cδ,

holds with some absolute constant C. Using Hoeffding’s inequality and probabilistic union bound
over all points in Nδ, we have

Pr

(
sup
x∈Nδ

1

m

m∑
i=1

1
{∣∣〈Ai,x

〉∣∣ ≤ δ} > (C + 1)δ

)
≤ |Nδ| exp(−2δ2m) ≤ exp(−δ2m). (C.2)

The last inequality holds when m & 1
δ2

log 1
δ .

Now we consider any point x ∈ K. Suppose x1 is the closest point to x in Nδ. We note that if
sign

(〈
A′i,x

〉)
6= sign

(〈
A′i,x1

〉)
, then there exists λ ∈ [0, 1] such that

〈
A′i, λx+ (1− λ)x1

〉
= 0.

We thus have ∣∣〈A′i,x1

〉∣∣ = λ
∣∣〈A′i,x− x1

〉∣∣ ≤ λ‖x− x1‖2 ≤ δ.

Further we obtain that

sup
x1∈Nδ

sup
x∈K

‖x−x1‖2≤δ

dA(x,x1) = sup
x1∈Nδ

sup
x∈K

‖x−x1‖2≤δ

1

m

m∑
i=1

1(sign
(〈

A′i,x
〉)
6= sign

(〈
A′i,x1

〉)
)

≤ sup
x1∈Nδ

1

m

m∑
i=1

1
{∣∣〈Ai,x1

〉∣∣ ≤ δ}.
Combining the above result with (C.2), we obtain that, with probability at least 1− exp(−δ2m),

sup
x1∈Nδ

sup
x∈K

‖x−x1‖2≤δ

dA(x,x1) ≤ (C + 1)δ. (C.3)

28

For any points x,y ∈ K, let x1,y1 be their nearest points in Nδ. We have

|d(x,y)− dA(x,y)| ≤ |d(x,y)− d(x1,y1)|+ |d(x1,y1)− dA(x,y)|
(a)

≤ |d(x1,y1)− dA(x,y)|+ 2δ ≤ |d(x1,y1)− dA(x1,y1)|+ |dA(x1,y1)− dA(x,y)|+ 2δ

(b)

≤ |dA(x1,y1)− dA(x,y)|+ 3δ ≤ |dA(x1,y1)− dA(x1,y)|+ |dA(x1,y)− dA(x,y)|+ 3δ

(c)

≤ dA(y1,y) + dA(x1,x) + 3δ
(d)

≤ (2C + 5)δ,

where (a) follows from

|d(x,y)− d(x1,y1)| ≤ |d(x,y)− d(x1,y)|+ |d(x1,y)− d(x,y1)| ≤ d(x,x1) + d(x1,y1) ≤ 2δ,

step (b) follows from (C.1), step (c) follows from the triangle inequality of Hamming distance, step
(d) is from (C.3).

References

Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast johnson-lindenstrauss trans-
form. In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages 557–563.
ACM, 2006.

Nir Ailon and Edo Liberty. An almost optimal unrestricted fast johnson-lindenstrauss transform. ACM
Transactions on Algorithms (TALG), 9(3):21, 2013.

Nir Ailon and Holger Rauhut. Fast and rip-optimal transforms. Discrete & Computational Geometry, 52(4):
780–798, 2014.

Noga Alon. Problems and results in extremal combinatoricsâĂŤi. Discrete Mathematics, 273(1):31–53, 2003.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in
high dimensions. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium
on, pages 459–468. IEEE, 2006.

Mahdi Cheraghchi, Venkatesan Guruswami, and Ameya Velingker. Restricted isometry of fourier matrices
and list decodability of random linear codes. SIAM Journal on Computing, 42(5):1888–1914, 2013.

Yunchao Gong and Svetlana Lazebnik. Iterative quantization: A procrustean approach to learning binary
codes. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 817–824,
2011.

Yunchao Gong, Sanjiv Kumar, Henry A Rowley, and Svetlana Lazebnik. Learning binary codes for high-
dimensional data using bilinear projections. In Computer Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on, pages 484–491. IEEE, 2013.

Laurent Jacques, Jason N Laska, Petros T Boufounos, and Richard G Baraniuk. Robust 1-bit compressive
sensing via binary stable embeddings of sparse vectors. arXiv preprint arXiv:1104.3160, 2011.

TS Jayram and David P Woodruff. Optimal bounds for johnson-lindenstrauss transforms and streaming
problems with subconstant error. ACM Transactions on Algorithms (TALG), 9(3):26, 2013.

29

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space. Con-
temporary mathematics, 26(189-206):1, 1984.

Felix Krahmer and Rachel Ward. New and improved johnson-lindenstrauss embeddings via the restricted
isometry property. SIAM Journal on Mathematical Analysis, 43(3):1269–1281, 2011.

Felix Krahmer, Shahar Mendelson, and Holger Rauhut. Suprema of chaos processes and the restricted
isometry property. Communications on Pure and Applied Mathematics, 67(11):1877–1904, 2014.

Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and processes, volume 23.
Springer, 1991.

Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Hashing with graphs. In Proceedings of the 28th
International Conference on Machine Learning, 2011.

Jelani Nelson, Eric Price, and Mary Wootters. New constructions of rip matrices with fast multiplication and
fewer rows. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1515–1528. SIAM, 2014.

Mohammad Norouzi, David M Blei, and Ruslan Salakhutdinov. Hamming distance metric learning. In
Advances in Neural Information Processing Systems, pages 1061–1069, 2012.

Yaniv Plan and Roman Vershynin. Robust 1-bit compressed sensing and sparse logistic regression: A convex
programming approach. Information Theory, IEEE Transactions on, 59(1):482–494, 2013.

Yaniv Plan and Roman Vershynin. Dimension reduction by random hyperplane tessellations. Discrete &
Computational Geometry, 51(2):438–461, 2014.

Maxim Raginsky and Svetlana Lazebnik. Locality-sensitive binary codes from shift-invariant kernels. In
Advances in neural information processing systems, pages 1509–1517, 2009.

Mark Rudelson and Roman Vershynin. On sparse reconstruction from fourier and gaussian measurements.
Communications on Pure and Applied Mathematics, 61(8):1025–1045, 2008.

Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing. International Journal of Approximate Rea-
soning, 50(7):969–978, 2009.

Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In Advances in neural information
processing systems, pages 1753–1760, 2009.

Felix X Yu, Sanjiv Kumar, Yunchao Gong, and Shih-Fu Chang. Circulant binary embedding. arXiv preprint
arXiv:1405.3162, 2014.

30

