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Approximating Fluid Schedules in Crossbar
Packet-Switches and Banyan Networks
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Abstract—We consider a problem motivated by the desire to
provide flexible, rate-based, quality of service guarantees for
packets sent over input queued switches and switch networks. Our
focus is solving a type of online traffic scheduling problem, whose
input at each time step is a set of desired traffic rates through the
switch network. These traffic rates in general cannot be exactly
achieved since they assume arbitrarily small fractions of packets
can be transmitted at each time step. The goal of the traffic
scheduling problem is to closely approximate the given sequence
of traffic rates by a sequence of transmissions in which only whole
packets are sent. We prove worst-case bounds on the additional
buffer use, which we call backlog, that results from using such an
approximation.

We first consider the , input queued, crossbar switch.
Our main result is an online packet-scheduling algorithm using no
speedup that guarantees backlog at most ( +1)2 4 packets at
each input port and each output port. Upper bounds on worst-case
backlog have been proved for the case of constant fluid schedules,
such as the 2 2 + 2 bound of Chang, Chen, and Huang
(INFOCOM, 2000). Our main result for the crossbar switch is the
first, to our knowledge, to bound backlog in terms of switch size
for arbitrary, time-varying fluid schedules, without using speedup.

Our main result for Banyan networks is an exact characteriza-
tion of the speedup required to maintain bounded backlog, in terms
of polytopes derived from the network topology.

Index Terms—Combinatorics, graph theory, network calculus,
packet-switching, scheduling.
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I. INTRODUCTION

I N OUR APPROACH to packet-scheduling, the designer first
ignores the packet nature of traffic and constructs a schedule

under the assumption that packets can be broken into arbitrarily
small pieces and sent at different time slots (as in [1]–[15]).
This schedule is referred to as a fluid policy. Next, the designer
constructs a packetized policy, which approximates the behavior
of the fluid policy in order to send packet data.

We define a metric, called backlog, that measures the gap
in cumulative service between the fluid policy and the packe-
tized policy. This metric is similar to those used in [5], [10],
[11]. Our bounds on backlog depend on the speedup used by
a packet-scheduling algorithm, that is, the ratio of the rate at
which the packetized policy sends packets to the rate at which
the fluid policy sends fractional packets. Our goal is to find on-
line, packet-scheduling algorithms using the minimum possible
speedup that guarantee bounded backlog for any fluid policy.

Other approaches to scheduling are also possible. Much anal-
ysis has been done in models where the input traffic is assumed
to have certain statistical properties (e.g., [16]–[19]). In such
models, it is often shown that the queue lengths, considered as
a stochastic process, converge to a limiting distribution with
finite expectation. The bounds we obtain, however, are more
robust in that the arrival process is not assumed to have any
statistical properties; we treat the fluid policy as adversarial,
and derive worst-case guarantees on backlog. Other works ana-
lyzing switch scheduling from an adversarial standpoint include
[1]–[7], [9]–[14], [20]–[24].

Our bounds on backlog are not asymptotic; they apply to all
switch sizes and to time increments of any finite duration. Fur-
thermore, our bounds not only apply to constant fluid policies
(that is fluid policies that schedule the same set of fractional
packets at each time step), but apply to arbitrary, time-varying
fluid policies. Our upper bounds on backlog hold when packet-
scheduling algorithms must decide which packets to transmit at
each time step with no knowledge of the future fluid schedule.

Kam and Siu [10], using a traffic model equivalent to ours,
give a packet-scheduling algorithm for the input queued,
crossbar switch using speedup 2 that guarantees bounded
backlog for any fluid policy. Their proof technique does not
extend to the case of no speedup; they underscore “the unavail-
ability of combinatorial proof techniques for our no-speedup
scenario.” [10]. Our main result for the input queued, crossbar
switch is a combinatorial proof that worst-case backlog can
be kept bounded using no speedup. To our knowledge, this is
the first packet-scheduling algorithm using no speedup that
has been shown to maintain bounded backlog for arbitrary,
time-varying fluid policies on the input queued, crossbar switch.
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After analyzing the single, input queued, crossbar switch, we
turn to a class of multistage switch networks called Banyan net-
works. Banyan networks have been studied extensively in the lit-
erature due to their parallel capacity, modularity, expandability,
and because they lend themselves to efficient implementation
(see for instance, [25], [26], and references therein). We first
prove that when no speedup is used, bounded backlog results
such as those we give for the crossbar switch do not exist for
arbitrary switch networks or even for 4 4 Banyan networks.
However, if the packet-scheduling algorithm is allowed to use
enough speedup, it can maintain bounded backlog. We prove
that if speedup is sufficient to maintain bounded backlog for
any constant fluid policy, then speedup is also sufficient to
maintain bounded backlog for any time-varying fluid policy.
For the Banyan network, we give an exact characteriza-
tion of the necessary and sufficient speedup to maintain bounded
backlog for any fluid policy, in terms of polytopes derived from
the topology of Banyan networks. Using this characterization,
we calculate this necessary and sufficient speedup for 4 4 and
8 8 Banyan networks. We then use it to compute upper bounds
on this necessary and sufficient speedup for the Banyan
network, and give a polynomial-time packet-scheduling algo-
rithm that guarantees these bounds.

The layout of this work is as follows. In Section II, we
present results from related work. We specify the traffic model
in Section III. In Section IV, worst-case backlog for the ,
input queued, crossbar switch is analyzed. We turn our attention
to Banyan networks starting with Section V, which gives a
summary of our results for these networks. In Section VI,
we define and discuss the structure of Banyan networks. In
Section VII, we prove that even for 4 4 Banyan networks
for the simple case of a constant fluid policy, it is not possible
to maintain bounded backlog using no speedup. This moti-
vates our analyzing the necessary and sufficient speedup for
maintaining bounded backlog in Sections VIII–X. Section XI
summarizes our results and gives directions for future research.

II. RELATED WORK

A number of authors have worked on the problem of approx-
imating fluid schedules for the , input queued, crossbar
switch with virtual output queueing (which is defined in the next
section). Chang, Chen, and Huang [1] present a packet-sched-
uling algorithm that guarantees backlog at most

for any constant fluid policy. This algorithm is based on a
Birkhoff–von Neumann decomposition of the rate matrix of the
constant fluid policy; the decomposition is a weighted sum of
permutation matrices,1 each representing a set of packets that
can be simultaneously transmitted in one time step. The algo-
rithm schedules each such permutation matrix with frequency
according to its weight in the decomposition. The algorithm re-
quires initial run-time to compute the decomposition,
and online run-time to determine which element of
the decomposition to schedule at each time step, for the ,
input queued, crossbar switch. In contrast, our upper bounds on
worst-case backlog given in Section IV-B are tighter for ,
and apply to the more general case of time-varying fluid policies

1A permutation matrix is an N �N , {0,1}-valued matrix with a single 1 in
each row and in each column.

for which the packet scheduling algorithm only knows the fluid
policy up to the current time step; that is, we assume the algo-
rithm has no knowledge of the future desired traffic rates in de-
ciding which packets to schedule at each time step. In this case,
it is not possible to compute a schedule for all time steps in ad-
vance, and so our packet-scheduling algorithm in Section IV-B
does most of its work online; the online run-time of our algo-
rithm is to compute which packets are sent at each time
step. In [27], we give a modified version of this algorithm with
online run-time . This is, up to a constant factor, the same
as the time required to read all components of a (time-varying)
fluid matrix.

If a packet-scheduling algorithm, given any fluid policy as
input, outputs a packetized policy with backlog less than 1 at
all time steps, we say the algorithm tracks, as in [15]. Charny
[5] gives a simple packet-scheduling algorithm using speedup 6
that tracks any constant fluid policy.2 In Section IV, we discuss
how worst-case backlog for time-varying fluid policies can be
significantly greater than that for constant fluid policies.

Tabatabaee, Georgiadis, and Tassiulas [15] consider the
problem of tracking arbitrary fluid policies on the ,
input queued, crossbar switch. They attempt to characterize for
which there exist packet-scheduling algorithms that track.
They prove that any fluid policy for the 2 2, input queued,
crossbar switch can be tracked, and propose several heuristics
for approximating fluid policies by packetized policies on
larger switches. Bonuccelli and Clo [4] construct a constant
fluid policy for the 4 4, input queued, crossbar switch that
cannot be tracked. This untrackable fluid policy can be extended
to larger switch sizes.

Kam and Siu [10] provide bounds on worst-case backlog for
time-varying fluid policies on the , input queued, crossbar
switch, when speedup at least 2 is used. They formulate a credit-
based system, which is equivalent to the model used here, and
in which each input port, output port pair receives a fractional
credit (which corresponds to fluid in our model) at each time
step based on a (possibly time-varying) service contract. They
present an algorithm for determining which packets to send
based on outstanding credits (which correspond to backlog in
our model); their algorithm is based on finding a stable mar-
riage matching. They show that outstanding credit can be kept
bounded in the worst-case when speedup at least 2 is used; as
noted above, their proof technique does not extend to the case
of no speedup.

Using a credit-based model similar to that used by Kam and
Siu [10], Koksal [11] bounds backlog on the , input
queued, crossbar switch (called “service lag” in his work) when
speedup is strictly greater than 1; these upper bounds tend to in-
finity as speedup approaches 1.

III. TRAFFIC MODEL AND DEFINITIONS

A. Transmission Constraints

We define the transmission constraints for the input queued,
crossbar switch and for Banyan networks. All packets are as-
sumed to have the same size. Time is considered discrete, and

2Due to a small difference in the model used by Charny and that used here,
her result holds in our model using constant speedup slightly larger than 6.
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Fig. 1. A 4 � 4, input queued, crossbar switch. Each input port has 4 virtual
output queues, one corresponding to each output port.

Fig. 2. A 16 � 16 Banyan network.

is normalized so that the data rate (capacity) of any input or
output port is one packet per time step. On the , input
queued, crossbar switch, one can send, in one time step, packets
from any of the input ports to any of the output ports. The
only constraints are that in one time step, at most one packet
can leave a single input port, and at most one packet can arrive
at a single output port. Virtual output queueing is used to avoid
head-of-line blocking; that is, a packet arriving at any input port
is placed in one of the separate queues at that input port,
depending on the packet’s destination output port (see [15] for
more details). Fig. 1 is a diagram of a 4 4, input queued,
crossbar switch with virtual output queueing. We refer to input
queued, crossbar switches simply as crossbar switches. In this
paper, the only type of crossbar switch we analyze is ;
however, we use a result for switches in Section IV in
proving a lower bound on backlog for the crossbar
switch.

A Banyan network is a set of switch elements, that is, 2 2
crossbar switches, interconnected by links, with a structure de-
fined in Section VI. Banyan networks are layered networks, that
is, the set of switch elements in a Banyan network can be par-
titioned into stages such that for , any
outgoing link from a switch element in stage connects to a

switch element in stage . Incoming links to are called
input ports and outgoing links from are called output ports.
Fig. 2 depicts a 16 16 Banyan network, which has four stages.

One property of Banyan networks is that each input port,
output port pair (which we simply refer to as an input, output
pair), is connected by a unique path through the network [25].
We refer to this as the unique-path property.3 We consider
Banyan networks with virtual output queueing at each input
port, but with no queueing between stages and for

. Each link has unit capacity. Since we do not allow
packets to be dropped, if input port is transmitting a packet to
output port , then any input, output pair whose (unique)
path shares at least one link with the path from to is blocked
from transmitting a packet at the same time.

B. Fluid Policies, Packetized Policies, Backlog, and Speedup

We now define fluid policies, packetized policies, backlog,
and speedup for the crossbar switch and for Banyan
networks. A fluid policy represents the ideal, packet-scheduling
behavior.

A fluid policy for the crossbar switch or for the
Banyan network is a sequence of fractional packet transmis-
sions in which the sum traversing each link is at most one at
each time step. It is represented by a sequence of non-nega-
tive-valued, , fluid matrices , where rep-
resents the fraction of a packet sent from input port at time step

with output port as its destination. For the crossbar switch,
each fluid matrix must satisfy the constraint that each row sum
(corresponding to the total fluid using each input port) and each
column sum (corresponding to the total fluid using each output
port) is at most 1;4 an example is given in Fig. 3. This constraint
is equivalent to the no overbooking constraint in [1] and to the
constraint defining feasible rates in [5]. In contrast to a single
crossbar switch, for a Banyan network each fluid matrix must
satisfy a stricter set of constraints due to the potential for internal
packet collisions, as we discuss in Section VI-B below. In gen-
eral, we call a non-negative-valued, matrix a valid fluid
matrix if for the corresponding, fractional packet transmissions,
the sum traversing each link is at most one. Note that by defi-
nition a fluid policy is represented by a sequence of valid fluid
matrices. We next define a packetized policy, which should ap-
proximate a given fluid policy.

A packetized policy for the crossbar switch or for the
Banyan network is a sequence of whole packet trans-

missions in which at most one packet traverses each link at each
time step. It is represented by a sequence of {0,1}-valued,

, packetized matrices , where is 1 if a packet
is transmitted from input port at time step with output port
as its destination. For the crossbar switch, each packetized ma-
trix must satisfy the constraint that there is at most a single entry
with value 1 in each row and in each column; a {0,1}-valued ma-
trix satisfying this constraint is called a sub-permutation matrix.

3The unique-path property can be proven by induction on the number of
stages in the Banyan network, using the recursive structure given in Section VI.

4A non-negative-valued matrix is called doubly sub-stochastic if all its row
sums and column sums are�1. If the row sums and column sums all equal one,
the matrix is called doubly stochastic.
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Fig. 3. Three time steps of a fluid policy (first column), packetized policy (second column), and their cumulative differences (third column). At time step 3, the
backlog at input ports 1,2,3,4 (corresponding to the rows ofC ) is 1,1/2,1/2,1 respectively. Note that any packet-scheduling algorithm, given the fluid steps above
and having already set P and P (2) as above, cannot set P to be a (full) permutation matrix. This follows from the requirement that a packet-scheduling
algorithm can only send a packet from input port i to output port j at time t if C + F > 0.

In general, we call a {0,1}-valued, matrix a valid pack-
etized matrix if for the corresponding packet transmissions, at
most one packet traverses each link.

It is convenient to record, for each input port and output
port , the difference between the cumulative number of frac-
tional packets scheduled by the fluid policy up to and including
time , and the cumulative number of whole packets sent by
the packetized policy up to and including time . This informa-
tion is stored in the , cumulative difference matrix ,
for . In particular, , the all zero matrix, and

for . For time step , and
for a set of input, output pairs, we define their backlog to be the
sum of corresponding entries in .5

We define a packet-scheduling algorithm to be a determin-
istic, online algorithm that at each time step , given fluid ma-
trices , outputs a packetized matrix . We
require that for a packet-scheduling algorithm to send a packet
from input port at time with output port as its destination
(that is, for it to set ), we must have .
This ensures that all entries of the cumulative difference matrix

are greater than 1, so that for each input, output pair the
packetized policy never gets more than one packet ahead of the
fluid policy.6

We say a packet-scheduling algorithm maintains backlog at
most per input port if in each row of , the sum of entries
is at most at each time step . Similarly, we say a packet-
scheduling algorithm maintains backlog at most per output
port if in each column of , the sum of entries is at most

at each time step .
In general, a scheduler having speedup means that packets

can be sent across the switch fabric times as fast as the line
rates at the input ports, as in [5], [10], [11], [16]. In our model,

5The positive part of a matrix M is denoted M , where M :=
maxfM ; 0g.

6See Bennett and Zhang [3] for a discussion of the importance of this con-
straint in the context of Generalized Processor Sharing.

we let speedup represent the ratio of the rate at which the pack-
etized policy is allowed to send packets to the rate at which
the fluid policy is allowed to send fractional packets. We model
speedup by requiring that in a single time step, the sum of
total fluid traversing each link can be at most ; the constraint
on the packetized policy that at most one packet can traverse
each link per time step remains unchanged. We say that an al-
gorithm uses no speedup if . Intuitively, speedup means
that the desired rates reflected in the fluid schedule, which the
packetized policy should emulate, use at most of any link’s
capacity; thus, with speedup, it is easier for the packet-sched-
uler to keep backlog bounded. We show in Section VII that
even for some simple network topologies, no packet-scheduling
algorithm can maintain bounded backlog for all fluid policies
without using speedup.

We say speedup is sufficient for maintaining bounded
backlog if there exists a packet-scheduling algorithm using
speedup that maintains bounded backlog for all fluid poli-
cies. Similarly, we say speedup is necessary for maintaining
bounded backlog if every packet-scheduling algorithm that
maintains bounded backlog for every fluid policy uses speedup
at least .

IV. BOUNDS ON BACKLOG FOR THE CROSSBAR SWITCH

A. A Lower Bound on Backlog for the Crossbar Switch

We prove below that no packet-scheduling algorithm can
maintain backlog at most per input port (or
per output port) for every fluid policy, without using speedup;
similarly, no packet-scheduling algorithm can maintain backlog
at most for each input, output pair, for every fluid
policy, without using speedup. We use a construction given
independently by Adler et al. [2] and Rosenblum et al. [28] for
the switch to prove these results.

Let denote the th harmonic number; that is, ,
and for , we have . In [2] and [28], for
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any packet-scheduling algorithm on the crossbar switch
using no speedup, a construction is given of a time-varying fluid
policy such that for any , there exists a set of

input ports that by time step has backlog at least
. This latter term can be approximated using the following

fact, proved in Appendix A of [27]: For all ,
1) .
2) .

Thus, in the construction from [2], [28], by time step the
backlog of the set of all input ports is more than ;
also, at time step there is an input port with backlog more
than .

We can adapt this construction to the crossbar switch,
by treating a particular column of each fluid matrix as
a fluid policy on the crossbar switch, and by similarly
treating this column of each packetized matrix. This is possible
since an matrix is a valid fluid matrix for the
crossbar switch if and only if each column is a valid fluid matrix
for the crossbar switch and each row is a valid fluid matrix
for the crossbar switch; the analogous statement holds for
valid packetized matrices. Translating the bounds on backlog
from this adapted construction gives the theorem below.

Theorem 1: For the crossbar switch, for every packet-
scheduling algorithm using no speedup, for any output port ,
one can construct a time-varying fluid policy such that by time
step , the backlog of output port is more than ;
also, at time step , for some input port , the pair has
backlog more than .

Worst-case backlog for time-varying fluid policies can be sig-
nificantly greater than that for constant fluid policies. An exten-
sion of the theorem above (which follows from Theorem 2 in
[27]) is that for any packet-scheduling algorithm using speedup

on the crossbar switch, there exists a time-varying
fluid policy causing some input, output pair to have backlog
more than . This is in stark contrast with
Charny’s result [5], in which a simple packet-scheduling al-
gorithm using speedup 6 is shown to track (that is, maintain
backlog less than 1 for each input, output pair), given any con-
stant fluid policy on the crossbar switch.

B. An Upper Bound on Backlog for the Crossbar
Switch

Our main result for crossbar switches is the following the-
orem.

Theorem 2: Packet-scheduling Algorithm 1 below, given any
time-varying, fluid policy, builds a packetized policy that main-
tains backlog at most per input port and per
output port for the crossbar switch. The algorithm uses
no speedup.

Algorithm 1: The algorithm builds a packetized policy
from a given fluid policy . At each time

step the algorithm has access to fluid matrices
and must output packetized matrix . Below we describe
iteration , for , in which the algorithm computes
packetized matrix based on and . We set

, , and for clarity of
exposition. The algorithm maintains the following invariant for
all time steps :

Invariant 1: For all , the sum of positive entries in any row
or column of is at most .

There are three main steps in the packet-scheduling algo-
rithm. First, the algorithm dominates7 by a matrix
with non-negative entries and with all row sums and column
sums equal to exactly . Next, it finds a permutation
matrix dominated by the matrix which is defined as

if
otherwise.

Lastly, the packetized matrix is set to be the sub-permutation
matrix defined as

if
otherwise.

The lemma below shows how the first step of the algorithm
is computed.

Lemma 1: One can dominate any , doubly sub-sto-
chastic matrix by a doubly stochastic matrix in time .

Proof: The above lemma follows since for any given
doubly sub-stochastic matrix that is not doubly stochastic, there
must be a row and a column with sums strictly less than 1. One
can then augment the entry in such a row and column until
either the row sum or the column sum equals one. The process
can be repeated (at most times) until one has a doubly
stochastic matrix.

We defer the proof that Algorithm 1 is well-defined and sat-
isfies Invariant 1, which implies Theorem 2, to Appendix I. The
proof relies on a lemma, which we prove and discuss here, since
it is the main combinatorial result underpinning Theorem 2.

Lemma 2: For odd, for any , and for
any non-negative-valued, matrix with row sums and
column sums equal to , there exists a permutation matrix
dominated by ; for even, the previous sentence is true for
any .

The above statement is tight in that for odd, for any non-
negative (and for even, for any non-negative

), there exists a non-negative-valued,
matrix with row sums and column sums equal to that does not
dominate any permutation matrix.

Proof: Assume the claim were false, that is, that there were
some non-negative-valued, matrix with row sums and
column sums equal to such that for any permutation, there is at
least one corresponding entry in with value less than 1. Define
the bipartite graph in which is the set of
rows of , is the set of columns of , and the set of edges is
defined as . Our assumption
means that there are no perfect matchings8 in . Thus, by Hall’s
Matching Theorem9 [29], for some there is a
set of rows and a set of columns, such that
for any entry with and , .

7Matrix D dominates matrix D if for all i; j , we have D � D .
8A perfect matching is a set of vertex-disjoint edges that covers all the ver-

tices.
9Consider a bipartite graph G = (V ; V ; E) with jV j = jV j. For a subset

of nodes V � V , letN(V ) denote the neighborhood of V , that is, the subset of
nodes inV that are adjacent to at least one node inV . Hall’s Matching Theorem
states that a perfect matching exists in G if and only if for each subset V � V ,
we have jV j � jN(V )j.
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We can thus reorder the rows and columns so that the matrix

consists of four blocks: , where each entry of

has value less than 1, and is of dimension
.10 Now, since each row sum equals , the sum of entries

in block is strictly greater than .
Thus, there must be some column among the last with
sum strictly greater than . But
since for any value of , ,
the sum of entries in such a column is strictly greater than

a contradiction, proving the lemma. Note that for even, we
can get the slightly better bound that

. This implies that for even, the lemma holds for any
.

We now prove the first statement of the lemma is tight in the
sense described above. For odd, let , and
define the matrix with block structure as above and with each
entry in having value , each entry in

and having value , and each entry in
having value 0. Since any permutation matrix must have value 1
at some entry in the block , the matrix does not dominate
any permutation matrix. For even, instead let ,
and define the matrix with block structure as above and with
each entry in having value , each
entry in having value , each entry in
having value , and each entry in having value 0.
Again, since any permutation matrix must have value 1 at some
entry in the block , the matrix does not dominate any
permutation matrix.

Lemma 2 has the following corollary:
Corollary: For any , and any non-negative valued

matrix with row sums and column sums equal to
, there exist permutation matrices such that

dominates .
Note that we can use the Birkhoff–von Neumann theorem

(see e.g., [30]) to immediately obtain a similar, but weaker ver-
sion of Lemma 2. This follows since by the Birkhoff–von Neu-
mann theorem, every matrix with non-negative en-
tries and row and column sums equal to can be
decomposed into a weighted sum of permuta-
tion matrices, where all weights are non-negative, and sum to

. Since at least one of the weights must be 1,
there exists a permutation matrix that is dominated by .

We now bound the running time of an iteration of Algorithm
1, in which a packetized matrix is computed. The algorithm re-
quires time to compute and . The time required
to find a permutation matrix dominated by is of the same
order as the time required to find a perfect matching in an
bipartite graph, which is [31].

In [27], we show how Algorithm 1 can be modified, for any
, to take time to compute each packe-

tized matrix, using parallel processors, and giving a

10The dimensions of D ;D ;D can be deduced from the dimensions
of D .

bound on worst-case backlog of . This mod-
ified algorithm does not compute a single, perfect matching at
each time step, but instead uses pipelined, batch scheduling and
a fast algorithm for edge-coloring bipartite multigraphs from
[32], [33] to compute long sequences of packet transmissions.11

Serializing this modified algorithm gives a packet-scheduling
algorithm that guarantees bounded backlog, and that takes time

to compute each packetized matrix. This is, up to a con-
stant factor, the same as the time required to read all components
of a (time-varying) fluid matrix.

To our knowledge, it is an open question whether sched-
uling maximum-weight, bipartite matchings using backlog as
weights, similar to the technique of McKeown, Anantharam,
and Walrand in [18], would guarantee bounded backlog for all
time-varying fluid policies. A key difference in the scheduling
problem in [18] and our problem is that the former assumes i.i.d.
probabilistic arrivals, while our scenario involves analysis of
worst-case, or adversarial, desired traffic rates. Since the most
efficient known algorithm for computing a maximum-weight
matching in a bipartite graph has complexity in
the case of polynomially bounded weights [34], any scheduling
algorithm relying on such an approach would need a running
time at least as large.

V. BANYAN NETWORKS

For the rest of this work we look at the necessary and suf-
ficient speedup to maintain bounded backlog for Banyan mul-
tistage switch networks. The design of packet-scheduling al-
gorithms for such networks is significantly more difficult than
for a single crossbar switch, because of the potential for over-
loading internal links. Packets originating from different input
ports and sent to different output ports may follow routes that
use the same link of an internal switch element; these packets
cannot be simultaneously transmitted, since this would result in
an overloaded link and thus a dropped packet.

After presenting the structure and some properties of Banyan
networks in Section VI, we show in Section VII that already
for small Banyan networks, speedup is necessary for main-
taining bounded backlog. For the 4 4 Banyan network, we
show speedup at least 4/3 is required for maintaining bounded
backlog.

Section VIII contains the core of our methodology. We char-
acterize the required speedup to maintain bounded backlog for
all fluid policies in terms of two polytopes derived from the link
graph (defined below) of a Banyan network. We first state a re-
sult, which follows directly from a theorem of Koksal [11], char-
acterizing the necessary and sufficient speedup for maintaining
bounded backlog for constant fluid policies. Our first theorem
strengthens this result, and proves that if speedup is sufficient
for maintaining bounded backlog for all constant fluid policies,
then in fact it is sufficient for maintaining bounded backlog for
arbitrary fluid policies.

In Section IX, we revisit the 4 4 Banyan network, and show,
using the machinery developed in Section VIII, that speedup
4/3 is in fact necessary and sufficient for maintaining bounded
backlog for arbitrary fluid policies. We also briefly discuss our

11Edge-colorings of bipartite multigraphs were used by Lee and Lam [23] to
compute efficient schedules for switch networks.
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Fig. 4. Recursive construction of a 2 � 2 Banyan network, form � 2.

computer-aided analysis of polytopes, for which the details are
given in [27], that indicates the necessary and sufficient speedup
to keep backlog bounded on 8 8 Banyan networks is also 4/3.

In Section X, we show that for a Banyan network with
input ports, speedup is sufficient for main-
taining bounded backlog for an arbitrary fluid policy. In this
case, we show how to implement the packet-scheduling algo-
rithm of Section VIII, using speedup , to com-
pute each packetized matrix in time polynomial in .

VI. STRUCTURE OF BANYAN NETWORKS

A. Recursive Construction and Properties

Banyan networks have input ports and output
ports for a power of 2, and can be constructed recursively
by appropriately connecting smaller Banyan networks. The fol-
lowing construction, depicted in Fig. 4, is from [25]. The 2
2 Banyan network is simply the 2 2 crossbar switch. For

and , the Banyan network can be
constructed by connecting , 2 2 crossbar switches to
two Banyan networks as shown in Fig. 4. The
first (topmost) 2 2 crossbar switch has its first outgoing link
connected to the first input of the top Banyan
network, and has its second outgoing link connected to the first
input of the bottom Banyan network. The second
2 2 crossbar switch has its first outgoing link connected to
the second input of the top Banyan network, and
has its second outgoing link connected to the second input of

Fig. 5. A 4 � 4 Banyan network.

the bottom Banyan network. This process is con-
tinued until all of the 2 2 crossbar switches are con-
nected, at which point the Banyan network is fully
constructed. It has stages.

Another property of Banyan networks is expressed in the fol-
lowing lemma, which deals with sets of input, output pairs and
the paths connecting them. A path through a Banyan
network is a sequence of links , where link is
between stages and , and for , link
is an outgoing link from the switch element with incoming link

.
Lemma 3: For any set of input, output paths through a

Banyan network such that each pair of paths in shares some
link, there is some link contained in all paths in .12

The lemma is proved in Appendix II.

B. The Link Graph of a Banyan Network

We define the link graph of a Banyan network
as follows: the link graph has a node for every input, output pair

. Two nodes , are connected by an edge in the
graph if the unique path from input to output shares a link
with the path from to . In Figs. 5 and 6 we show the 4 4
Banyan network, and the associated link graph . Note that a
{0,1}-valued, matrix is a valid packetized matrix if and
only if the set of entries with value 1 corresponds to a stable set,
that is, a set of nodes with no edges between them, in the link
graph of the switch network.

Consider link 2 in Fig. 5. Link 2 is required for any packet
transmission from input 2 to outputs 1, 2, 3 or 4. Therefore, in
a packetized model, at most one of these four transmissions can
occur per time step. In the link graph, this constraint is repre-
sented by a clique, that is a set of nodes with an edge between
each pair, {(2,1),(2,2),(2,3),(2,4)}; this corresponds to clique
in Fig. 6. Similarly, link 8 is required for transmission from 3 to
3, 3 to 4, 4 to 3, and 4 to 4, so among these input, output pairs, at
most one transmission can take place. In the link graph, we have
a clique among nodes {(3,3),(3,4),(4,3),(4,4)}; this corresponds
to clique in the figure.

By Lemma 3 above, each clique in the link graph corresponds
to a set of input, output pairs, all of whose paths contain some
link .

We now show an important connection between the cliques in
the link graph and the set of valid fluid matrices for the Banyan

12In general, a family of sets is said to have the Helly property if for any sub-
family of pairwise nondisjoint sets, the intersection of the sets in the subfamily
is nonempty [35]. For Banyan networks, this lemma shows that the set of paths
through the network has the Helly property, where each path represents the set
of links it contains, two paths are considered disjoint if they have no links in
common, and the intersection of a set of paths is the set of links common to all
of them.
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Fig. 6. The link graph corresponding to the above 4 � 4 Banyan network.

network. By Lemma 3, a non-negative-valued, matrix
is a valid fluid matrix if and only if for each clique in the

link graph , the following clique constraint is satisfied:

(1)

We will see that the structure of the link graph (which is de-
rived from the topology of the switch network) has an intimate
connection with how much speedup is necessary and sufficient
to maintain bounded backlog for all fluid policies on a Banyan
network.

VII. SPEEDUP IS REQUIRED

In this section, we exhibit a behavior of the Banyan network
that is fundamentally different from the crossbar switch. We ex-
hibit a constant fluid policy for which, using no speedup, it is im-
possible to maintain bounded backlog. Recall the 4 4 Banyan
network in Fig. 5. Consider the constant fluid policy, with each
fluid matrix equal to the matrix

Note that for every clique in the link graph (see Fig. 6
above) we have

and the above is indeed a valid fluid matrix. Suppose that at
each time step, this fluid matrix is requested, and knowing this
stationary policy in advance, we wish to choose a valid packe-
tized policy so that the total backlog after time steps is min-
imized. While we cannot transmit fractional values with packe-
tized policies, if we could transmit unit value along four of the
eight pairs of positive entries in the fluid matrix at one time step,
and then transmit the remaining four at the next time step, then

the backlog would remain bounded. However, one can verify
that a packetized policy cannot transmit any more than three
of the eight pairs of positive entries of the fluid policy, at any
given step. For instance, if (1,1) is transmitted, this rules out
{(1,4),(3,1),(2,2)}. Then if, say, (2,3) is transmitted, (3,3) is
ruled out, and of the two that remain, {(4,2),(4,4)}, only one
can be transmitted. The same can be seen to be true for any
possible set of choices. Therefore, any packetized policy can
only transmit 3 units per time step, while the fluid policy trans-
mits 4 units each time step. Thus, regardless of which pack-
etized policy we choose, the backlog becomes unbounded. In
fact, we have proved that the minimum speedup required on a 4

4 Banyan network for maintaining bounded backlog for any
constant fluid policy is at least 4/3. In Section IX we show that
this result is tight.

VIII. CHARACTERIZATION OF REQUIRED SPEEDUP

In this section, we give a characterization of the required
speedup for maintaining bounded backlog for all fluid policies
in Banyan networks. In addition, we develop the essential el-
ements of our polyhedral and combinatorial methodology that
we use in Sections IX and X. We define the polytope to be
the convex hull13 of the set of valid packetized matrices, and the
polytope to be the set of valid fluid matrices when no speedup
is used. Using terminology from polyhedral combinatorics, we
note that the polytopes and are, respectively, the stable set
polytope and the fractional stable set polytope of the link graph
of the Banyan network; the stable set polytope and the fractional
stable set polytope for general graphs have been studied exten-
sively in the combinatorics literature (see [34], [36] for details).

We have , since any convex combination of a set of
valid packetized matrices is a valid fluid matrix. The example
of the 4 4 Banyan network in Section VII above shows that
this inclusion can be strict. For a switch network with input
ports and output ports, the dimension of is , since any
stable set polytope is always full-dimensional.

Recall that we model a scheduling algorithm using speedup
by requiring for each fluid matrix in any fluid policy, that

its link usage totals at most for each link. This is equivalent
to requiring for all fluid matrices in any fluid policy, that

.
If , then every valid fluid matrix can be written as a

convex combination of valid packetized matrices and so for any
constant fluid policy, bounded backlog can be maintained using
no speedup (by simply scheduling the valid packetized matrices
in the decomposition at the right frequencies). In graph theo-
retic terms, is equivalent to the link graph being perfect.
For this, as well as combinatorial results cited elsewhere in this
work, we refer the interested reader to [34], [36] for further de-
tails. Many classes of perfect graphs are known, and in partic-
ular, the link graph of a crossbar switch is perfect, as it can be
seen to be the line graph of a complete bipartite graph. This is

13A convex combination of matrices in a set S is a finite sum of the form
� M , where for each i, � � 0, M 2 S, and we have � = 1. The

convex hull of a set S of matrices is the set of all convex combinations of ma-
trices in S.
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Fig. 7. We obtain the upper bound on speedup for the 4� 4 Banyan network by decomposing any 4 � 4, valid fluid matrix into four parts as shown above.

a graph-theoretic explanation of the fact that no speedup is re-
quired for maintaining bounded backlog on the single crossbar
switch.

Koksal shows for layered, multistage switch networks, that
it is possible to maintain bounded backlog for a constant, fluid
policy scheduling fluid matrix at each time step if and only
if [11]. This implies that using speedup , bounded
backlog can be maintained for all constant fluid policies if
and only if . We show below that the necessary
and sufficient speedup for maintaining bounded backlog for
all constant fluid policies is the same as that for maintaining
bounded backlog for arbitrary fluid policies. This implies, for
any switch network operating strictly slower than the minimum
required speedup, even for constant fluid policies, bounded
backlog cannot be maintained; as soon as the switch network
runs at least as fast as the minimum required speedup, then
bounded backlog can be maintained for any fluid policy.

Theorem 3: Using speedup , bounded backlog can be main-
tained for all arbitrary fluid policies if and only if .

Proof: Koksal, in his result from [11] mentioned above,
showed that if , then for any matrix
for which , backlog cannot be kept bounded for the con-
stant fluid policy scheduling at each time step.

To show the opposite direction it suffices to exhibit, in the
case where , a packet-scheduling algorithm using
speedup that maintains bounded backlog for any fluid policy.

Assume holds, so that each fluid matrix
. We present a packet-scheduling algorithm using speedup

that, for any fluid policy, maintains backlog at most per input
port and per output port. The algorithm maintains the following
invariant:

Invariant 2: : This invariant implies that no
input port can have backlog more than . We present the algo-
rithm below and prove inductively that it maintains the invariant
above. Note that the invariant holds at time step , since

, which is in .
Algorithm 2: Given a fluid policy, this packet-scheduling al-

gorithm computes the packetized policy as follows:
For , by our assumption above that , and

assuming the invariant holds at time step , we have
. Since is an -dimensional poly-

tope, Caratheodory’s theorem14 says that any point in can be
written as a convex combination of at most vertices,

14Caratheodory’s theorem states that ifX � RRR , then any point in the convex
hull ofX , conv(X), may be written as a convex combination of at most (d+1)
points of X (see, e.g., [37]).

which in this case are packetized matrices. Thus, we can de-
compose into a convex combination of at most

vertices of . At least one matrix in the decom-
position must now have weight at least 1. Set packetized matrix

to be one such matrix.
It follows that ,

and so the invariant holds at time step . Thus, for any fluid
policy, Algorithm 2 maintains backlog at most per input port
and per output port.

In the proof of the above result, we use Caratheodory’s The-
orem to decompose into a convex combination
of packetized matrices. Caratheodory’s Theorem, however, is
not constructive in general (unless, for example, one has a de-
scription of in terms of linear inequalities). In Appendix III,
for , we give a modified, packet-scheduling algo-
rithm using speedup whose only nonconstructive step is de-
composing each fluid matrix into a convex combination of
packetized matrices; we show this algorithm maintains bounded
backlog for any fluid policy. We give an algorithm in Section X
that for the case of a Banyan network with input ports and
for speedup , computes such a decomposition
in time polynomial in ; in this case, combining the two algo-
rithms, we have a packet-scheduling algorithm that runs in time
polynomial in and maintains bounded backlog for any fluid
policy.

IX. SPEEDUP REQUIRED FOR 4 4 BANYAN NETWORKS

In Section VII, we exhibited a constant fluid policy on a
4 4 Banyan network that requires speedup at least 4/3 for
maintaining bounded backlog. Using the results of Section VIII
above, we show that in fact speedup is necessary and
sufficient for maintaining bounded backlog for arbitrary fluid
policies on the 4 4 Banyan network.

From the above discussion, it is sufficient to show
for the 4 4 Banyan network. To show this, decompose any

valid fluid matrix into a linear combination of four matrices,
each with the four entries in one corner set to 0, as shown in
Fig. 7. The weight of each matrix is 1/3. We then use the fact
that the subgraph corresponding to one of these matrices with
a corner deleted, is a perfect graph. Recall from our discussion
above, that we have if and only if the link graph is per-
fect. Therefore, one can further decompose any of these four ma-
trices into a convex combination of valid packetized matrices.
That the subgraph corresponding to one of these matrices with
a corner deleted is perfect, follows from the fact (see [36]) that
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Fig. 8. This is the complement of a 4 � 4 Banyan network link graph with
the corner removed. The edges are oriented so that edges between nodes in U
and nodes in V are directed towards V , edges between U and W are directed
towards W , and edges between V and W are directed towards W . Therefore,
this is a directed, acyclic, transitive graph.

the resulting subgraph is the complement of a so-called com-
parability graph. A comparability graph is such that its edges
can be oriented so they form a directed, acyclic, transitive graph

. Here, transitive means that for any nodes , , ,
if and , then also . In Fig. 8
we exhibit such an orientation of the complement of the sub-
graph obtained when the bottom right corner of the link graph
of the 4 4 Banyan network is removed. It is well known (see
e.g., [36]) that complements of comparability graphs are per-
fect. Thus, each of the four matrices in the linear decomposition
of given in Fig. 7 can be written as a convex combination of
valid packetized matrices. Replacing each of the four matrices
in Fig. 7 by such a convex decomposition results in a non-neg-
ative, linear combination of valid packetized matrices, with the
sum of weights 4/3. This shows that . We can then
use packet-scheduling Algorithm 2 above with 4/3 speedup to
build, for any given fluid policy, a packetized policy that main-
tains backlog at most 16 packets per input port and per output
port.

Using the software package cdd+15 to enumerate and analyze
over 500,000 vertices of certain polytopes, we argue in [27] that
the necessary and sufficient speedup to keep backlog bounded
for any fluid policy on 8 8 Banyan networks is also 4/3. The
details of this computation are given in [27].

X. BOUNDS ON SPEEDUP REQUIRED FOR

BANYAN NETWORKS

The main result of this section is a greedy algorithm for de-
composing any valid fluid matrix on a Banyan network. This
algorithm is an extension of the maximal matching algorithm
used by Smiljanić on the crossbar switch [39].

Theorem 4: For a Banyan network with input ports, we
exhibit an algorithm (Algorithm 3 below) that, for any

15cdd+ is an implementation by Komei Fukuda of the Double De-
scription Method [38] for generating all vertices and extreme rays of a
general convex polyhedron given by a system of linear inequalities. See
http://www.cs.mcgill.ca/~fukuda/soft/cddman/node2.html for details.

, decomposes into a convex combination
of vertices of ; the algorithm runs in time polynomial
in .

An immediate corollary is . Using
Algorithm 3 below as a subroutine in Algorithm 4, we have our
main theorem for Banyan networks, which gives an upper bound
on the speedup required for maintaining bounded backlog for
any fluid policy.

Theorem 5: For a Banyan network with input ports, we
have a packet-scheduling algorithm using speedup
that maintains bounded backlog for any fluid policy, and that
runs in time polynomial in .

To prove Theorem 4, it suffices to show for any
, that one can compute in time polynomial

in , a decomposition of into a linear combination

(2)

for some , for non-negative summing to at most
1, and with a valid packetized matrix for each .
The greedy algorithm below produces the decomposition (2).
We give the algorithm, and then the proof of correctness.

We use the notation that for a stable set of the link graph
of a Banyan network, denotes the , valid packetized
matrix with value 1 at entries corresponding to elements of
and with value 0 otherwise.

Algorithm 3: Let be a given fluid matrix in
.

1) Set and set .
2) Repeat while :

• Find a maximal stable set in the link graph restricted
to the set of nodes with positive value in . Call it .

• Set to be the largest value such that is
non-negative.

• Set and and then incre-
ment by 1.

Since at each iteration of step 2, at least one entry of is set
to 0, the algorithm terminates after iterations. Upon
termination, we have . It remains to show
that the sum of ’s is at most 1. Just before the last iteration ,
there exists an input, output pair such that . Recall
that in an Banyan network there are stages, and
hence every input, output path consists of links. Let

be the unique path from input to output .
For each iteration , let denote the links among

that, for some pair with ,
are contained in the path from input port to output port .
Each is nonempty, since otherwise adding to stable set

would result in a larger stable set, which is not possible since
a maximal stable set is selected at each iteration of the algorithm.

Since we assumed , for each
we have
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Since as argued above each contains some link in
, we have

Thus we have bounded by 1, as desired.
To show the algorithm above runs in time polynomial in ,

it suffices to show that each stable set can be found in time
polynomial in . In [27], we show that all the stable sets can
be found in total time .

By a similar argument, it can be shown for any layered, unit-
capacity, unique-path, multistage switch network, that speedup
equal to the longest path length in the network is sufficient for
maintaining bounded backlog.

XI. CONCLUSION AND FURTHER EXTENSIONS

In this paper, we have considered under what conditions
there exist packet-scheduling algorithms that maintain bounded
backlog for arbitrary time-varying fluid policies for the crossbar
switch, and the Banyan network. For the crossbar switch, it has
long been known that maintaining bounded backlog is possible
in two restricted settings: if the fluid policy is not allowed
to vary over time, or, if the fluid policy varies, and we have
speedup. It was not known, until now, whether maintaining
bounded backlog is possible in general. We give a combinato-
rial construction of a packet-scheduling algorithm that without
any speedup, maintains bounded backlog in the worst case, for
an arbitrary (possibly adversarially constructed) time-varying
fluid policy.

Next, we showed that in contrast to the crossbar switch,
Banyan networks require speedup in order to maintain bounded
backlog for arbitrary fluid policies. With this motivation, we
turned to analyzing the necessary and sufficient speedup to
maintain bounded backlog for Banyan networks. Translating
the problem into essentially one of containment of polytopes,
we characterized the necessary and sufficient speedup required
to maintain bounded backlog for an Banyan network.
Furthermore, we computed the exact speedup required to main-
tain bounded backlog for the 4 4, and 8 8 Banyan network,
and obtained logarithmic bounds on the speedup required for a
general Banyan network. In [27], some of these results
are extended to the much more general setting of arbitrary
switch fabrics.

Computing the exact speedup required for general Banyan
networks, and other networks of interest, remains an interesting
and stimulating open problem. The area of general networks
poses further computational and theoretical challenges. Con-
structing efficient scheduling algorithms, and computing the
fundamental boundaries of the tradeoffs between speedup,
backlog, and delay, seems to be a research area well worth
further attention and study.

APPENDIX I
PROOF THAT ALGORITHM 1 IS WELL-DEFINED

AND SATISFIES INVARIANT 1

The proof is by induction on the time step . The base case,
in which , is clear.

For the inductive step, assume the algorithm is well-defined
and satisfies Invariant 1 at all time steps up to and including
time step . Recall that we set , , and

for clarity of exposition. We first show that the
algorithm is well-defined at time step :

By Invariant 1 at time step (using the inductive hypothesis)
and the fact that is doubly sub-stochastic, we have that all row
sums and column sums of are at most .
By Lemma 1 we can dominate by a non-negative valued
matrix with row sums and column sums equal to exactly

. Thus, the first step in the algorithm is well-defined.
For the second step in the algorithm, we need to show that

there exists a permutation matrix dominated by the matrix .
By Lemma 2, there exists a permutation matrix dominated by

. Then must also be dominated by .
It remains to show that the algorithm satisfies Invariant 1 at

time step :
From the first two steps of the algorithm, we have

(3)

Subtracting from both sides, and taking the positive parts of
both sides gives

(4)

where the equality on the right follows because dominates .
By the construction of , the matrix differs from

only at entries in which both expressions have non-
positive values. This implies

(5)

Therefore, from (4), we have is dominated
by the non-negative valued matrix , with row sums and
column sums equal to . Since

, this proves Invariant 1 for time step . The induction
is complete.

APPENDIX II
PROOF OF THE HELLY PROPERTY

Next we prove Lemma 3 from Section VI-A, which says that
for any set of input, output paths through a Banyan network
such that each pair of paths in shares some link, there is some
link contained in all paths in .

Proof: The proof is by induction on the size of the Banyan
network. For 2 2 Banyan networks, one can verify that any
set of paths such that each pair of paths shares some link must
either contain a single path, or be a set of two paths. The lemma
trivially holds in this case.

Assume the lemma holds for Banyan networks,
for some . We show it holds for the Banyan
network , using the recursive structure shown in Fig. 4. Take
any set of input, output paths through the Banyan network
such that each pair of paths in shares some link. If all paths in

have the same first link, the lemma holds. If not, then either the
last link in each path in is one of the first output ports,
or the last link in each path in is one of the last output
ports. This follows since if the last link in were one of
the first output ports and the last link in were one
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of the last output ports, then their only shared link could
be their first links; all the other paths in , which were assumed
to share a link with and a link with , by the structure of the
Banyan network must share their common first link, which we
assumed was not the case. Thus, either the last link in each path
in is one of the first output ports, or the last link in each
path in is one of the last output ports. In other words,
for the set of paths that result when each path in has its first
link removed, one of the two Banyan networks
in the recursive construction of contains all paths in ; let

denote this Banyan network. The previous
sentence implies that if paths , have the same first
link, they must also have the same second link. This, and our
assumption that each pair of paths in shares some link imply
that each pair of paths in shares some link. Now, the lemma
holds by the inductive hypothesis applied to , which contains
all paths in .

APPENDIX III
A CONSTRUCTIVE VERSION OF CARATHEODORY

In Theorem 3 of Section VIII, we characterized exactly
the necessary and sufficient speedup required to maintain
bounded backlog. In Algorithm 2 given there, we appealed to
Caratheodory’s theorem, which as we noted, is not constructive.
Here, for , we give a modified, packet-scheduling
algorithm using speedup whose only nonconstructive step is
decomposing each fluid matrix into a convex combination
of packetized matrices; we show this algorithm maintains
bounded backlog for any fluid policy. Recall that we gave an
algorithm in Section X that for the case of a Banyan network
with input ports and for speedup , computes
such a decomposition in time polynomial in ; in this case,
combining the two algorithms, we have a packet-scheduling
algorithm that runs in time polynomial in and maintains
bounded backlog for any fluid policy.

Assume , so that for each fluid matrix ,
(which by definition is in when speedup is used) we
have . Also, assume that given any fluid matrix ,
we can compute a decomposition of it into a convex combina-
tion of at most packetized matrices.

The packet-scheduling algorithm below maintains the fol-
lowing invariant:

Invariant 3: For all time steps , we have matrices
, which are vertices of , and non-neg-

ative coefficients (all of which may be different
at different time steps) such that

and

This invariant implies that for all , , which means
that the packet-scheduling algorithm, for any fluid policy, main-
tains backlog at most per input port and per output port at
all time steps. We present the algorithm below and prove induc-
tively that it maintains the invariant at all time steps. Note that
the invariant holds at time since here and so we
could initially set for all , , and .

Algorithm 4: For , given and fluid matrix ,
construct packetized matrix as follows:

By our assumption above, we can compute a decomposition
of as

where for all , and are vertices of , and the sum
of ’s is 1. (It is this decomposition that we compute in poly-
nomial time for speedup for Banyan networks
in Section X.) Now, if we assume Invariant 3 holds for time step
, we have

The sum of ’s and ’s is . Let

Caratheodory’s theorem now tells us that can also be ex-
pressed as a weighted sum of just matrices from the
set , with the weights summing to . We
are now in a position to compute this expression explicitly, and
efficiently. Consider the problem of finding non-negative vari-
ables , so that the resulting weighted sum of and

(weighted by and , respectively) equals , and
so that the sum of the and is . This is a linear
system with variables (the and the ), and

constraints: constraints for the entries of , and
then an additional constraint on the sum of the variables. Using

to represent the variables, and the equality
constraints, we can write the linear system as , where

. We note that we need the decomposition
of in order to define the linear system and the constraint
matrix , since its definition depends on the matrices of
the decomposition. Now, the values we have computed
satisfy these equality constraints and furthermore are non-neg-
ative. Therefore, the polyhedral set: is
nonempty. Moreover, since it is contained in the positive or-
thant, it must also have at least one extreme point. At any ex-
treme point of this feasible set of solutions, there must be at least

tight constraints. In other words, at least of the
variables must be equal to zero. Finding extreme points is a stan-
dard exercise in linear optimization, and in particular, it can be
done in polynomial time [30]. Then, let be such an
extreme point. Now out of the original and matrices,
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consider only the matrices corresponding to nonzero
weights. Rename these matrices to be and the
corresponding weights to be . If , then
for , rename and .

Since the sum of ’s is , one of them must be at least
1. Let be the least such that . Set to be .
Subtract one from .

Thus,

with , proving the invariant holds at time step
. We have shown that the packet-scheduling algorithm main-

tains, for any fluid policy, backlog at most per input port and
per output port.
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