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Abstract

Latent models are a fundamental modeling tool in machine learning applications,
but they present significant computational and analytical challenges. The popular
EM algorithm and its variants, is a much used algorithmic tool; yet our rigorous
understanding of its performance is highly incomplete. Recently, work in [1] has
demonstrated that for an important class of problems, EM exhibits linear local
convergence. In the high-dimensional setting, however, the M -step may not be
well defined. We address precisely this setting through a unified treatment using
regularization. While regularization for high-dimensional problems is by now
well understood, the iterative EM algorithm requires a careful balancing of making
progress towards the solution while identifying the right structure (e.g., sparsity or
low-rank). In particular, regularizing the M -step using the state-of-the-art high-
dimensional prescriptions (e.g., à la [19]) is not guaranteed to provide this balance.
Our algorithm and analysis are linked in a way that reveals the balance between
optimization and statistical errors. We specialize our general framework to sparse
gaussian mixture models, high-dimensional mixed regression, and regression with
missing variables, obtaining statistical guarantees for each of these examples.

1 Introduction

We give general conditions for the convergence of the EM method for high-dimensional estimation.
We specialize these conditions to several problems of interest, including high-dimensional sparse
and low-rank mixed regression, sparse gaussian mixture models, and regression with missing covari-
ates. As we explain below, the key problem in the high-dimensional setting is the M -step. A natural
idea is to modify this step via appropriate regularization, yet choosing the appropriate sequence of
regularizers is a critical problem. As we know from the theory of regularized M-estimators (e.g.,
[19]) the regularizer should be chosen proportional to the target estimation error. For EM, however,
the target estimation error changes at each step.

The main contribution of our work is technical: we show how to perform this iterative regularization.
We show that the regularization sequence must be chosen so that it converges to a quantity controlled
by the ultimate estimation error. In existing work, the estimation error is given by the relationship
between the population and empirical M -step operators, but this too is not well defined in the high-
dimensional setting. Thus a key step, related both to our algorithm and its convergence analysis, is
obtaining a different characterization of statistical error for the high-dimensional setting.

Background and Related Work

EM (e.g., [8, 12]) is a general algorithmic approach for handling latent variable models (including
mixtures), popular largely because it is typically computationally highly scalable, and easy to im-
plement. On the flip side, despite a fairly long history of studying EM in theory (e.g., [12, 17, 21]),
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very little has been understood about general statistical guarantees until recently. Very recent work
in [1] establishes a general local convergence theorem (i.e., assuming initialization lies in a lo-
cal region around true parameter) and statistical guarantees for EM, which is then specialized to
obtain near-optimal rates for several specific low-dimensional problems – low-dimensional in the
sense of the classical statistical setting where the samples outnumber the dimension. A central chal-
lenge in extending EM (and as a corollary, the analysis in [1]) to the high-dimensional regime is
the M -step. On the algorithm side, the M -step will not be stable (or even well-defined in some
cases) in the high-dimensional setting. To make matters worse, any analysis that relies on showing
that the finite-sample M -step is somehow “close” to the M -step performed with infinite data (the
population-level M -step) simply cannot apply in the high-dimensional regime. Recent work in [20]
treats high-dimensional EM using a truncatedM -step. This works in some settings, but also requires
specialized treatment for every different setting, precisely because of the difficulty with the M -step.

In contrast to work in [20], we pursue a high-dimensional extension via regularization. The central
challenge, as mentioned above, is in picking the sequence of regularization coefficients, as this
must control the optimization error (related to the special structure of β∗), as well as the statistical
error. Finally, we note that for finite mixture regression, Städler et al.[16] consider an `1 regularized
EM algorithm for which they develop some asymptotic analysis and oracle inequality. However,
this work doesn’t establish the theoretical properties of local optima arising from regularized EM.
Our work addresses this issue from a local convergence perspective by using a novel choice of
regularization.

2 Classical EM and Challenges in High Dimensions

The EM algorithm is an iterative algorithm designed to combat the non-convexity of max likelihood
due to latent variables. For space concerns we omit the standard derivation, and only give the
definitions we need in the sequel. Let Y ,Z be random variables taking values in Y ,Z , with joint
distribution fβ(y, z) depending on model parameter β ⊆ Ω ⊆ Rp. We observe samples of Y but
not of the latent variable Z. EM seeks to maximize a lower bound on the maximum likelihood
function for β. Letting κβ(z|y) denote the conditional distribution of Z given Y = y, and defining
the function

Qn(β′|β) :=
1

n

n∑
i=1

∫
Z
κβ(z|yi) log fβ′(yi, z)dz, (2.1)

one iteration of the EM algorithm, mapping β(t) to β(t+1), consists of the following two steps:

• E-step: Compute function Qn(β|β(t)) given β(t).

• M-step: β(t+1) ←Mn(β) := arg maxβ′∈ΩQn(β′|β(t)).

We can define the population (infinite sample) versions of Qn andMn in a natural manner:

Q(β′|β) :=

∫
Y
yβ∗(y)

∫
Z
κβ(z|y) logβ′(y, z)dzdy (2.2)

M(β) = arg max
β′∈Ω

Q(β′|β). (2.3)

This paper is about the high-dimensional setting where the number of samples n may be far less
than the dimensionality p of the parameter β, but where β exhibits some special structure, e.g., it
may be a sparse vector or a low-rank matrix. In such a setting, the M -step of the EM algorithm may
be highly problematic. In many settings, for example sparse mixed regression, the M -step may not
even be well defined. More generally, when n� p,Mn(β) may be far from the population version,
M(β), and in particular, the minimum estimation error ‖Mn(β∗) −M(β∗)‖ can be much larger
than the signal strength ‖β∗‖. This quantity is used in [1] as well as in follow-up work in [20], as a
measure of statistical error. In the high dimensional setting, something else is needed.

3 Algorithm

The basis of our algorithm is the by-now well understood concept of regularized high dimensional
estimators, where the regularization is tuned to the underlying structure of β∗, thus defining a regu-
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larized M -step via
Mr

n(β) := arg max
β′∈Ω

Qn(β′|β)− λnR(β′), (3.1)

where R(·) denotes an appropriate regularizer chosen to match the structure of β∗. The key chal-
lenge is how to choose the sequence of regularizers {λ(t)

n } in the iterative process, so as to control
optimization and statistical error. As detailed in Algorithm 1, our sequence of regularizers attempts
to match the target estimation error at each step of the EM iteration. For an intuition of what this
might look like, consider the estimation error at step t: ‖Mr

n(β(t)) − β∗‖2. By the triangle in-
equality, we can bound this by a sum of two terms: the optimization error and the final estimation
error:

‖Mr
n(β(t))− β∗‖2 ≤ ‖Mr

n(β(t))−Mr
n(β∗)‖2 + ‖Mr

n(β∗)− β∗‖2. (3.2)

Since we expect (and show) linear convergence of the optimization, it is natural to update λ(t)
n via a

recursion of the form λ
(t)
n = κλ

(t−1)
n +∆ as in (3.3), where the first term represents the optimization

error, and ∆ represents the final statistical error, i.e., the last term above in (3.2). A key part of our
analysis shows that this error (and hence ∆) is controlled by ‖∇Qn(β∗|β)−∇Q(β∗|β)‖R∗ , which
in turn can be bounded uniformly for a variety of important applications of EM, including the three
discussed in this paper (see Section 5). While a technical point, it is this key insight that enables
the right choice of algorithm and its analysis. In the cases we consider, we obtain min-max optimal
rates of convergence, demonstrating that no algorithm, let alone another variant of EM, can perform
better.
Algorithm 1 Regularized EM Algorithm

Input Samples {yi}ni=1, regularizer R, number of iterations T , initial parameter β(0), initial regu-
larization parameter λ(0)

n , estimated statistical error ∆, contractive factor κ < 1.
1: For t = 1, 2, . . . , T do
2: Regularization parameter update:

λ(t)
n ← κλ(t−1)

n + ∆. (3.3)

3: E-step: Compute function Qn(·|β(t−1)) according to (2.1).
4: Regularized M-step:

β(t) ←Mr
n(β(t−1)) := arg max

β∈Ω
Qn(β|β(t−1))− λ(t)

n · R(β).

5: End For
Output β(T ).

4 Statistical Guarantees

We now turn to the theoretical analysis of regularized EM algorithm. We first set up a general
analytical framework for regularized EM where the key ingredients are decomposable regularizer
and several technical conditions on the population based Q(·|·) and the sample based Qn(·|·). In
Section 4.3, we provide our main result (Theorem 1) that characterizes both computational and
statistical performance of the proposed variant of regularized EM algorithm.

4.1 Decomposable Regularizers

Decomposable regularizers (e.g., [3, 6, 14, 19]), have been shown to be useful both empirically and
theoretically for high dimensional structural estimation, and they also play an important role in our
analytical framework. Recall that for R : Rp → R+ a norm, and a pair of subspaces (S,S) in Rp
such that S ⊆ S, we have the following definition:
Definition 1 (Decomposability). RegularizerR : Rp → R+ is decomposable with respect to (S,S)
if

R(u + v) = R(u) +R(v), for any u ∈ S,v ∈ S⊥.

Typically, the structure of model parameter β∗ can be characterized by specifying a subspace S such
that β∗ ∈ S . The common use of a regularizer is thus to penalize the compositions of solution that
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live outside S. We are interested in bounding the estimation error in some norm ‖ · ‖. The following
quantity is critical in connectingR to ‖ · ‖.
Definition 2 (Subspace Compatibility Constant). For any subspace S ⊆ Rp, a given regularizer R
and some norm ‖ · ‖, the subspace compatibility constant of S with respect toR, ‖ · ‖ is given by

Ψ(S) := sup
u∈S\{0}

R(u)

‖u‖
.

As is standard, the dual norm ofR is defined asR∗(v) := supR(u)≤1

〈
u,v

〉
. To simplify notation,

we let ‖u‖R := R(u) and ‖u‖R∗ := R∗(u).

4.2 Conditions on Q(·|·) and Qn(·|·)

Next, we review three technical conditions, originally proposed by [1], on the population levelQ(·|·)
function, and then we give two important conditions that the empirial function Qn(·|·) must satisfy,
including one that characterizes the statistical error.

It is well known that performance of EM algorithm is sensitive to initialization. Following the low-
dimensional development in [1], our results are local, and apply to an r-neighborhood region around
β∗: B(r;β∗) :=

{
u ∈ Ω, ‖u− β∗‖ ≤ r

}
.

We first require that Q(·|β∗) is self consistent as stated below. This is satisfied, in particular, when
β∗ maximizes the population log likelihood function, as happens in most settings of interest [12].
Condition 1 (Self Consistency). Function Q(·|β∗) is self consistent, namely

β∗ = arg max
β∈Ω

Q(β|β∗).

We also require that the function Q(·|·) satisfies a certain strong concavity condition and is smooth
over Ω.
Condition 2 (Strong Concavity and Smoothness (γ, µ, r)). Q(·|β∗) is γ-strongly concave over Ω,
i.e.,

Q(β2|β∗)−Q(β1|β∗)−
〈
∇Q(β1|β∗),β2 − β1

〉
≤ −γ

2
‖β2 − β1‖2, ∀ β1,β2 ∈ Ω. (4.1)

For any β ∈ B(r;β∗), Q(·|β) is µ-smooth over Ω, i.e.,

Q(β2|β)−Q(β1|β)−
〈
∇Q(β1|β),β2 − β1

〉
≥ −µ

2
‖β2 − β1‖2, ∀ β1,β2 ∈ Ω. (4.2)

The next condition is key in guaranteeing the curvature of Q(·|β) is similar to that of Q(·|β∗) when
β is close to β∗. It has also been called First Order Stability in [1].
Condition 3 (Gradient Stability (τ, r)). For any β ∈ B(r;β∗), we have∥∥∇Q(M(β)|β)−∇Q(M(β)|β∗)

∥∥ ≤ τ‖β − β∗‖.
The above condition only requires that the gradient be stable at one pointM(β). This is sufficient
for our analysis. In fact, for many concrete examples, one can verify a stronger version of Condition
3 that is

∥∥∇Q(β′|β)−∇Q(β′|β∗)
∥∥ ≤ τ‖β − β∗‖, ∀ β′ ∈ B(r;β∗).

Next we require two conditions on the empirical function Qn(·|·), which is computed from finite
number of samples according to (2.1). Our first condition, parallel to Condition 2, imposes a cur-
vature constraint on Qn(·|·). In order to guarantee that the estimation error ‖β(t) − β∗‖ in step t
of the EM algorithm is well controlled, we would like Qn(·|β(t−1)) to be strongly concave at β∗.
However, in the setting where n� p, there might exist directions along which Qn(·|β(t−1)) is flat,
e.g., as in mixed linear regression and missing covariate regression. In contrast with Condition 2, we
only require Qn(·|·) to be strongly concave over a particular set C(S,S;R) that is defined in terms
of the subspace pair (S,S) and regularizerR. This set is defined as follows:

C(S,S;R) :=

{
u ∈ Rp :

∥∥ΠS⊥(u)
∥∥
R ≤ 2 ·

∥∥ΠS(u)
∥∥
R + 2 ·Ψ(S) ·

∥∥u∥∥}, (4.3)

where the projection operator ΠS : Rp → Rp is defined as ΠS(u) := arg minv∈S ‖v − u‖. The
restricted strong concavity (RSC) condition is as follows.
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Condition 4 (RSC (γn,S,S, r, δ)). For any fixed β ∈ B(r;β∗), with probability at least 1− δ, we
have that for all β′ − β∗ ∈ Ω

⋂
C(S,S;R),

Qn(β′|β)−Qn(β∗|β)−
〈
∇Qn(β∗|β),β′ − β∗

〉
≤ −γn

2
‖β′ − β∗‖2.

The above condition states that Qn(·|β) is strongly concave in directions β′ − β∗ that belong to
C(S,S;R). It is instructive to compare Condition 4 with a related condition proposed by [14] for
analyzing high dimensional M-estimators. They require the loss function to be strongly convex over
the cone {u ∈ Rp : ‖ΠS⊥(u)‖R . ‖ΠS(u)‖R}. Therefore our restrictive set (4.3) is similar to the
cone but has the additional term 2Ψ(S)‖u‖. The main purpose of the term 2Ψ(S)‖u‖ is to allow
the regularization parameter λn to jointly control optimization and statistical error. We note that
while Condition 4 is stronger than the usual RSC condition in M-estimator, in typical settings the
difference is immaterial. This is because

∥∥ΠS(u)
∥∥
R is within a constant factor of Ψ(S) ·

∥∥u∥∥, and
hence checking RSC over C amounts to checking it over ‖ΠS⊥(u)‖R . Ψ(S)‖u‖, which is indeed
what is typically also done in the M-estimator setting.

Finally, we establish the condition that characterizes the achievable statistical error.
Condition 5 (Statistical Error (∆n, r, δ)). For any fixed β ∈ B(r;β∗), with probability at least
1− δ, we have ∥∥∇Qn(β∗|β)−∇Q(β∗|β)

∥∥
R∗ ≤ ∆n. (4.4)

This quantity replaces the term ‖Mn(β)−M(β)‖which appears in [1] and [20], and which presents
problems in the high dimensional regime.

4.3 Main Results

In this section, we provide the theoretical guarantees for a resampled version of our regularized EM
algorithm: we split the whole dataset into T pieces and use a fresh piece of data in each iteration of
regularized EM. As in [1], resampling makes it possible to check that Conditions 4-5 are satisfied
without requiring them to hold uniformly for all β ∈ B(r;β∗) with high probability. Our empirical
results indicate that it is not in fact required and is an artifact of the analysis. We refer to this
resampled version as Algorithm 2. In the sequel, we letm := n/T to denote the sample complexity
in each iteration. We let α := supu∈Rp\{0} ‖u‖∗/‖u‖, where ‖ · ‖∗ is the dual norm of ‖ · ‖.

For Algorithm 2, our main result is as follows. The proof is deferred to the Supplemental Material.
Theorem 1. Assume the model parameter β∗ ∈ S and regularizerR is decomposable with respect
to (S,S) where S ⊆ S ⊆ Rp. Assume r > 0 is such that B(r;β∗) ⊆ Ω. Further, assume function
Q(·|·), defined in (2.2), is self consistent and satisfies Conditions 2-3 with parameters (γ, µ, r) and
(τ, r). Given n samples and T iterations, let m := n/T . Assume Qm(·|·), computed from any
m i.i.d. samples according to (2.1), satisfies Conditions 4-5 with parameters (γm,S,S, r, 0.5δ/T )
and (∆m, r, 0.5δ/T ). Let κ∗ := 5 αµτγγm

, and assume 0 < τ < γ and 0 < κ∗ ≤ 3/4. Define
∆ := rγm/[60Ψ(S)] and assume ∆m is such that ∆m ≤ ∆.

Consider Algorithm 2 with initialization β(0) ∈ B(r;β∗) and with regularization parameters given
by

λ(t)
m = κt

γm

5Ψ(S)
‖β(0) − β∗‖+

1− κt

1− κ
∆, t = 1, 2, . . . , T (4.5)

for any ∆ ∈ [3∆m, 3∆], κ ∈ [κ∗, 3/4]. Then with probability at least 1 − δ, we have that for any
t ∈ [T ],

‖β(t) − β∗‖ ≤ κt‖β(0) − β∗‖+
5

γm

1− κt

1− κ
Ψ(S)∆. (4.6)

The estimation error is bounded by a term decaying linearly with number of iterations t, which we
can think of as the optimization error and a second term that characterizes the ultimate estimation
error of our algorithm. With T = O(log n) and suitable choice of ∆ such that ∆ = O(∆n/T ), we
bound the ultimate estimation error as

‖β(T ) − β∗‖ . 1

(1− κ)γn/T
Ψ(S)∆n/T . (4.7)
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We note that overestimating the initial error, ‖β(0)−β∗‖ is not important, as it may slightly increase
the overall number of iterations, but will not impact the ultimate estimation error.

The constraint ∆m . rγm/Ψ(S) ensures that β(t) is contained in B(r;β∗) for all t ∈ [T ]. This
constraint is quite mild in the sense that if ∆m = Ω(rγm/Ψ(S)), β(0) is a decent estimator with
estimation error O(Ψ(S)∆m/γm) that already matches our expectation.

5 Examples: Applying the Theory

Now we introduce three well known latent variable models. For each model, we first review the
standard EM algorithm formulations, and discuss the extensions to the high dimensional setting.
Then we apply Theorem 1 to obtain the statistical guarantee of the regularized EM with data splitting
(Algorithm 2). The key ingredient underlying these results is to check the technical conditions in
Section 4 hold for each model. We postpone these tedious details to the Supplemental Material.

5.1 Gaussian Mixture Model

We consider the balanced isotropic Gaussian mixture model (GMM) with two components where
the distribution of random variables (Y, Z) ∈ Rp × {−1, 1} is characterized as

Pr (Y = y|Z = z) = φ(y; z · β∗, σ2Ip), Pr(Z = 1) = Pr(Z = −1) = 1/2.

Here we use φ(·|µ,Σ) to denote the probability density function of N (µ,Σ). In this example, Z
is the latent variable that indicates the cluster id of each sample. Given n i.i.d. samples {yi}ni=1,
function Qn(·|·) defined in (2.1) corresponds to

QGMM
n (β′|β) = − 1

2n

n∑
i=1

[
w(yi;β)‖yi − β′‖22 + (1− w(yi;β))‖yi + β′‖22

]
, (5.1)

where w(y;β) := exp (−‖y−β‖
2
2

2σ2 )[exp (−‖y−β‖
2
2

2σ2 ) + exp (−‖y+β‖22
2σ2 )]−1. We assume β∗ ∈

B0(s; p) := {u ∈ Rp : | supp(u)| ≤ s}. Naturally, we choose the regularizer R(·) to be the `1
norm. We define the signal-to-noise ratio SNR := ‖β∗‖2/σ.
Corollary 1 (Sparse Recovery in GMM). There exist constants ρ, C such that if SNR ≥ ρ, n/T ≥
[80C(‖β∗‖∞ + σ)/‖β∗‖2]

2
s log p, β(0) ∈ B(‖β∗‖2/4;β∗); then with probability at least 1−T/p

Algorithm 2 with parameters ∆ = C(‖β∗‖∞ + σ)
√
T log p/n, λ(0)

n/T = 0.2‖β(0) −β∗‖2/
√
s, any

κ ∈ [1/2, 3/4] and `1 regularization generates β(t) that has estimation error

‖β(t) − β∗‖2 ≤ κt‖β(0) − β∗‖2 +
5C(‖β∗‖∞ + σ)

1− κ

√
s log p

n
T , for all t ∈ [T ]. (5.2)

Note that by setting T � log(n/ log p), the order of final estimation error turns out to be
(‖β∗‖∞ + δ)

√
(s log p)/n) log (n/ log p). The minimax rate for estimating s-sparse vector in a

single Gaussian cluster is
√
s log p/n, thereby the rate is optimal on (n, p, s) up to a log factor.

5.2 Mixed Linear Regression

Mixed linear regression (MLR), as considered in some recent work [5, 7, 22], is the problem of
recovering two or more linear vectors from mixed linear measurements. In the case of mixed linear
regression with two symmetric and balanced components, the response-covariate pair (Y,X) ∈
R× Rp is linked through

Y = 〈X, Z · β∗〉+W,

whereW is the noise term andZ is the latent variable that has Rademacher distribution over {−1, 1}.
We assume X ∼ N (0, Ip), W ∼ N (0, σ2). In this setting, with n i.i.d. samples {yi,xi}ni=1 of pair
(Y,X), function Qn(·|·) then corresponds to

QMLR
n (β′|β) = − 1

2n

n∑
i=1

[
w(yi,xi;β)(yi − 〈xi,β′〉)2 + (1− w(yi,xi;β))(yi + 〈xi,β′〉)2

]
,

(5.3)
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where w(y,x;β) := exp (− (y−〈x,β〉)2
2σ2 )[exp (− (y−〈x,β〉)2

2σ2 ) + exp (− (y+〈x,β〉)2
2σ2 )]−1.

We consider two kinds of structure on β∗:

Sparse Recovery. Assume β∗ ∈ B0(s; p). Then let R be the `1 norm, as in the previous section.
We define SNR := ‖β∗‖2/σ.
Corollary 2 (Sparse recovery in MLR). There exist constant ρ, C,C ′ such that if SNR ≥ ρ, n/T ≥
C ′ [(‖β∗‖2 + δ)/‖β∗‖2]

2
s log p, β(0) ∈ B(‖β∗‖2/240,β∗); then with probability at least 1−T/p

Algorithm 2 with parameters ∆ = C(‖β∗‖2 + δ)
√
T log p/n, λ(0)

n/T = ‖β(0) − β∗‖2/(15
√
s), any

κ ∈ [1/2, 3/4] and `1 regularization generates β(t) that has estimation error

‖β(t) − β∗‖2 ≤ κt‖β(0) − β∗‖2 +
15C(‖β∗‖2 + δ)

1− κ

√
s log p

n
T , for all t ∈ [T ].

Performing T � log(n/(s log p)) iterations gives us estimation rate (‖β∗‖2 +

δ)
√

(s log p/n) log (n/(s log p)) which is near-optimal on (s, p, n). The dependence on ‖β∗‖2,
which also appears in the analysis of EM in the classical (low dimensional) setting [1], arises from
fundamental limits of EM. Removing such dependence for MLR is possible by convex relaxation
[7]. It is interesting to study how to remove it in the high dimensional setting.

Low Rank Recovery. Second we consider the setting where the model parameter is a matrix Γ∗ ∈
Rp1×p2 with rank(Γ∗) = θ � min(p1, p2). We further assume X ∈ Rp1×p2 is an i.i.d. Gaussian
matrix, i.e., entries ofX are independent random variables with distributionN (0, 1). Note that in the
low dimensional case n� p1× p2, there is no essential difference between assuming the parameter
is a vector or matrix since we can always treat X and Γ∗ as (p1 × p2)-dimensional vectors. In the
high dimensional regime, we apply nuclear norm regularization, i.e,R(Γ) =

∑p1,p2
i=1 |si(Γ)|, where

si(Γ) is the ith singular value of Γ. Similarly, SNR := ‖Γ∗‖F /σ.
Corollary 3 (Low rank recovery in MLR). There exist constant ρ, C,C ′ such that if SNR ≥ ρ,
n/T ≥ C ′ [(‖Γ∗‖F + σ)/‖Γ∗‖F ]

2
θ(p1 + p2), Γ(0) ∈ B(‖Γ∗‖F /1600,Γ∗); then with probability

at least 1 − T exp(−p1 − p2) Algorithm 2 with parameters ∆ = C(‖Γ∗‖F + σ)
√
T (p1 + p2)/n,

λ
(0)
n/T = 0.01‖Γ(0) − Γ∗‖F /

√
2θ, any κ ∈ [1/2, 3/4] and nuclear norm regularization generates

Γ(t) that has estimation error

‖Γ(t) − Γ∗‖F ≤ κt‖Γ(0) − Γ∗‖F +
100C ′(‖Γ∗‖F + σ)

1− κ

√
2θ(p1 + p2)

n
T , for all t ∈ [T ].

For suitable choice of T , one can show the final estimation error is near-optimal by following similar
analysis as for sparse recovery. The standard low rank matrix recovery with a single component,
including other sensing matrix designs beyond the Gaussian matrix, has been studied extensively
(e.g., [2, 4, 13, 15]). To the best of our knowledge, the theoretical study of the mixed low rank
matrix recovery has not been considered.

5.3 Missing Covariate Regression

As our last example, we consider the missing covariate regression (MCR) problem. To parallel
standard linear regression, {yi,xi}ni=1 are samples of (Y,X) linked through Y = 〈X,β∗〉 + W .
However, we assume each entry of xi is missing independently with probability ε ∈ (0, 1). There-
fore, the observed covariate vector x̃i takes the form

x̃i,j =

{
xi,j with probability 1− ε
∗ otherwise

.

We assume the model is under Gaussian design X ∼ N (0, Ip),W ∼ N (0, σ2). We refer the
reader to our Supplementary Material for the specific Qn(·|·) function. In high dimensional case,
we assume β∗ ∈ B0(s; p). We define ρ := ‖β∗‖2/σ to be the SNR and ω := r/‖β∗‖2 to be the
relative contractivity radius. In particular, let ζ := (1 + ω)ρ.
Corollary 4 (Sparse Recovery in MCR). There exist constantsC,C ′, C0, C1 such that if (1+ω)ρ ≤
C0 < 1, ε < C1, n/T ≥ C ′max{σ2(ωρ)−1, 1}s log p, β(0) ∈ B(ω‖β∗‖2,β∗); then with prob-
ability at least 1 − T/p Algorithm 2 with parameters ∆ = Cσ

√
T log p/n, λ(0)

n/T = ‖β(0) −
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β∗‖2/(45
√
s), any κ ∈ [1/2, 3/4] and `1 regularization generates β(t) that has estimation error

‖β(t) − β∗‖2 ≤ κt‖β(0) − β∗‖2 +
45Cσ

1− κ

√
s log p

n
T , for all t ∈ [T ],

Unlike the previous two models, we require an upper bound on the signal to noise ratio. This unusual
constraint is in fact unavoidable [10]. By optimizing T , the order of final estimation error turns out
to be σ

√
s log p/n log(n/(s log p)).

6 Simulations

We now provide some simulation results to back up our theory. Note that while Theorem 1 requires
resampling, we believe in practice this is unnecessary. This is validated by our results, where we
apply Algorithm 1 to the four latent variable models discussed in Section 5.

Convergence Rate. We first evaluate the convergence of Algorithm 1 assuming only that the initial-
ization is a bounded distance from β∗. For a given error ω‖β∗‖2, the initial parameter β(0) is picked
randomly from the sphere centered around β∗ with radius ω‖β∗‖2. We use Algorithm 1 with T = 7,
κ = 0.7, λ(0)

n in Theorem 1. The choice of the critical parameter ∆ is given in the Supplementary
Material. For every single trial, we report estimation error ‖β(t) − β∗‖2 and optimization error
‖β(t) − β(T )‖2 in every iteration. We plot the log of errors over iteration t in Figure 1.
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Figure 1: Convergence of regularized EM algorithm. In each panel, one curve is plotted from single
independent trial. Settings: (a,b,d) (n, p, s) = (500, 800, 5); (d) (n, p, θ) = (600, 30, 3); (a-c)
SNR = 5; (d) (SNR, ε) = (0.5, 0.2); (a-d) ω = 0.5.

Statistical Rate. We now evaluate the statistical rate. We set T = 7 and compute estimation error
on β̂ := β(T ). In Figure 2, we plot ‖β̂−β∗‖2 over normalized sample complexity, i.e., n/(s log p)
for s-sparse parameter and n/(θp) for rank θ p-by-p parameter. We refer the reader to Figure 1 for
other settings. We observe that the same normalized sample complexity leads to almost identical
estimation error in practice, which thus supports the corresponding statistical rate established in
Section 5.
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Figure 2: Statistical rates. Each point is an average of 20 independent trials. Settings: (a,b,d) s = 5;
(c) θ = 3.
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Regularized EM: Supplemental Material
We give the proof of the main result, as well as the proofs showing the specialization of our results
to the examples discussed in Section B. We collect several technical lemmas in Section C, to which
we forward-reference in the results in the next sections.

A Proof of Main Result

In this section, we provide the proof of Theorem 1 that characterizes the computational and statistical
performance of the regularized EM algorithm with resampling. We first present a result which shows
that the population EM operatorM : Ω→ Ω is contractive when τ < γ.
Lemma 1. Suppose Q(·|·) satisfies all the corresponding conditions stated in Theorem 1. Mapping
M is contractive over B(r;β∗), namely

‖M(β)− β∗‖ ≤ τ

γ
‖β − β∗‖, ∀ β ∈ B(r;β∗).

Proof. A similar result is proved in [1]. The slight difference is that [1] shows Lemma 1 with `2
norm. Extending `2 norm to arbitrary norm is trivial, so we omit the details.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We first consider one iteration of Algorithm 1 and show the relationship be-
tween ‖β(t) − β∗‖ and ‖β(t−1) − β∗‖. Recall that

β(t) = arg max
β′∈Ω

Qm(β′|β(t−1))− λ(t)
m · R(β′),

where m = n/T is the number of samples in each step. We assume β(t−1) ∈ B(r;β∗). To simplify
the notation, we drop the superscripts of β(t−1), λ(t)

m and denote β(t) as β+. From the optimality of
β+, we have

Qm(β+|β)− λm · R(β+) ≥ Qm(β∗|β)− λm · R(β∗). (A.1)
Equivalently,

λm · R(β+)− λm · R(β∗) ≤ Qm(β+|β)−Qm(β∗|β). (A.2)
Using the fact that Qm(·|β) is a concave function, the right hand side of the above inequality can be
bounded as

Qm(β+|β)−Qm(β∗|β) ≤
〈
∇Qm(β∗|β),β+ − β

〉
≤
∣∣〈∇Qm(β∗|β),β+ − β

〉∣∣︸ ︷︷ ︸
A

. (A.3)

A key ingredient of our proof is to bound the term A. Letting Θ := β+ − β∗, we have∣∣〈∇Qm(β∗|β),β+ − β
〉∣∣ =

∣∣〈∇Qm(β∗|β)−∇Q(β∗|β) +∇Q(β∗|β),Θ
〉∣∣

≤
∣∣〈∇Qm(β∗|β)−∇Q(β∗|β),Θ

〉∣∣+
∣∣〈∇Q(β∗|β),Θ

〉∣∣
(a)

≤
∥∥Qm(β∗|β)−∇Q(β∗|β)‖R∗ · R(Θ) +

∥∥∇Q(β∗|β)
∥∥
∗ × ‖Θ‖

(b)

≤ ∆mR(Θ) + α
∥∥∇Q(β∗|β)

∥∥× ‖Θ‖
(c)

≤ ∆mR(Θ) + α
∥∥∇Q(β∗|β)−∇Q(M(β)|β)

∥∥× ‖Θ‖
(d)

≤ ∆mR(Θ) + αµ
∥∥M(β)− β∗

∥∥× ‖Θ‖
(e)

≤ ∆mR(Θ) +
αµτ

γ

∥∥β − β∗∥∥× ‖Θ‖ (A.4)

where (a) follows from the Cauchy-Schwarz inequality, (b) follows from the statistical error Con-
dition 5 and the definition of α, (c) follows from the fact thatM(β) maximizes Q(·|β), (d) follows
from the smoothness Condition 2, and (e) follows from Lemma 1. For inequality (c), note that we
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assume that B(r;β∗) ⊆ Ω. From Lemma 1, we know that if β ∈ B(r;β∗), under condition τ < γ,
we must haveM(β) ∈ B(rτ/γ;β∗) ⊆ B(r;β∗). ThereforeM(β) lies in the interior of Ω thus the
optimality condition corresponds to∇Q(M(β)|β) = 0.

Plugging (A.4) back into (A.3), we obtain

Qm(β+|β)−Qm(β∗|β) ≤ ∆mR(Θ) +
αµτ

γ

∥∥β − β∗∥∥× ‖Θ‖.
Using the above result and (A.2), we have

λmR(β∗ + Θ)− λmR(β∗) ≤ ∆mR(Θ) +
αµτ

γ

∥∥β − β∗∥∥× ‖Θ‖. (A.5)

To ease notation, we use uS to denote the projection operator ΠS(u) defined in (??). From the
decomposability ofR, we have

R(β∗ + Θ)−R(β∗) ≥ R(β∗ + ΘS⊥)−R(ΘS)−R(β∗)

= R(ΘS⊥)−R(ΘS),

where the inequality is from the triangle inequality and the equality is from decomposability of R.
Plugging the above result back into (A.5) yields that

λm ·
(
R(ΘS⊥)−R(ΘS)

)
≤ ∆mR(Θ) +

αµτ

γ

∥∥β − β∗∥∥× ‖Θ‖.
By choosing λm so that it satisfies the following condition

λm ≥ 3∆m +
αµτ

γΨ(S)
‖β − β∗‖, (A.6)

we have that

R(ΘS⊥)−R(ΘS) ≤ ∆m

λm
R(Θ) +

αµτ
∥∥β − β∗∥∥
γλm

‖Θ‖ ≤ 1

3
R(Θ) + Ψ(S)‖Θ‖.

PluggingR(Θ) ≤ R(ΘS) +R(ΘS⊥) into the above inequality, we obtain

2R(ΘS⊥) ≤ 4R(ΘS) + 3Ψ(S) · ‖Θ‖. (A.7)

Therefore, we have shown that Θ lies in the quasi cone C(S,S;R) defined in (4.3). Recall that
Condition 4 states that for any fixed β ∈ B(r;β∗), Qm(·|β) is strongly concave over the set
Ω
⋂(
{β∗}+ C(S,S;R)

)
. Using this condition yields that

Qm(β∗ + Θ|β)−Qm(β∗|β) ≤
〈
∇Qm(β∗|β),Θ

〉
− γm

2
‖Θ‖2

≤ ∆mR(Θ) +
αµτ

γ

∥∥β − β∗∥∥× ‖Θ‖ − γm
2
‖Θ‖2, (A.8)

where the second inequality follows from (A.4).

Now we turn back to optimality condition (A.2), following which we have

Qm(β∗ + Θ|β)−Qm(β∗|β) ≥ λm · R(β∗ + Θ)− λm · R(β∗) ≥ −λmR(ΘS). (A.9)

Putting (A.8) and (A.9) together gives us
γm
2
‖Θ‖2 ≤ λmR(ΘS) + ∆mR(Θ) +

αµτ

γ
‖β − β∗‖ × ‖Θ‖.

UsingR(Θ) ≤ R(ΘS⊥) +R(ΘS) ≤ (9/2)Ψ(S)‖Θ‖, we further have

γm
2
‖Θ‖2 ≤ λmΨ(S)‖Θ‖+

9

2
∆mΨ(S)‖Θ‖+

αµτ

γ
‖β − β∗‖ × ‖Θ‖.

Canceling the term ‖Θ‖ on both sides of the above inequality yields that

‖Θ‖ ≤ 2Ψ(S)
λm
γm

+
Ψ(S)

γm

(
9∆m + 2

αµτ

γΨ(S)
‖β − β∗‖

)
≤ 5Ψ(S)

λm
γm

. (A.10)
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The last inequality follows from our assumption (A.6). Putting (A.6) and (A.10) together, we reach
the conclusion that if β(t−1) ∈ B(r;β∗) and

λ(t)
m ≥ 3∆m +

αµτ

γΨ(S)
‖β(t−1) − β∗‖, (A.11)

then we have

‖β(t) − β∗‖ ≤ 5Ψ(S)
λ

(t)
m

γm
. (A.12)

As in the statement of the theorem, let κ∗ := 5 αµτγγm
and assume κ∗ ≤ 3/4. Then for any κ ∈

[κ∗, 3/4], ∆ ≥ 3∆m, we can set

λ(t)
m =

1− κt

1− κ
∆ + κt

γm

5Ψ(S)
‖β(0) − β∗‖ (A.13)

for all t ∈ [T ]. When t = 1, we have β(0) ∈ B(r;β∗) and one can check inequality (A.11) holds by
setting t = 1 in (A.13), thereby applying (A.12) yields that

‖β(1) − β∗‖ ≤ 5Ψ(S)
λ

(1)
m

γm
=

5Ψ(S)

γm

1− κ
1− κ

∆ + κ‖β(0) − β∗‖.

Now we prove Theorem 1 by induction. Assume that for some t ≥ 1,

‖β(t) − β∗‖ ≤ 5Ψ(S)

γm

1− κt

1− κ
∆ + κt‖β(0) − β∗‖. (A.14)

Under condition ∆ ≤ 3∆, κ ≤ 3/4, we have

‖β(t) − β∗‖ ≤ 15Ψ(S)

γm

1− (3/4)t

1− 3/4
∆ + (3/4)t‖β(0) − β∗‖ ≤ 15Ψ(S)

γm

1− (3/4)t

1− 3/4
∆ + (3/4)t · r

= (1− (3/4)t) · r + (3/4)t · r = r,

where the first equality is from our definition of ∆. Consequently, we have β(t) ∈ B(r;β∗). Now
we check that by our choice of λ(t+1)

m , inequality (A.11) holds. Note that

3∆m +
αµτ

γΨ(S)
‖β(t) − β∗‖ ≤ ∆ +

5αµτ

γγm

1− κt

1− κ
∆ +

αµτ

γΨ(S)
κt‖β(0) − β∗‖

≤ ∆ + κ
1− κt

1− κ
∆ + κt+1 γm

5Ψ(S)
‖β(0) − β∗‖ =

1− κt+1

1− κ
∆ + κt+1 γm

5Ψ(S)
‖β(0) − β∗‖ = λ(t+1)

m ,

where the first inequality is from (A.14) and the second inequality is from the fact κ ≥ κ∗ = 5 αµτγγm
.

Therefore (A.11) holds for t+ 1. Then applying (A.12) with t+ 1 implies that

‖β(t+1) − β∗‖ ≤ 5Ψ(S)

γm

1− κt+1

1− κ
∆ + κt+1‖β(0) − β∗‖.

Putting pieces together we prove that (A.14) holds for all t ∈ [T ] when Conditions 4 and 5 hold in
every step. Applying probabilistic union bound, we reach the conclusion.

B Applications to Example Models

We fill in the details for the example models discussed in Section 5 in the main body: Gaussian
mixture models, mixed linear regression (with sparse and low-rank regressors) and missing covariate
regression.
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B.1 Gaussian Mixture Model

Recall that we consider the isotropic, balanced Gaussian Mixture Model with two components where
sample yi is generated from either N (β∗, σ2Ip) or N (−β∗, σ2Ip).

We focus on the high SNR regime where we assume SNR ≥ ρ for some constant ρ. Note that the
work in [11] provides empirical and theoretical evidence that in the low SNR regime, where the
overlap density of two Gaussian clusters is small, the standard EM algorithm suffers from sublinear
convergence asymptotically. Therefore the high SNR condition is necessary for showing exponen-
tial/linear convergence of the EM algorithm and our high dimensional variant. In particular, we are
interested in quantizing estimation error using `2 norm. We thus set the norm ‖ · ‖ in our frame-
work to be ‖ · ‖2 in this section. Recall that we set regularizer R to be the `1 norm. For any
subset S ⊆ {1, . . . , p}, `1 norm is decomposable with respect to (S,S). For any β∗ ∈ B0(s; p),
by letting S = supp(β∗),S = supp(β∗), we have Ψ(S) =

√
s and C(S,S;R) corresponds to

{‖uS⊥‖1 ≤ 2‖uS‖1 + 2
√
s‖u‖2}.

According to the QGMM
n (·|·) introduced in (5.1), by taking its expectation, we have

QGMM (β′|β) = −1

2
E
[
w(Y ;β)‖Y − β′‖22 + (1− w(Y ;β))‖Y + β′‖22

]
. (B.1)

We now check that Conditions 1-3 hold forQGMM (·|·). We begin with proving the following result.

Lemma 2 (Self consistency of GMM). Consider the Gaussian mixture model with QGMM (·|·)
given in (B.1). For model parameter β∗ we have

β∗ = arg max
β∈Rp

QGMM (β|β∗).

Proof. In this example, we have

M(β∗) = 2E [w(Y ;β∗)Y ] = 2E
[

1

1 + exp(− 2
σ2 〈Z · β∗ +W,β∗〉)

(Z · β∗ +W )

]
,

where W ∼ N (0, σ2) and Z has Rademacher distribution over {−1, 1}. Due to the rotation in-
variance of Gaussianity, without loss of generality, we assume β∗ = Ae1. It is easy to check
supp(M(β∗)) = {1}. Moreover, the first coordinate ofM(β∗) takes form

(M(β∗))1 = 2E
[

1

1 + exp(− 2
σ2 (AZ +W1))

(AZ +W1)

]
= A,

where the last equality follows by the substitution X = W1, Z = Z, γ = 0, a = A in Lemma 25.
Therefore,M(β∗) = β∗.

The above result shows that QGMM (·|·) satisfies Condition 1. It is easy to see ∇2QGMM (β′|β) =
−Ip, which implies that QGMM (·|·) satisfies Condition 2 with parameters (γ, µ, r) = (1, 1, r) for
any r > 0. Next we present a result showing that QGMM (·|·) satisfies Condition 3 with arbitrarily
small stability factor τ when SNR is sufficiently large.

Lemma 3 (Gradient stability of GMM). Consider the Gaussian Mixture Model with QGMM (·|·)
given in (B.1). Suppose SNR > ρ. Function QGMM (·|·) satisfies Condition 3 with parameters
(τ, ‖β∗‖2/4), where τ ≤ exp(−Cρ2) for some absolute constant C.

Proof. See the proof of Lemma 3 in [1].

Now we turn to the conditions on QGMM
n (·|·).

Lemma 4 (RSC of GMM). Consider the Gaussian mixture model with any β∗ ∈ B0(s; p) and
QGMM
n (·|·) given in (5.1). For any r > 0, we haveQGMM

n (·|·) satisfies Condition 4 with parameters
(γn,S,S, r, δ), where

γn = 1, δ = 0, (S,S) = (supp(β∗), supp(β∗)).
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Proof. Although Condition 4 is a stochastic condition, for Gaussian mixture model in particular, it
is satisfied deterministically. Note that

QGMM
n (β′|β) = − 1

2n

n∑
i=1

[
w(yi;β)‖yi − β′‖22 + (1− w(yi;β))‖yi + β′‖22

]
.

We have that for any β′,β ∈ Rp, ∇2QGMM
n (β′|β) = −Ip, which implies that QGMM

n (β′|β) is
strongly concave with parameter 1. Consequently, Condition 4 holds with γn = 1.

This above result indicates that the restricted strong concavity condition holds deterministically in
this example. The next lemma validates the statistical error condition and provides the corresponding
parameters.
Lemma 5 (Statistical error of GMM). Consider the Gaussian mixture model with QGMM

n (·|·) and
QGMM (·|·) given in (5.1) and (B.1) respectively. For any r > 0, δ ∈ (0, 1) and some absolute
constant C, Condition 5 holds with parameters (∆n, r, δ) where

∆n = C(‖β∗‖∞ + σ)

√
log p+ log(2e/δ)

n
.

Proof. Note that R∗ is ‖ · ‖∞ in this example. Following the specific formulations of QGMM
n (·|·)

and QGMM (·|·) in (5.1) and (B.1), we have

∇QGMM
n (β∗|β)−∇QGMM (β∗|β) = − 1

n

n∑
i=1

yi +
2

n

n∑
i=1

w(yi;β)yi − 2E [w(Y ;β)Y ] .

Therefore,∥∥∇QGMM
n (β∗|β)−∇QGMM (β∗|β)

∥∥
∞ ≤

∥∥∥∥∥ 1

n

n∑
i=1

yi

∥∥∥∥∥
∞︸ ︷︷ ︸

(a)

+

∥∥∥∥∥ 2

n

n∑
i=1

w(yi;β)yi − 2E [w(Y ;β)Y ]

∥∥∥∥∥
∞︸ ︷︷ ︸

(b)

Next we bound the two terms (a) and (b) respectively.

Term (a). Let ζ := 1
n

∑n
i=1 yi. Let yi = (yi,1, . . . , yi,p)

> for all i ∈ [n]. Consider the j-th
coordinate ζj of ζ, we have

ζj =
1

n

n∑
i=1

yi,j .

Note that {yi,j}ni=1 are independent copies of random variable Yj that is

Yj = Z · β∗j + V, (B.2)

where Z is Rademacher random variable taking values in {−1, 1} and V has distributionN (0, σ2).
Since Z · β∗j and V are both sub-Gaussian random variables with norm ‖Z · β∗j ‖ψ2

≤ |β∗j | and
‖V ‖ψ2

. δ. Following the rotation invariance sub-Gaussian random variables (e.g., Lemma 5.9 in
[18]), we have that

‖Yj‖ψ2 .
√
‖Z · β∗j ‖2ψ2

+ ‖V ‖2ψ2
.
√
‖β∗‖2∞ + σ2.

Following the standard sub-Gaussian concentration argument in Lemma 19, there exists some con-
stant C such that for any j ∈ [p] and all t ≥ 0,

Pr
(∣∣ζj∣∣ ≥ t) ≤ e · exp

(
− Cnt2

‖β∗‖2∞ + σ2

)
.

Then by applying union bound, we have

Pr

(
sup
j∈[p]

∣∣ζj∣∣ ≥ t) ≤ pe · exp

(
− Cnt2

‖β∗‖2∞ + σ2

)
.
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Setting the right hand side to be δ, we have that, with probability at least 1− δ/2,∥∥∥∥∥ 1

n

n∑
i=1

yi

∥∥∥∥∥
∞

. (‖β∗‖∞ + δ)

√
log p+ log(2e/δ)

n
. (B.3)

Term (b). Now let ζ := 2
n

∑n
i=1 w(yi;β)yi−2E [w(Y ;β)Y ]. We also consider the j-th coordinate

ζj of ζ, which takes form

ζj =
2

n

n∑
i=1

{
w(yi;β)yi,j − E(w(Y ;β)Yj)

}
.

Note that w(yi;β)yi,j − E(w(Y ;β)Yj), i = 1, . . . , n are independent copies of random variable
w(Y ;β)Yj − E(w(Y ;β)Yj) where Yj is given in (B.2). We have shown that Yj is sub-Gaussian
random variable. Note that w(Y ;β) is random variable taking values in [0, 1]. We thus always have

Pr (|w(Y ;β)Yj | ≥ t) ≤ Pr(|Yj | > t) ≤ exp(1− Ct2/‖Yj‖2ψ2
).

Using the equivalent properties of sub-Gaussian (see Lemma 5.5 in [18]) , we conclude
that w(Y ;β)Yj is sub-Gaussian random variable with norm ‖w(Y ;β)Yj‖ψ2

≤ ‖Yj‖ψ2
.√

‖β∗‖2∞ + σ2. Following Lemma 21, we have ‖w(Y ;β)Yj − E [w(Y ;β)Yj ] ‖ψ2 ≤
2‖w(Y ;β)Yj‖ψ2 . Using the concentration result from Lemma 19 yields that for any j ∈ [p] and
some constant C,

Pr (|ζj | ≥ t) = Pr

{∣∣∣∣ 2n
n∑
i=1

w(yi;β)yi,j − E(w(Y ;β)Y )

∣∣∣∣ > t

}
≤ e · exp

(
− Cnt2

‖β∗‖2∞ + σ2

)
.

Applying union bound over p coordinates, we have

Pr

(
sup
j∈[p]

|ζj | > t

)
≤ pe · exp

(
− Cnt2

‖β∗‖2∞ + σ2

)
,

which implies that, with probability at least 1− δ/2,∥∥∥∥∥ 2

n

n∑
i=1

w(yi;β)yi − 2E [w(Y ;β)Y ]

∥∥∥∥∥
∞

. (‖β∗‖∞ + σ)

√
log p+ log(2e/δ)

n
. (B.4)

Putting (B.3) and (B.4) together completes the proof.

Now we give the guarantees of Algorithm 2 for the Gaussian mixture model.

Proof of Corollary 1. This result follows from Theorem 1. First, recall that the minimum contractive
factor κ∗ is κ∗ = 5 αµτ

γγn/T
. For the `2 norm, we have α = 1. Following the fact that (γ, µ) = (1, 1)

and Lemma 3-4, we have κ∗ ≤ 20 exp(−Cρ2) for some constant C. We further have κ∗ ≤ 1
2

when ρ is sufficiently large. Second, based on Lemma 5, we set δ = 1/p and choose ∆ as ∆ =

C(‖β∗‖∞ + σ)
√
T log p/n with sufficiently large C such that ∆ ≥ 3∆n/T . By the assumption

on n/T , we have that ∆ ≤ 3∆ where ∆ = ‖β∗‖2/(240
√
s) in this example. Finally, we choose

λ
(0)
n/T = ‖β(0) − β∗‖/(5

√
s) by following Theorem 1. Packing up these ingredients and following

Theorem 1, we have that by choosing any κ ∈ [1/2, 3/4], ‖β(t) − β∗‖2 ≤ κt‖β(0) − β∗‖2 +
5
√
s∆/(1− κ), which thus completes the proof.

B.2 Mixed Linear Regression

Recall that for Mixed Linear Regression (MLR) model, we consider two sets of model parameters:
β∗ ∈ B0(s; p) and Γ∗ ∈ Rp1×p2 with rank(Γ∗) = θ. For the two settings, the population level
analysis is identical under i.i.d. Gaussian covariate design. Without loss of generality, we begin
with treating the model parameter as a vector β∗ ∈ Rp and validate Conditions 1-3 for QMLR(·|·)
in this example. Given function QMLR

n (·|·) in (5.3), taking its expectation, yields

QMLR(β′|β) = −1

2
E
[
w(Y,X;β)(Y − 〈X,β′〉)2 + (1− w(Y,X;β))(Y + 〈X,β′〉)2

]
. (B.5)

For now, we set the norm ‖ · ‖ in our framework to ‖ · ‖2. We begin by checking the self consistency
condition.
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Lemma 6 (Self consistency of MLR). Consider mixed linear regression with model parameter
β∗ ∈ Rp and QMLR(·|·) given in (B.5). We have

β∗ = arg max
β∈Rp

QMLR(β|β∗).

Proof. In this example, we have

M(β∗) = 2E [w(Y,X;β∗)Y X] = 2E

[
1

1 + exp(− 2(〈X,Z·β∗〉+W )〈X,β∗〉
σ2 )

(Z · β∗ +W )X

]
,

where X ∼ N (0, Ip),W ∼ N (0, σ2), Z has Rademacher distribution. Due to the rotation in-
variance of Gaussianity, without loss of generality, we can assume β∗ = Ae1. It is easy to check
supp(M(β∗)) = {1}. Moreover,

(M(β∗))1 = 2E
[

1

1 + exp(− 2
σ2 (AZX1 +W )AX1)

(AZX2
1 +X1W )

]
= E(AX2

1 ) = A,

where the second inequality follows by the substitutionX = W,Z = Z, γ = 0, a = AX1 in Lemma
25. We thus haveM(β∗) = β∗.

It is easy to check ∇2QMLR(β′|β) = −Ip. Therefore, QMLR(·|·) satisfies Condition 2 with pa-
rameters (γ, µ, r) = (1, 1, r) for any r > 0. Similar to the Gaussian mixture model, we introduce
the following SNR quantity to characterize the difficulty of the problem.

SNR := ‖β∗‖/σ.

The work in [7] shows that there exists an unavoidable phase transition of statistical rate from high
SNR to low SNR. In detail, in low-dimensional setting, the obtainable statistical error is Ω(

√
p/n)

that matches the standard linear regression when SNR ≥ ρ for some constant ρ. Meanwhile, the un-
avoidable rate becomes Ω((p/n)1/4) when SNR � ρ. We conjecture such transition phenomenon
still exists in high dimensional setting. For now we focus on the high SNR regime and show our
algorithm achieves statistical rate that matches the standard sparse linear regression and low rank
matrix recovery (up to logarithmic factor) in the end.

The following result shows Condition 3 holds with arbitrarily small stability factor τ when SNR is
sufficiently large and the radius r of ball B(r;β∗) is sufficiently small.

Lemma 7 (Gradient Stability of MLR). Consider mixed linear regression model with function
QMLR(·|·) given in (B.5). For any ω ∈ [0, 1/4], let r = ω‖β∗‖2. Suppose SNR ≥ ρ for some
constant ρ. Then for any β ∈ B(r;β∗), we have

‖∇QMLR(M(β)|β)−∇QMLR(M(β)|β∗)‖2 ≤ τ‖β − β∗‖2

with

τ =
17

ρ
+ 7.3ω.

Proof. Recall that we hope to find τ such that for any β ∈ B(r;β∗)

‖∇QMLR(M(β)|β)−∇QMLR(M(β)|β∗)‖2 ≤ τ‖β − β∗‖2.

In this example, we have
M(β) = 2E [w(Y,X;β)Y X] ,

and
∇QMLR(β′|β) = 2E [w(Y,X;β)Y X]− β′.

Therefore,

∇QMLR(M(β)|β)−∇QMLR(M(β)|β∗)
= 2E [w(Y,X;β)Y X]− 2E [w(Y,X;β∗)Y X] = 2E [w(Y,X;β)Y X]− β∗,
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where the last equality is from the self consistent property of QMLR(·|·). Due to the rotation invari-
ance of Gaussianity, without loss of generality, we assume β∗ = Ae1,β = (1 + ε1)Ae1 + ε2Ae2,
where A = ‖β∗‖2, ‖β − β∗‖2 = A

√
ε21 + ε22. Let random vector T be

T := w(Y,X;β)Y X − 1

2
β∗.

Note that for any β ∈ Rp,

w(Y,X;β) =
exp(− (Y−〈X,β〉)2

2σ2 )

exp(− (Y−〈X,β〉)2
2σ2 ) + exp(− (Y+〈X,β〉)2

2σ2 )
=

1

1 + exp(− 2Y 〈X,β〉
σ2 )

,

thereby

T =
1

1 + exp(− 2Y 〈X,β〉
σ2 )

Y X − 1

2
β∗

=
1

1 + exp(− 2(ZAX1+W )(A(1+ε1)X1+ε2X2)
σ2 )

(ZAX1 +W )X − 1

2
Ae1,

where Z is Rademacher random variable taking values in {−1, 1}, W is stochastic noise with dis-
tribution N (0, σ2), X1 and X2 are the first two coordinates of X . It is easy to note that E [Ti] = 0
for i = 3, . . . , p. We focus on characterizing the first two coordinates T1, T2 of T .

Coordinate T1.
First, we compute the expectation of T1. Particularly we let γ = ε1 + ε2X2/X1. Then we have∣∣E [T1]

∣∣ =

∣∣∣∣∣E
[

X1(W + ZAX1)

1 + exp(− 2AX1(1+γ)
σ2 (W + ZAX1))

− 1

2
AX2

1

]∣∣∣∣∣
≤ E

[
|X1| ·

∣∣∣∣∣ (W + ZAX1)

1 + exp(− 2AX1(1+γ)
σ2 (W + ZAX1))

− 1

2
AX1

∣∣∣∣∣
]

= EX1,X2

{
|X1| · EW,Z

[∣∣∣∣∣ (W + ZAX1)

1 + exp(− 2AX1(1+γ)
σ2 (W + ZAX1))

− 1

2
AX1

∣∣∣∣∣
]}

≤ EX1,X2

[
|X1| ·min

{
1

2
A · |X1γ| · exp(

γ2(AX1)2 − (AX1)2

2σ2
),

σ√
2π

+A|X1|
}]

, (B.6)

where the last inequality follows from Lemma 25 by replacing the parameters (X,Z, a, γ) in the
statement with (W,Z,AX1, γ). Let event E be E := {γ2 ≤ 0.9}. Computing the expectation in
(B.6) conditioning on E and Ec yields that∣∣E [T1]

∣∣ ≤E [1

2
|γ|AX2

1 exp(
γ2(AX1)2 − (AX1)2

2σ2
)

∣∣∣∣ E] · Pr(E)

+ E
[
σ|X1|√

2π
+AX2

1

∣∣∣∣ Ec] · Pr(Ec). (B.7)

We bound the two terms on the right hand side of the above inequality respectively. For the first
term we have

E
[

1

2
|γ|AX2

1 exp(
γ2(AX1)2 − (AX1)2

2σ2
)

∣∣∣∣ E] · Pr(E) ≤ E
[

1

2
|γ|AX2

1 exp(
−(AX1)2

20σ2
)

∣∣∣∣ E] · Pr(E)

≤ E
[

1

2
|γ|AX2

1 exp(
−(AX1)2

20σ2
)

]
≤ E

[
1

2
A
(
|ε1| ·X2

1 + |ε2X1X2|
)

exp(− 1

20
ρ2X2

1 )

]
=

1

2
A

|ε1|
(1 + 0.1ρ2)3/2

+
1

π
A

|ε2|
1 + 0.1ρ2

≤ 1

2
A

1

1 + 0.1ρ2
(|ε1|+ |ε2|), (B.8)

where the third inequality is from ‖β∗‖2/σ ≥ ρ. For the second term in (B.7), first note that√
ε21 + ε22 ≤

‖β − β∗‖2
‖β∗‖2

≤ ω ≤ 1/4,
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thereby
|γ| ≤ |ε1|+ |ε2| · |X2/X1| ≤ 1/4 + |ε2| · |X2/X1|.

We define event E ′ := {X2
2/X

2
1 ≥ (2.1ε22)−1}. Note that Ec = {γ2 ≥ 0.9}, we thus have Ec ⊆ E ′,

i.e., the occurrence of Ec must lead to the occurrence of E ′. For the second term in (B.7), we have

E
[
σ|X1|√

2π
+AX2

1

∣∣∣∣ Ec] · Pr(Ec) ≤ E
[
σ|X1|√

2π
+AX2

1

∣∣∣∣ E ′] · Pr(E ′)

≤ E
[
σ|X1|√

2π
+
√

2.1ε22A|X1X2|
∣∣∣∣ E ′] · Pr(E ′) (B.9)

=
σ

π

[
1−

√
1

1 + 2.1ε22

]
+
√

2.1ε22A
2

π

2.1ε22
1 + 2.1ε22

≤
√

2.1σ

π
|ε2|+

2
√

2.1
3

π
A|ε2|3, (B.10)

where the equality is from Lemma 24 by setting C in the statement to be
√

2.1ε22.

Putting (B.8) and (B.9) together, we have

|E [T1] | ≤ 1

2
A

1

1 + 0.1ρ2
(|ε1|+ |ε2|) +

√
2.1σ

π
|ε2|+

2
√

2.1
3

π
A|ε2|3. (B.11)

Coordinate T2.
Now we turn to the second coordinate T2. Using E [X1X2] = 0, we have∣∣E [T2]

∣∣ =

∣∣∣∣∣E
[

X2(W + ZAX1)

1 + exp(− 2AX1(1+γ)
σ2 (W + ZAX1))

− 1

2
AX1X2

]∣∣∣∣∣
≤ E

[
|X2| ·

∣∣∣∣∣ (W + ZAX1)

1 + exp(− 2AX1(1+γ)
σ2 (W + ZAX1))

− 1

2
AX1

∣∣∣∣∣
]
.

Similar to (B.6), using Lemma 25 leads to∣∣E [T2]
∣∣ ≤ E

[
|X2| ·min

{
1

2
A · |X1γ| · exp(

γ2(AX1)2 − (AX1)2

2σ2
),

σ√
2π

+A|X1|
}]

≤ E
[

1

2
A|γ| · |X1X2| exp(

γ2(AX1)2 − (AX1)2

2σ2
)

∣∣∣∣ E] · Pr(E)

+ E
[
σ|X2|√

2π
+A|X1X2|

∣∣∣∣ Ec] · Pr(Ec).

We bound the two terms in the right hand side of the above inequality respectively. For the first term,
we have

E
[

1

2
A|γ| · |X1X2| exp(

γ2(AX1)2 − (AX1)2

2σ2
)

∣∣∣∣ E] · Pr(E)

≤ E
[

1

2
A|γ| · |X1X2| exp(

−0.1(AX1)2

2σ2
)
∣∣ E] · Pr(E) ≤ E

[
1

2
A|γ| · |X1X2| exp(

−0.1(AX1)2

2σ2
)

]
≤ E

[
1

2
A
(
|ε1X1X2|+ |ε2|X2

2

)
exp(− 1

20
ρ2X2

1 )

]
=

1

π
A

|ε1|
1 + 0.1ρ2

+
1

2
A

|ε2|√
1 + 0.1ρ2

(B.12)

For the second term, recall that event E ′ is defined as {X2
2/X

2
1 ≥ (2.1ε22)−1}, we have

E
[
σ|X2|√

2π
+A|X1X2|

∣∣∣∣ Ec] · Pr(Ec) ≤ E
[
σ|X2|√

2π
+A|X1X2|

∣∣∣∣ E ′] · Pr(E ′)

=
σ

π

√
2.1ε2√

1 + 2.1ε22
+

2A

π

2.1ε22
1 + 2.1ε22

≤
√

2.1σ

π
|ε2|+

4.2A

π
ε22. (B.13)

where the equality follows from Lemma 24 by setting C in the statement to be
√

2.1ε22. Putting
(B.12) and (B.13) together, we have

|E [T2] | ≤ 1

π
A

|ε1|
1 + 0.1ρ2

+
1

2
A

|ε2|√
1 + 0.1ρ2

+

√
2.1σ

π
|ε2|+

4.2A

π
ε22. (B.14)
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Now based on (B.11) and (B.14), we conclude that

E [‖T‖2] = E
[√

T 2
1 + T 2

2

]
≤ E [|T1|+ |T2|]

≤ A 1√
1 + 0.1ρ2

(|ε1|+ |ε2|) +

√
2.1σ

π
|ε2|+

2
√

2.1
3

π
A|ε2|3 +

√
2.1σ

π
|ε2|+

4.2A

π
ε22

≤ A

(
1√

1 + 0.1ρ2
(|ε1|+ |ε2|) + |ε2|/ρ+ 1.83ω|ε2|

)

≤ A(|ε1|+ |ε2|) ·
(

4.2

ρ
+ 1.83ω

)
≤ 2A

√
ε21 + ε22 ·

(
4.2

ρ
+ 1.83ω

)
= 2

(
4.2

ρ
+ 1.83ω

)
‖β − β∗‖2.

Note that ∇QMLR(M(β)|β) − ∇QMLR(M(β)|β∗) = 2T , thereby we conclude that for any
ω ≤ 1/4, QMLR(·|·) satisfies gradient stability condition over B(ω‖β∗‖2;β∗) with parameter

τ =
17

ρ
+ 7.3ω.

In [1], it is proved that when r = 1
32‖β

∗‖2, there exists τ ∈ [0, 1/2] such that QMLR(·|·) satisfies
Condition 3 with parameter τ when ρ is sufficiently large. Note that Lemma 7 recovers this result.
Moreover, Lemma 7 provides an explicit function to characterize the relationship between τ and
ρ, ω.

Next we turn to validate the two technical conditions of QMLR
n (·|·) and establish the computational

and statistical guarantees of estimating mixed linear parameters in the high dimensional regime. We
consider two different structures of linear parameters: (1) model parameter β∗ is a sparse vector;
(2) model parameter Γ∗ is a low rank matrix. Note that we assume X is a fully random Gaussian
vector/matrix, thereby the population level conditions on QMLR(·|·) hold in both settings.

Sparse Recovery. We assume model parameter β∗ is s-sparse, i.e., β∗ ∈ B0(s; p). Recall that,
in order to serve sparse structure, we choose R to be `1 norm. Setting S = S = supp(β∗),
set C(S,S;R) corresponds to {u : ‖uS⊥‖1 ≤ 2‖uS‖1 + 2

√
s‖u‖2}. Restricted concavity of

QMLR(·|·) is validated in the following result.

Lemma 8 (RSC of MLR with sparsity). Consider mixed linear regression with any model parameter
β∗ ∈ B0(s; p) and function QMLR

n (·|·) defined in (5.3). There exit absolute constants {Ci}3i=0

such that, if n ≥ C0s log p, then for any r > 0, QMLR
n (·|·) satisfies Condition 4 with parameters

(γn,S,S, r, δ), where

γn =
1

3
, (S,S) = (supp(β∗), supp(β∗)), δ = C1 exp(−C2n).

Proof. Recall that

QMLR
n (β′|β) = − 1

2n

n∑
i=1

[
w(yi,xi;β)(yi − 〈xi,β′〉)2 + (1− w(yi,xi;β))(yi + 〈xi,β′〉)2

]
.

For any β,β′ ∈ Rp, we have

QMLR
n (β′|β)−QMLR

n (β∗|β)−〈∇QMLR
n (β∗|β),β′−β∗〉 = −1

2
(β′−β∗)>

(
1

n

n∑
i=1

xix
>
i

)
(β′−β∗).

(B.15)
Note that we want to find γn such that the right hand side of (B.15) is less than
−γn2 ‖β

′ − β‖22 for any β′ − β∗ ∈ C(S,S;R). In this example, we have C(S,S;R) =
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{u ∈ Rp : ‖uS⊥‖1 ≤ 2‖uS‖1 + 2
√
s‖u‖2}. It is sufficient to prove that the sample covariance

matrix has restricted eigenvalues over set C(S,S;R). The following statement is follows by the
substitution Σ = Ip and X = X in Lemma 23: there exist constants {Ci}2i=0 such that

1

n

n∑
i=1

〈xi,u〉2 ≥
1

2
‖u‖22 − C0

log p

n
‖u‖21, for all u ∈ Rp, (B.16)

with probability at least 1− C1 exp(−C2n). For any u ∈ C(S,S;R), we have

‖u‖1 = ‖uS‖1 + ‖uS⊥‖1 ≤ 3‖uS‖1 + 2
√
s‖u‖2 ≤ 5

√
s‖u‖2.

Applying (B.16) yields that

1

n

n∑
i=1

〈xi,u〉2 ≥
1

2
‖u‖22 − 25C0

s log p

n
‖u‖22, for all u ∈ C(S,S;R).

Consequently, when n ≥ C3s log p for sufficiently large C3, 1
n

∑n
i=1〈xi,u〉2 ≥ 1/3‖u‖22, which

implies γn = 1/3.

Lemma 8 states that using n = O(s log p) samples makes QMLR
n (·|·) be strongly concave over C

with high probability.

Lemma 9 (Statistical error of MLR with sparsity). Consider mixed linear regression model with any
β∗ ∈ B0(s; p) and functions QMLR

n (·|·), QMLR(·|·) defined in (5.3) and (B.5) respectively. There
exist constants C and C1 such that, for any r > 0 and δ ∈ (0, 1), if n ≥ C1(log p+ log(6/δ)), then

‖∇QMLR
n (β∗|β)−∇QMLR(β∗|β)‖∞ ≤ C(‖β∗‖2 + δ)

√
log p+ log(6/δ)

n
for all β ∈ B(r;β∗)

with probability at least 1− δ.

Proof. According to the formulations of QMLR
n (·|·) and QMLR(·|·) in (5.3) and (B.5), we have

∇QMLR
n (β∗|β)−∇QMLR(β∗|β)

= β∗ −

(
1

n

n∑
i=1

xix
>
i

)
β∗ +

2

n

n∑
i=1

w(yi,xi;β)yixi − 2E [w(Y,X;β)Y X]− 1

n

n∑
i=1

yixi.

(B.17)

So

‖∇QMLR
n (β∗|β)−∇QMLR(β∗|β)‖∞

≤

∥∥∥∥∥ 1

n

n∑
i=1

yixi

∥∥∥∥∥
∞︸ ︷︷ ︸

(a)

+

∥∥∥∥∥β∗ −
(

1

n

n∑
i=1

xix
>
i

)
β∗

∥∥∥∥∥
∞︸ ︷︷ ︸

(b)

+

∥∥∥∥∥ 2

n

n∑
i=1

w(yi,xi;β)yixi − 2E [w(Y,X;β)Y X]

∥∥∥∥∥
∞︸ ︷︷ ︸

(c)

.

Next we bound the above three terms (a), (b) and (c) respectively.

Term (a). We let vector ζ := 1
n

∑n
i=1 yixi. Consider jth coordinate of ζ. For any j ∈ [p], we have

ζj =
1

n

n∑
i=1

yixi,j ,

where xi,j is the jth coordinate of xi. Note that {yixij}ni=1 are independent copies of random
variables (〈X,Z · β∗〉 + W )Xj where X ∼ N (0, Ip), W ∼ N (0, σ2) and Z has Rademacher
distribution. 〈X,Z ·β∗〉+W is sub-Gaussian random variable that has norm ‖〈X,Z ·β∗〉+W‖ψ2

.√
‖β∗‖22 + σ2. Also Xj is sub-Gaussian random variable that has norm ‖Xj‖ψ2

. 1. Then based
on Lemma 22, (〈X,Z · β∗〉 + W )Xj is sub-exponential with norm ‖(〈X,Z · β∗〉 + W )Xj‖ψ1 .
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√
‖β∗‖22 + σ2. Following standard concentration result of sub-exponential random variables (e.g.,

Lemma 20), there exists some constant C such that the following inequality

Pr (|ζj | ≥ t) ≤ 2 exp

(
−C t2n

‖β∗‖22 + σ2

)
holds for sufficiently small t > 0. Therefore,

Pr

(
sup
j∈[p]

|ζj | > t

)
≤ 2p exp

(
−C t2n

‖β∗‖22 + σ2

)
.

Setting the right hand side to be δ/3, we have that, when n is sufficiently large (i.e., n ≥ C(log p+
log(6/δ)) for some constant C), with probability at least 1− δ/3.∥∥∥∥∥ 1

n

n∑
i=1

yixi

∥∥∥∥∥
∞

. (‖β∗‖2 + σ)

√
log p+ log(6/δ)

n
. (B.18)

Term (b). Now we let ζ = β∗ − 1
nxixiβ

∗. For any j ∈ [p],

ζj =
1

n

n∑
i=1

β∗j − xi,j〈xi,β∗〉.

Note that {β∗j −xi,j〈xi,β∗〉}ni=1 are independent copies of random variable β∗j −Xj〈X,β∗〉. Using
similar analysis in bounding term (a), we claim that β∗j − Xj〈X,β∗〉 is centered sub-exponential
random variable with norm ‖β∗j −Xj〈X,β∗〉‖ψ1 . ‖β∗‖2. Therefore, for sufficiently small t and
some constant C,

Pr (|ζj | ≥ t) ≤ 2 exp

(
−C t2n

‖β∗‖22

)
.

Using union bound implies that

Pr

(
sup
j∈[p]

|ζj | ≥ t

)
≤ 2p · exp

(
−C t2n

‖β∗‖22

)
.

Setting the right hand side to be δ/3, we have that, when n is sufficiently large,∥∥∥∥∥β∗ −
(

1

n

n∑
i=1

xix
>
i

)
β∗

∥∥∥∥∥
∞

. ‖β∗‖2

√
log p+ log(6/δ)

n
(B.19)

holds with probability at least 1− δ/3.

Term (c). The analysis of this term is similar to the previous two terms. We let

ζ :=
1

n

n∑
i=1

w(yi,xi;β)yixi − E [w(Y,X;β)Y X] .

For any j ∈ [p],

ζj =
1

n

n∑
i=1

w(yi,xi;β)yixi,j − E [w(Y,X;β)Y X] .

Note that {w(yi,xi;β)yixi,j}ni=1 are independent copies of random variable w(Y,X;β)Y Xj . We
know that Y is sub-Gaussian with norm ‖Y ‖ψ2 .

√
‖β∗‖22 + σ2. Since w(Y,X;β) is bounded,

w(Y,X;β)Y is also sub-Gaussian. Consequently, w(Y,X;β)Y Xj is sub-exponential. By standard
concentration result, for some constant C and sufficiently small t,

Pr(|ζj | ≥ t) ≤ 2 exp

(
−C nt2

‖β∗‖22 + σ2

)
.

Therefore,

Pr( sup
j∈[p]

|ζj | ≥ t) ≤ 2 exp

(
−C nt2

‖β∗‖22 + σ2

)
.
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Setting the right hand side to be δ/3, we have that, when n is sufficiently large,∥∥∥∥∥ 2

n

n∑
i=1

w(yi,xi;β)yixi − 2E [w(Y,X;β)Y X]

∥∥∥∥∥
∞

. (‖β∗‖2 + δ)

√
log p+ log(6/δ)

n
(B.20)

with probability at least 1− δ/3.

Putting (B.18), (B.19) and (B.20) together completes the proof.

Lemma 9 implies Condition 5 hold with parameters ∆n = O
(

(‖β∗‖2 + δ)
√

log p/n
)

, any r > 0

and δ = 1/p. Putting all the ingredients together leads to the following guarantee about sparse
recovery in mixed linear regression using regularized EM algorithm.

Proof of Corollary 2. The result follows from Theorem 1. First, we note that the minimum contrac-
tive factor κ∗ = 5 αµτ

γγn/T
= 15τ in this example since α = 1, µ = γ = 1 and γn/T = 1/3 w.h.p

when n & s log p (see Lemma 8). Following Lemma 7, κ∗ ≤ 1/2 when w ≤ 1/240 and ρ is suffi-

ciently large. Second, by choosing n/T & s log p, we have ∆n/T . (‖β∗‖2 +δ)
√

T log p
n w.h.p., as

proved in Lemma 9. Lastly, we have ∆ ≤ 3∆ by assuming n/T & [(‖β∗‖2 + δ)/‖β∗‖2]
2
s log p.

Putting these ingredients together and plugging the established parameters into (4.6) complete the
proof.

Low Rank Recovery. In the sequel, we assume model parameter Γ∗ ∈ Rp1×p2 is a low rank matrix
that has rank(Γ∗) = θ � min{p1, p2}. We focus on measuring the estimation error in Frobenius
norm thus set ‖ · ‖ in our framework to be ‖ · ‖F . Note that by treating Γ∗ as a vector, Frobenius
norm is equivalent to `2 norm, thereby we still have Lemma 6-7 in this setting. Moreover, SNR is
similarly defined as

SNR := ‖Γ∗‖F /σ.
In order to serve the low rank structure, we choose R to be nuclear norm ‖ · ‖∗. For any matrix M,
we let row(M) denote the subspace spanned by the rows of M and col(M) denote the subspace
spanned by the columns of M. Moreover, for subspace represented by the columns of matrix U, we
denote the subspace orthogonal to U as U⊥. For Γ∗ with singular value decomposition U∗ΣV∗>,
we thus let

S =
{
M ∈ Rp1×p2 : col(M) ⊆ U∗, row(M) ⊆ V∗

}
(B.21)

and
S⊥ =

{
M ∈ Rp1×p2 : col(M) ⊆ U∗⊥, row(M) ⊆ V∗⊥

}
. (B.22)

So S contains all matrices with rows (and columns) living in the row (and column) space of
Γ∗. Subspace S⊥ contains all matrices with rows (and columns) orthogonal to the row (and col-
umn) space of Γ∗. Nuclear norm is decomposable with respect to (S,S). We have Ψ(S) =

supM∈S\{0} ‖M‖∗/‖M‖F ≤
√

2θ since matrix in S has rank at most 2θ. Similar to Lemma 8
and 9 for sparse structure, we have the following two results for low rank structure.
Lemma 10 (RSC of MLR with low rank structure). Consider mixed linear regression with model
parameter Γ∗ ∈ Rp1×p2 that has rank(Γ∗) = θ. There exists constants {Ci}2i=0 such that, if
n ≥ C0θmax{p1, p2}, then for any θ ∈ (0,min{p1, p2}), QMLR

n (·|·) satisfies Condition 4 with
parameters (γn,S,S, r, δ), where (S,S) are given in (B.21) and (B.22),

γn =
1

20
, δ = C1 exp(−C2n).

Proof. Similarly to (B.15), we have that for any Γ′,Γ ∈ Rp1×p2 ,

QMLR
n (Γ′|Γ)−QMLR

n (Γ∗|Γ)− 〈∇QMLR
n (Γ∗|Γ),Γ′ −Γ∗〉 = − 1

2n

n∑
i=1

〈Xi,Γ
′ −Γ∗〉2. (B.23)

Note that Γ′ − Γ∗ ∈ C(S,S; ‖ · ‖∗). Let Θ := Γ′ − Γ∗, we thus have

‖ΘS⊥‖∗ ≤ 2 · ‖ΘS‖∗ + 2 ·
√

2θ‖Θ‖F .
We make use of the following result.
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Lemma 11. Let {Xi}ni=1 be n independent samples of random matrix X ∈ Rp1×p2 where the
entries are i.i.d. Gaussian random variable with distribution N (0, 1). There exits constants C1, C2

such that

1√
n

√√√√ n∑
i=1

〈Xi,Θ〉2 ≥
1

4
‖Θ‖F − 12

(√
p1

n
+

√
p2

n

)
‖Θ‖∗, for all Θ ∈ Rp1×p2 ,

with probability at least 1− C1 exp(−C2n).

Proof. See Proposition 1 in [13] for detailed proof.

Then for our Θ, using the above result yields that

1√
n

√√√√ n∑
i=1

〈Xi,Θ〉2 ≥
1

4
‖Θ‖F − 12

(√
p1

n
+

√
p2

n

)(
‖ΘS‖∗ + ‖ΘS⊥‖∗

)
≥ 1

4
‖Θ‖F − 12

(√
p1

n
+

√
p2

n

)(
3‖ΘS‖∗ + 2

√
2r‖Θ‖F

)
≥
[

1

4
− 60

√
2θ

(√
p1

n
+

√
p2

n

)]
‖Θ‖F .

So when n ≥ Cθmax{p1, p2} for sufficient large C, we have 1√
n

√∑n
i=1〈Xi,Θ〉2 ≥ ‖Θ‖F /

√
20.

Plugging this result back into (B.23) gives us γn = 1/20 thus completes the proof.

Lemma 12 (Statistical error of MLR with low rank structure). Consider the mixed linear regression
with any Γ∗ ∈ Rp1×p2 . There exists constants C and C1 such that, for any fixed Γ ∈ Rp1×p2 and
δ ∈ (0, 1), if n ≥ C1(p1 + p2 + log(6/δ)), then

‖∇QMLR(Γ∗|Γ)−∇QMLR
n (Γ∗|Γ)‖2 ≤ C(‖Σ∗‖F + σ)

√
p1 + p2 + log(6/δ)

n

with probability at least 1− δ.

Proof. Parallel to (B.17), we have

∇QMLR
n (Γ∗|Γ)−∇QMLR(Γ∗|Γ)

= Γ∗ − 1

n

n∑
i=1

〈Xi,Γ
∗〉Γ∗ +

2

n

n∑
i=1

w(yi,Xi; Γ)yiXi − 2E [w(Y,X; Γ)Y X]− 1

n

n∑
i=1

yiXi.

The dual norm of nuclear norm is spectral norm. So we are interested in bounding the following
term for fixed Γ:∥∥∇QMLR

n (Γ∗|Γ)−∇QMLR(Γ∗|Γ)
∥∥

2

≤

∥∥∥∥∥ 1

n

n∑
i=1

yiXi

∥∥∥∥∥
2︸ ︷︷ ︸

U1

+

∥∥∥∥∥Γ∗ − 1

n

n∑
i=1

〈Xi,Γ
∗〉Xi

∥∥∥∥∥
2︸ ︷︷ ︸

U2

+

∥∥∥∥∥ 2

n

n∑
i=1

w(yi,Xi; Γ)yiXi − 2E [w(Y,X; Γ)Y X]

∥∥∥∥∥
2︸ ︷︷ ︸

U3

.

Next we bound the three terms U1, U2 and U3 respectively.

Term U1. We first note that

U1 = sup
u ∈ Sp1−1

v ∈ Sp2−1

1

n

n∑
i=1

yi〈uv>,Xi〉.

In particular, we let

Z(a, b) = sup
u ∈ aSp1−1

v ∈ bSp2−1

1

n

n∑
i=1

yi〈uv>,Xi〉.
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We thus have Z(a, b) = abZ(1, 1). We construct 1/4-covering sets of Sp1−1 and Sp2−1, which we
denote as N1 and N2 respectively. Therefore, for any u ∈ Sp−1,v ∈ Sp2−1, we can always find
u′ ∈ N1,v

′ ∈ N2 such that ‖u− u′‖2 ≤ 1/4, ‖v − v′‖2 ≤ 1/4. Moreover, we have the following
decomposition uv> = u′v′> + (u− u′)v′> + u′(v − v′)> + (u− u′)(v − v′)>. Therefore, we
have

Z(1, 1) ≤ max
u∈N1,v∈N2

1

n

n∑
i=1

yi〈uv>,Xi〉+ Z(1/4, 1) + Z(1/4, 1) + Z(1/4, 1/4),

which implies that

Z(1, 1) ≤ 16

7
max

u∈N1,v∈N2

1

n

n∑
i=1

yi〈uv>,Xi〉.

For any fixed u and v, {yi〈uv>,Xi〉}ni=1 are n independent copies of random variable Y 〈uv>, X〉
where Y is sub-Gaussian with norm ‖Y ‖ψ2

.
√
‖Γ∗‖2F + σ2, 〈uv>, X〉 is zero mean

Gaussian with variance 1. Following Lemma 22, Y 〈uv>, X〉 is sub-exponential with norm
‖Y 〈uv>, X〉‖ψ1

.
√
‖Γ∗‖2F + σ2. Using concentration result in Lemma 20, we have

Pr

(∣∣∣∣∣ 1n
n∑
i=1

yi〈uv>,Xi〉

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− Ct2n

‖Γ∗‖2F + σ2

)
for sufficiently small t > 0. Note that |N1| ≤ 9p1 , |N2| ≤ 9p2 . By applying union bounds over N1

and N2, we have

Pr

(
max

u∈N1,v∈N2

1

n

n∑
i=1

yi〈uv>,Xi〉 ≥ t

)
≤ 2 · 9(p1+p2) exp

(
− Ct2n

‖Γ∗‖2F + σ2

)
.

By setting the right hand side to be δ/3, we have that if n ≥ C(p1 + p2 + log(6/δ)) for sufficiently
large C, then

U1 . (‖Γ∗‖F + σ)

√
p1 + p2 + log(6/δ)

n
(B.24)

with probability at least 1− δ/3.

Term U2. Parallel to the analysis of term U1, we have

U2 = sup
u ∈ Sp1−1

v ∈ Sp2−1

〈uv>,Γ∗〉 − 1

n

n∑
i=1

〈Xi,Γ
∗〉 · 〈uv>,Xi〉.

We construct 1/4-nets N1,N2 of Sp1−1 and Sp2−1 respectively. Then

U2 ≤
16

7
max

u∈N1,v∈N2

〈uv>,Γ∗〉 − 1

n

n∑
i=1

〈Xi,Γ
∗〉 · 〈uv>,Xi〉.

For any fixed u,v, note that {〈Xi,Γ
∗〉 · 〈uv>,Xi〉}ni=1 are n independent samples of random

variable 〈X,Γ∗〉·〈uv>, X〉where 〈X,Γ∗〉 ∼ N (0, ‖Γ∗‖2F ) and 〈uv>, X〉 ∼ N (0, 1). So 〈X,Γ∗〉·
〈uv>, X〉 is sub-exponential with norm O(‖Γ∗‖F ). Using the centering argument (Lemma 21) and
concentration result (Lemma 20), we have

Pr

(∣∣∣∣∣〈uv>,Γ∗〉 − 1

n

n∑
i=1

〈Xi,Γ
∗〉 · 〈uv>,Xi〉

∣∣∣∣∣ ≥ t
)
≤ 2 · exp

(
−C t2n

‖Γ∗‖2F

)
for sufficiently small t. Using the union bound over sets N1,N2, we conclude that when n ≥
C(p1 + p2 + log(6/δ)) for sufficiently large C, we have

U2 . ‖Γ∗‖F

√
p1 + p2 + log(6/δ)

n
(B.25)

with probability at least 1− δ/3.
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Term U3. We first have

U3 = sup
u∈Sp1−1

v∈Sp2−1

2

n

n∑
i=1

w · yi〈uv>,Xi〉 − 2E
[
w · Y 〈uv>, X〉

]
.

Similar to the analysis of the first two terms, by constructing N1,N2, we have

U3 ≤
16

7
max

u∈N1,v∈N2

2

n

n∑
i=1

w · yi〈uv>,Xi〉 − 2E
[
w · Y 〈uv>, X〉

]
.

Note that {wyi〈uv>,Xi〉}ni=1 are n independent samples of random variable wY 〈uv>, X〉 where
〈uv>, X〉 ∼ N (0, 1) andwY is sub-Gaussian with norm ‖wY ‖ψ2

.
√
‖Γ∗‖2F + σ2 since |w| ≤ 1.

We thus have wY 〈uv>, X〉 is sub-exponential with norm ‖wY 〈uv>, X〉‖ψ1
.
√
‖Γ∗‖2F + σ2.

Then following the similar steps in analyzing the first two terms, we reach the conclusion that

U3 . (‖Γ∗‖F + σ)

√
p1 + p2 + log(6/δ)

n
(B.26)

with probability at least 1− δ/3 when n & p1 + p2 + log(6/δ).

Putting (B.24), (B.25) and (B.26) together completes the proof.

Setting δ = 6 exp(−(p1 + p2)) in Lemma 12 suggests that Condition 5 holds with parameters
(∆n, r, δ) where ∆n . (‖Γ∗‖F +δ)

√
(p1 + p2)/n, δ = exp(−(p1 +p2)) and r can be any positive

number. Putting these pieces together leads to the following guarantee about low rank recovery.

Proof of Corollary 3. This result is parallel to Corollary 2 for sparse recovery thus can be proved
similarly. We omit the details.

B.3 Missing Covariate Regression

We now turn to missing covariate regression. We first reveal function QMCR
n (·|·) and QMCR(·|·).

To ease notation, we introduce vector zi ∈ {0, 1}p to indicate the positions of missing entries, i.e.,
zi,j = 1 if xi,j is missing. In this example, the E step involves computing the distribution of missing
entries given current parameter guess β. Under Gaussian design X ∼ N (0, Ip),W ∼ N (0, σ2),
given observed covariate entries (1− zi)� xi and yi, the conditional mean vector of x̃i has form

µβ(yi, zi,xi) := E[x̃i
∣∣β, yi, (1−zi)�xi] = (1−zi)�xi+

yi − 〈β, (1− zi)� xi〉
σ2 + ‖zi � β‖22

zi�β, (B.27)

and the conditional correlation matrix of x̃i has form

Σβ(yi, zi,xi) := E
[
x̃ix̃
>
i

∣∣β, yi, (1− zi)� xi
]

= µβµ
>
β + diag(zi)−

(
1

σ2 + ‖zi � β‖22

)
(zi � β)(zi � β)>. (B.28)

Consequently, Qn(·|·) corresponds to

QMCR
n (β′|β) =

1

n

n∑
i=1

〈yiµβ(yi, zi,xi),β
′〉 − 1

2
β>Σβ(yi, zi,xi)β. (B.29)

We thus have that QMCR(·|·) takes form

QMCR(β′|β) = 〈E [Y µβ(Y, Z,X)] ,β′〉 − 1

2

〈
E [Σβ(Y,Z,X)] ,ββ>

〉
. (B.30)

In particular, we let Σβ := E [Σβ(Y, Z,X)]. We first present a key result that characterizes the
spectral property of Σβ.
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Lemma 13. For Σβ, we have the following decomposition

Σβ = εIp + Σ1 −Σ2,

where

Σ1 = E
{

[(1− Z)�X + νZ � β] · [(1− Z)�X + νZ � β]
>
}
,

Σ2 = E
[

1

σ2 + ‖Z � β‖22
(Z � β)(Z � β)>

]
, ν =

Y − 〈β, (1− Z)�X〉
σ2 + ‖Z � β‖22

.

Let ζ := (1 + ω)ρ, we have

λmin(Σ1) ≥ 1− ε− 2ζ2
√
ε, (B.31)

λmax(Σ2) ≤ ζ2ε, (B.32)

λmax(Σβ) ≤ 1 + 2ζ2
√
ε+ (1 + ζ2)ζ2ε. (B.33)

In particular, let β = β∗, we have Σβ∗ = Ip.

Proof. The decomposition follows by taking expectation of (B.28). For Σ1, expanding the bracket
leads to
Σ1 = (1−ε)Ip+E

{
ν[(1− Z)�X](Z � β)> + ν(Z � β)[(1− Z)�X]>

}︸ ︷︷ ︸
M

+E
[
ν2(Z � β)(Z � β)>

]︸ ︷︷ ︸
N

.

For term M, consider its spectral norm. Since it is symmetric, we have
‖M‖2 = sup

u∈Sp−1

2 |E [ν〈Z � β,u〉 · 〈(1− Z)�X,u〉]|

= 2 sup
u∈Sp−1

∣∣∣∣E [ 1

σ2 + ‖Z � β‖2
〈(1− Z)� (β∗ − β),u〉 · 〈Z � β,u〉

]∣∣∣∣
≤ 2

1

σ2
E [‖(1− Z)� (β∗ − β)‖2‖Z � β‖2] ≤ 2

1

σ2

√
E [‖(1− Z)� (β∗ − β)‖22 · ‖Z � β‖22]

≤ 2
1

σ2

√
ε(1− ε)‖β − β∗‖2‖β‖2 ≤ 2ρ2ω(1 + ω)

√
ε(1− ε) ≤ 2ζ2

√
ε.

where the second equality follows by taking expectation of X and Gaussian noise W , the last in-
equality follows from the definitions of ω, ρ given in Section B.3. Note that N � 0. Then the lower
bound of λmin(Σ1) follows by using λmin(Σ1) ≥ 1− ε− ‖M‖2. For Σ2, we have

Σ2 = E
[

1

σ2 + ‖Z � β‖22
(Z � β)(Z � β)>

]
� 1

σ2

(
(ε− ε2)diag(β � β) + ε2ββ>

)
.

Therefore, λmax(Σ2) ≤ ζ2ε. Note that

N � 1

σ4
E
[
(Y − 〈β, (1− Z)�X〉)2(Z � β)(Z � β)>

]
=

1

σ4
E
[
(σ2 + ‖β∗ − (1− Z)� β‖22)(Z � β)(Z � β)>

]
� 1

σ4
(σ2 + ‖β∗‖22 + ‖β − β∗‖22)

(
(ε− ε2)diag(β � β) + ε2ββ>

)
.

We thus have λmax(N) ≤ 1
σ4 (σ2 + ‖β∗‖22 + ‖β−β∗‖22)ε‖β‖22 ≤ (1 + ζ2)ζ2ε. The corresponding

bound for λmax(Σβ) then follows from λmax(Σβ) ≤ 1 + λmax(M) + λmax(N).

When β = β∗, we have

EX,W (ν2) =
EX,W

[
(〈X,β∗〉+W − 〈X, (1− Z)� β∗〉)2

]
(σ2 + ‖Z � β∗‖22)2

=
1

σ2 + ‖Z � β∗‖22
and

EX,W (ν(1− Z)�X) =
E [(〈X,β∗〉+W − 〈X, (1− Z)� β∗〉)(1− Z)�X]

σ2 + ‖Z � β∗‖22

=
(1− Z)� Z � β∗

σ2 + ‖Z � β∗‖22
= 0.

Therefore, M = 0 and N = Σ2. We thus have Σβ∗ = εIp + (1− ε)Ip = Ip.
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We now turn to check technical conditions about QMCR(·|·). First,M(·) is self consistent as stated
below.

Lemma 14 (Self-consistency of MCR). Consider missing covariate regression with parameterβ∗ ∈
Rp and QMCR(·|·) given in (B.30). We have

β∗ = arg max
β∈Rp

QMCR(β|β∗).

Proof. In this example

M(β∗) = (E [Σβ∗(Y, Z,X)])
−1 E [Y µβ∗(Y,Z,X)] .

Following Lemma 13, we have Σβ∗(Y,Z,X) = Ip. Meanwhile, we have

E [Y µβ∗(Y,Z,X)] = E
[
(〈β∗, X〉+W )

(
(1− Z)�X +

〈Z � β∗, X〉+W

σ2 + ‖Z � β∗‖22
Z � β∗

)]
= E [(1− Z)� β∗ + Z � β∗] = β∗.

ThusM(β∗) = β∗.

For our analysis, we define ρ := ‖β∗‖2/σ to be the signal to noise ratio and ω := r/‖β∗‖2 to be
the relative contractivity radius. Let

ζ := (1 + ω)ρ.

Recall that ε is the missing probability of every entry. The next result characterizes the smoothness
and concavity of QMCR(·|·).

Lemma 15 (Smoothness and concavity of MCR). Consider missing covariate regression with pa-
rameter β∗ ∈ Rp and QMCR(·|·) given in (B.30). For any ω > 0, we have that QMCR(·|·) satisfies
Condition 2 with parameters (γ, µ, ω‖β∗‖2), where

γ = 1, µ = 1 + 2ζ2
√
ε+ (1 + ζ2)ζ2ε.

Proof. Following Lemma 13, we have Σβ∗ = Ip. Therefore, QMCR(·|β∗) is 1-strongly concave.
For any β ∈ B(w‖β∗‖;β∗), following (B.33), we have that QMCR(·|β) is µ-smooth with µ =
1 + 2ζ2

√
ε+ (1 + ζ2)ζ2ε.

We revisit the following result about the gradient stability from [1].

Lemma 16 (Gradient stability of MCR). Consider the missing covariate regression with β∗ ∈ Rp
and QMCR(·|·) given in (B.30). For any ω > 0, ρ > 0, QMCR(·|·) satisfies Condition 3 with
parameter (τ, ω‖β∗‖2) where

τ =
ζ2 + 2ε(1 + ζ2)2

1 + ζ2
.

Proof. See the proof of Corollary 6 in [1].

Unlike the previous two models, we require an upper bound on the signal to noise ratio. This unusual
constraint is in fact unavoidable, as pointed out in [10].

We now turn to validate the conditions on finite sample function QMCR
n (·|·). In particular, we have

the following two guarantees.

Lemma 17 (RSC of MCR). Consider missing covariate regression with any fixed parameter
β∗ ∈ B0(s; p) and QMCR

n (·|·) given in (B.29). There exist constants {Ci}3i=0 such that if
ε ≤ C0 min{1, ζ−4} and n ≥ C1(1 + ζ)8s log p, then we have QMCR

n (·|·) satisfies Condition 4
with parameters (γn,S,S, ω‖β∗‖2, δ), where

γn =
1

9
, (S,S) = (supp(β∗), supp(β∗)), δ = C2 exp(−C3n(1 + ζ)−8).
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Proof. In order to show QMCR
n (·|β) is γn-strongly concave over C(S,S;R), since QMCR

n (·|β) is
quadratic, it is then equivalent to show

1

n

n∑
i=1

u>Σβ(yi, zi,xi)u ≥ γn‖u‖22

for all u ∈ C(S,S,R). Expanding Σβ gives us

1

n

n∑
i=1

u>Σβ(yi, zi,xi)u ≥
1

n

n∑
i=1

〈µβ(yi, zi,xi),u〉2︸ ︷︷ ︸
L1

− 1

n

n∑
i=1

(
1

σ2 + ‖zi � β‖22

)
〈zi � β,u〉2︸ ︷︷ ︸

L2

.

We choose to bound each term using restricted eigenvalue argument in Lemma 23. To ease notation,
we let ν := yi−〈(1−zi)�β,xi〉

σ2+‖zi�β‖22
.

Term L1. Note that µβ(yi, zi,xi) are samples of µβ(Y,Z,X) which is zero mean sub-Gaussian
random vector with covariance matrix Σ1 given in Lemma 13. Moreover, we have λmin(Σ1) ≥
1 − ε − 2ζ2

√
ε. By restricting ε ≤ 1/4 and assuming ε ≤ Cζ−4 for sufficiently small C, we have

λmin(Σ1) ≥ 1
2 . Moreover

‖µβ(Y,Z,X)‖ψ2
. ‖(1− Z)�X‖ψ2

+ ‖νZ � β‖ψ2
. 1 + ‖νZ � β‖ψ2

.

Note that ‖νZ�β‖ψ2 = supu∈Sp−1 ‖ν〈Z�β,u〉‖ψ2 ≤ ‖β‖2·
∥∥|ν|∥∥

ψ2
≤ σ−2‖β‖2·

∥∥|W+〈X,β∗−
(1−Z)�β〉|

∥∥
ψ2

. (1 +ω)ρ+ (1 +ω)2ρ2. As ζ := (1 +ω)ρ. We thus have ‖µβ(Y,Z,X)‖ψ2
.

(1 + ζ)2. Using Lemma 23 with the substitution Σ = Σ1 and X = µβ(Y,Z,X), we claim that
there exist constants Ci such that

L1 ≥
1

4
‖u‖22 − C0(1 + ζ)8 log p

n
‖u‖21 for all u ∈ Rp. (B.34)

with probability at least 1− C1 exp(−C2n(1 + ζ)−8).

Term L2. We now turn to term L2. We introduce n i.i.d. samples {pi}ni=1 of Rademacher random
variable P with Pr(P = 1) = Pr(P = −1) = 1/2. Equivalently, we have

L2 =
1

n

n∑
i=1

1

σ2 + ‖zi � β‖22
〈pizi � β,u〉2.

Note that
√

(σ2 + ‖Z � β‖22)−1PZ�β is zero mean sub-Gaussian random vector with covariance
matrix Σ2 given in Lemma 13. Moreover, we have λmax(Σ2) ≤ ζ2ε ≤ 1/12, where the last
inequality follows by letting ε ≤ Cζ−2 for sufficiently small C. Also note that∥∥∥∥√(σ2 + ‖Z � β‖22)−1PZ � β

∥∥∥∥
ψ2

. σ−1‖Z � β‖ψ2
. ζ.

Using Lemma 23 with substitution Σ = Σ2 and X =
√

(σ2 + ‖Z � β‖22)−1PZ � β, we claim
there exists constants C ′i such that

L2 ≤
1

8
‖u‖22 + C ′0 max{ζ4, 1} log p

n
‖u‖21, for all u ∈ Rp. (B.35)

with probability at least 1− C ′1 exp(−C ′2nmin{ζ−4, 1}).

Now we put (B.34) and (B.35) together. So we obtain

1

n

n∑
i=1

u>Σβ(yi, zi,xi)u ≥
1

8
‖u‖22 − (C0 + C ′0)(1 + ζ)8 log p

n
‖u‖21.

For any u ∈ C(S,S;R), we have ‖u‖1 ≤ 5
√
s‖u‖2. Consequently, when n ≥ C(1 + ζ)8s log p for

sufficiently large C, we have that, with high probability, QMCR
n (·|β) is γn-strongly concave over C

with γn = 1/9.
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Lemma 18 (Statistical error of MCR). Consider missing covariate regression with any fixed pa-
rameter β∗ ∈ B0(s; p) and QMCR

n (·|·) given in (B.29). There exist constants C0, C1 such that if
n ≥ C0[log p+ log(24/δ)], then for any δ ∈ (0, 1) and any fixed β ∈ B(ω‖β∗‖2,β∗), we have that
for

‖∇QMCR
n (β∗|β)−QMCR(β∗|β)‖∞ ≤ C1(1 + ζ)5σ

√
log p+ log(24/δ)

n
with probability at least 1− δ.

Proof. In this example,

‖∇QMCR
n (β∗|β)−∇QMCR(β∗|β)‖R∗

≤

∥∥∥∥∥ 1

n

n∑
i=1

yiµβ(yi, zi,xi)− E [Y µβ(Y, Z,X)]

∥∥∥∥∥
∞︸ ︷︷ ︸

U1

+

∥∥∥∥∥ 1

n

n∑
i=1

Σβ(yi, zi,xi)β
∗ − E [Σβ(Y,Z,X)]β∗

∥∥∥∥∥
∞︸ ︷︷ ︸

U2

.

To ease notation, we let ν := yi−〈(1−zi)�β,xi〉
σ2+‖zi�β‖22

. Next we bound the term U1 and U2 respectively.

Term U1. Consider one coordinate of vector V := Y µβ(Y,Z,X). For any j ∈ [p], we have

Vj = Y [(1− Zj)Xj + νZjβj ].

So Vj is sub-exponential random variable since Y and (1−Zj)Xj +νZjβj are both sub-Gaussians.
Moreover, we have ‖Y ‖ψ2

. σ + ‖β∗‖2 and ‖(1 − Zj)Xj + νZjβj‖ψ2
. ‖(1 − Zj)Xj‖ψ2

+

‖νZjβj‖ψ2 . 1 + σ−2(σ +
√

1 + ω2‖β∗‖2)‖β‖2. The last inequality follows from the fact that ν
is sub-Gaussian with ‖ν‖ψ2

. σ−2(σ+
√

1 + ω2‖β∗‖2). We have ‖Vi‖ψ1
. ‖Y ‖ψ2

·‖(1−Zj)Xj+
νZjβj‖ψ2 . (1 + ζ)3σ, where ζ := (1 +ω)ρ. By concentration result of sub-exponentials (Lemma
20) and applying union bound, we have that there exists constant C such that for t . (1 + ζ)3σ,

Pr(U1 ≥ t) ≤ pe · exp(− Cnt2

(1 + ζ)6σ2
).

Setting the right hand side to be δ/2 implies that for n & log p+ log(2e/δ),

U1 . (1 + ζ)3σ

√
log p+ log(2e/δ)

n
(B.36)

with probability at least 1− δ/2.

Term U2. Term U2 can be further decomposed into several terms as follows

U2 ≤ ‖a1‖∞ + ‖a2‖∞ + ‖a3‖∞ + ‖a4‖∞ + σ−2‖a5‖∞ + ‖a6‖∞,
where

a1 =
1

n

n∑
i=1

〈
(1− zi)� xi,β

∗〉(1− zi)� xi − E
[〈

(1− Z)�X,β∗
〉
(1− Z)�X

]
,

a2 =
1

n

n∑
i=1

〈
νzi � β,β∗

〉
(1− zi)� xi − E

[〈
νZ � β,β∗

〉
(1− Z)�X

]
,

a3 =
1

n

n∑
i=1

〈
(1− zi)� xi,β

∗〉νzi � β − E
[〈

(1− Z)�X,β∗
〉
νZ � β

]
,

a4 =
1

n

n∑
i=1

ν2〈zi � β,β∗〉zi � β − E
[
ν2〈Z � β,β∗〉Z � β

]
,

a5 =
1

n

n∑
i=1

〈
zi � β,β∗

〉
zi � β − E

[〈
Z � β,β∗

〉
Z � β

]
, a6 =

1

n

n∑
i=1

diag(zi)β
∗ − εβ∗.

The key idea to bound the infinite norm of each term ai is the same: showing that each coordinate is
finite summation of independent sub-Gaussian (or sub-exponential) random variables and applying
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concentration result and probabilistic union bound. For each term ai, i = 1, 2, . . . , 6, we have that
for any j ∈ [p],

‖
〈
(1− Z)�X,β∗

〉
(1− Zj)�Xj‖ψ1

. ‖β∗‖2, ‖
〈
νZ � β,β∗

〉
(1− Zj)�Xj‖ψ1

. σ(1 + ζ)ζ2,

‖
〈
(1− Z)�X,β∗

〉
νZjβj‖ψ1

. σ(1 + ζ)ζ2, ‖ν2〈Z � β,β∗〉Zjβj‖ψ1
. σ(1 + ζ2)ζ3,

σ−2‖
〈
Z � β,β∗

〉
Zj � βj‖ψ2

. σζ3, ‖εβ∗j ‖ψ2
. ε‖β∗‖∞

respectively. For simplicity, we treat coordinates of every ai as finite sum of sub-exponentials with
ψ1 norm O(σ(1 + ζ)5). Consequently, by concentration result in Lemma 20, there exists constant
C such that

Pr(U2 ≥ t) ≤ 12p · exp

(
− Cnt2

σ2(1 + ζ)10

)
for t . σ(1 + ζ)5. By setting the right hand side to be δ/2 in the above inequality, we have that
when n & log p+ log(24/δ),

U2 . σ(1 + ζ)5

√
log p+ log(24/δ)

n
. (B.37)

with probability at least 1− δ/2.

Finally, putting (B.36) and (B.37) together completes the proof.

By setting δ = 1/p in Lemma 18 immediately implies thatQMCR
n satisfies Condition 5 with param-

eters ∆n = O
(

(1 + ζ)5σ
√

log p/n
)

, r = ω‖β∗‖2 and δ = 1/p.

Putting together all the pieces leads to the following guarantee about resampling version of regular-
ized EM on missing covariate regression.

Proof of Corollary 4. Following Theorem 1, we have κ∗ = 5 αµτ
γγn/T

. For `2 norm, α = 1. Based on
Lemma 17, we have γn = 1/9. Following Lemma 15 and 16, we have γ = 1 and can always find
sufficiently small constants C0, C1 such that µ ≤ 10/9 and τ ≤ 1/100. We thus obtain κ∗ ≤ 1/2.
From Lemma 18, one can check ∆ > 3∆n/T under suitable C. We choose n/T & σ2(ωρ)−1s log p

to make sure ∆ ≤ 3∆. With these conditions in hand, direct applying Theorem 1 completes the
proof.

C Supporting Lemmas

Lemma 19. Suppose X1, X2, . . . , Xn are n i.i.d. centered sub-Gaussian random variables with
Orlicz norm ‖X1‖ψ2 ≤ K. Then for every t ≥ 0, we have

Pr

(∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣ ≥ t
)
≤ e · exp

(
−Cnt

2

K2

)
,

where C is an absolute constant.

Proof. See the proof of Proposition 5.10 in [18].

Lemma 20. Suppose X1, X2, . . . , Xn are n i.i.d. centered sub-exponential random variables with
Orlicz norm ‖X1‖ψ1

≤ K. Then for every t > 0, we have

Pr

(∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣ ≥ t
)
≤ 2 · exp

(
−C min

{
t2

K2
,
t

K

}
n

)
,

where C is an absolute constant.

Proof. See the proof of Corollary 5.7 in [18].
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Lemma 21. Let X be sub-Gaussian random variable and Y be sub-exponential random variable.
Then X − E[X] is also sub-Gaussian; Y − E[Y ] is also sub-exponential. Moreover, we have

‖X − E[X]‖ψ2
≤ 2‖X‖ψ2

, ‖Y − E[Y ]‖ψ1
≤ 2‖Y ‖ψ1

.

Proof. See Remark 5.18 in [18].

Lemma 22. Let X,Y be two sub-Gaussian random variables. Then Z = X · Y is sub-exponential
random variable. Moreover, there exits constant C such that

‖Z‖ψ1 ≤ C‖X‖ψ2 · ‖Y ‖ψ2 .

Proof. It follows from the basic properties. We omit the details.

Lemma 23. Let matrix X be an n-by-p random matrix with i.i.d. rows drawn from X , which
is zero mean sub-Gaussian random vector with ‖X‖ψ2 ≤ K and covariance matrix Σ. We let
λ1 := λmin(Σ), λp := λmax(Σ).

(1) There exist constants Ci such that

1

n
‖Xu‖22 ≥

λ1

2
‖u‖22 − C0λ1 max

{
K4

λ2
1

, 1

}
log p

n
‖u‖21, for all u ∈ Rp,

with probability at least 1− C1 exp
(
−C2nmin

{
λ2
1

K4 , 1
})

.

(2) In Parallel, there exist constants C ′i such that

1

n
‖Xu‖22 ≤

3λp
2
‖u‖22 + C ′0λp max

{
K4

λ2
p

, 1

}
log p

n
‖u‖21, for all u ∈ Rp,

with probability at least 1− C ′1 exp
(
−C ′2nmin

{
λ2
p

K4 , 1
})

.

Proof. It follows by putting Lemma 12 and Lemma 15 in [9] together.

Lemma 24. Let X1 and X2 be independent random variables with distribution N (0, 1). For any
positive constant C > 0, let event E := {C · |X2| ≥ |X1|}. Then we have

(a)

E
[
|X1|

∣∣ E] · Pr(E) =

√
2

π

[
1−

√
1

C2 + 1

]
.

(b)

E
[
|X2|

∣∣ E] · Pr(E) =

√
2

π

C√
1 + C2

.

(c)

E
[
|X1X2|

∣∣ E] · Pr(E) =
2C2

π(1 + C2)
.

Proof. (a)

E
[
|X1|

∣∣ E] · Pr(E) = 4 ·
∫ ∞

0

∫ uC

0

1

2π
exp(−1

2
v2) exp(−u

2

2
)vdvdu =

√
2

π

[
1−

√
1

C2 + 1

]
.

(b)

E
[
|X2|

∣∣ E] · Pr(E) = 4 ·
∫ ∞

0

∫ ∞
v/C

1

2π
exp(−1

2
v2) exp(−u

2

2
)ududv =

√
2

π

C√
1 + C2

.
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(c)

E
[
|X1X2|

∣∣ E] · Pr(E) = 4 ·
∫ ∞

0

∫ ∞
v/C

1

2π
exp(−u

2

2
) exp(−v

2

2
)uvdudv

=
2

π

∫ ∞
0

exp(−C
2 + 1

2
v2)vdv =

2C2

π(1 + C2)
.

Lemma 25. Let X ∼ N (0, σ2) and Z be Rademacher random variable taking values in {−1, 1}.
Moreover, X and Z are independent. Function f(x, z; a, γ) is defined as

f(x, z; a, γ) =
x+ az

1 + exp(− 2(1+γ)
σ2 a(x+ az))

.

Then for any a ∈ R, γ ∈ R, we have∣∣∣E [f(X,Z; a, γ)]− a

2

∣∣∣ ≤ min

{
1

2
|aγ| exp(

γ2a2 − a2

2σ2
),

σ√
2π

+ |a|
}
.

In the special case γ = 0, we have E [f(X,Z; a, γ)] = a/2.

Proof. First note that

E [f(X,Z; a, γ)] =
1

2
E

[
X + a

1 + exp(− 2(1+γ)
σ2 a(X + a))

+
X − a

1 + exp(− 2(1+γ)
σ2 a(X − a))

]

=
1

2
E

[
X + a

1 + exp(− 2(1+γ)
σ2 a(X + a))

+
−X − a

1 + exp(− 2(1+γ)
σ2 a(−X − a))

]
,

where the first equality is from taking expectation of Z, the second equality is from the fact that the
distribution of X is symmetric around 0. Let X ′ = X + a, then we have

E [f(X,Z; a, γ)] =
1

2
E

[
X ′

1 + exp(− 2(1+γ)
σ2 aX ′)

+
−X ′

1 + exp( 2(1+γ)
σ2 aX ′)

]

=
1

2
E

[
X ′ − 2

exp(− 2(1+γ)
σ2 aX ′)X ′

1 + exp(− 2(1+γ)
σ2 aX ′)

]
.

Using E [X ′] = a, we have

E [f(X,Z; a, γ)]− a/2 = E

[
−

exp(− 2(1+γ)
σ2 aX ′)X ′

1 + exp(− 2(1+γ)
σ2 aX ′)

]

=

∫ ∞
−∞

exp(− (x−a)2

2σ2 )
√

2πσ

− exp(− 2(1+γ)
σ2 ax)x

1 + exp(− 2(1+γ)
σ2 ax)

dx =

∫ ∞
−∞

exp(−x
2+a2

2σ2 )x
√

2πσ

− exp(−γaxσ2 )

exp(a(1+γ)x
σ2 ) + exp(−a(1+γ)x

σ2 )
dx

=

∫ ∞
0

exp(−x
2+a2

2σ2 )x
√

2πσ

exp(γaxσ2 )− exp(−γaxσ2 )

exp(a(1+γ)x
σ2 ) + exp(−a(1+γ)x

σ2 )
dx (C.1)

When aγ ≥ 0, we have E [f(X,Z; a, γ)]− a/2 ≥ 0. Under this setting, (C.1) yields that

E [f(X,Z; a, γ)]− a/2 ≤
∫ ∞

0

exp(−x
2+a2

2σ2 )x

2
√

2πσ

[
exp(

γax

σ2
)− exp(−γax

σ2
)
]

dx

=
1

2
exp(

γ2a2 − a2

2σ2
)

∫ ∞
0

1√
2πσ

[
exp

(
− (x− γa)2

2σ2

)
− exp

(
− (x+ γa)2

2σ2

)]
xdx

=
1

2
exp(

γ2a2 − a2

2σ2
)

∫ ∞
−∞

1√
2πσ

exp

(
− (x− γa)2

2σ2

)
xdx =

1

2
exp(

γ2a2 − a2

2σ2
)γa,
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GMM MLR(sparse) MLR(low rank) MCR

∆ 0.1(‖β∗‖∞ + σ)
√

log p
n 0.1(‖β∗‖2 + σ)

√
log p
n 0.01(‖Γ∗‖F + σ)

√
p1+p2
n 0.2σ

√
log p
n

Table 1: Choice of parameter ∆ in Algorithm 1.

where the first inequality follows from the fact that x+ 1/x ≥ 2 for any x > 0, the second equality
is from

−
∫ ∞

0

exp

(
− (x+ γa)2

2σ2

)
xdx =

∫ 0

−∞
exp

(
− (x− γa)2

2σ2

)
xdx.

When aγ ≤ 0, using similar proof, we have 1
2 exp(γ

2a2−a2
2σ2 )γa ≤ E [f(X,Z; a, γ)] − a/2 ≤ 0.

Combining the two cases, we prove that∣∣E [f(X,Z; a, γ)]− a/2
∣∣ ≤ 1

2
|aγ| exp(

γ2a2 − a2

2σ2
). (C.2)

In the special case when γ = 0, we thus have E(f(X,Z; a, γ)) = a/2.

Note that when aγ ≥ 0, (C.1) also implies that

E [f(X,Z; a, γ)]− a/2 ≤
∫ ∞

0

exp(−x
2+a2

2σ2 )x
√

2πσ

exp(γaxσ2 )

exp(a(1+γ)x
σ2 )

dx =

∫ ∞
0

exp(− (x+a)2

2σ2 )x
√

2πσ
dx

=

∫ ∞
0

exp(− (x+a)2

2σ2 )(x+ a)
√

2πσ
dx−

∫ ∞
0

exp(− (x+a)2

2σ2 )a
√

2πσ
dx ≤ σ√

2π
+ |a|.

Similarly, when aγ ≤ 0, we have

E [f(X,Z; a, γ)]− a/2 ≥
∫ ∞

0

exp(−x
2+a2

2σ2 )x
√

2πσ

− exp(−γaxσ2 )

exp(−a(1+γ)x
σ2 )

dx = −
∫ ∞

0

exp(− (x−a)2

2σ2 )x
√

2πσ
dx

= −
∫ ∞

0

exp(− (x−a)2

2σ2 )(x− a)
√

2πσ
dx−

∫ ∞
0

exp(− (x−a)2

2σ2 )a
√

2πσ
dx ≥ − σ√

2π
− |a|.

Therefore, we have that ∣∣E [f(X,Z; a, γ)]− a/2
∣∣ ≤ σ√

2π
+ |a|. (C.3)

Putting (C.2) and (C.3) together completes the proof.

D Additional Experiment Setting

In our simulations, parameter ∆ for each model is set according to Table 1.
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