
RAMP-White: An FPGA-Based Coherent
Shared Memory Parallel Computer Emulator

Hari Angepat, Dam Sunwoo, Derek Chiou
Electrical and Computer Engineering, UT Austin

{angepat, sunwoo, derek}@ece.utexas.edu

Abstract— This paper describes the architecture of
RAMP-White, an FPGA-based coherent shared memory
machine. RAMP-White aims to provide a configurable
coherent shared memory research platform while also
demonstrating how large systems can be assembled us-
ing RAMP building blocks. The platform is sufficiently
flexible to handle different coherency protocols, memory
hierarchies and even processor ISAs and implementations.

I. I NTRODUCTION

¡¡¡¡¡¡¡ intro.tex ======= RAMP-White is a shared-
memory FPGA-based architecture currently under de-
velopment at UT-Austin. The project is one of the
three initial prototypes associated with the RAMP (Re-
search Accelerator for Multiple Processors) [8] initiative.
RAMP-White is designed to provide a flexible baseline
platform with which to perform research into shared
memory architectures. ¿¿¿¿¿¿¿ 1.6

RAMP-White is an FPGA-based coherent shared
memory architecture and is one of the three initial
prototypes being developed by the RAMP (Research
Accelerator for Multiple Processors) group. In the spirit
of the RAMP project, RAMP-White has been architected
to provide a flexible baseline research platform, rather
than an aggressive implementation of coherent shared
memory.

To provide platform flexibility, the components from
which RAMP-White is constructed are defined and
implemented with composability in mind. The use of
generalized component interfaces and messages enables
the components to be connected in a variety of con-
figurations. Additionally, the RAMP-White architecture
separates the coherency protocol and the network topol-
ogy from components that are common to all shared
memory machines, permitting them to be easily modified
or exchanged for others. Both design objectives enable
extensive experimentation with alternatives while leaving
large portions of the platform unchanged.

In keeping with the general goals of the RAMP
initiative, the platform is designed to support large-
scale investigations in parallel systems. By supporting a

variety of interconnection schemes the platform can scale
from small dual-core configurations hosted on a single
development board to much larger many-core platforms
hosted on a cluster of FPGA development boards. The
RAMP-White architecture is designed around point-to-
point connections, facilitating the use of the RAMP
Description Language (RDL) to specify and implement
connections.

II. SYSTEM OVERVIEW

The basic components of the RAMP-White design can
be grouped into several categories:

• Node Interconnection: (Intersection Unit, Cache
Coherency Engine)

• Processor Components: (Processor Cores, Caches)
• Network: (Network Interface, Router)
• Memory: (Memory Controller)
• Platform Support: (IO Bus, Timer, Ethernet, MP

Interrupt Controller)

A brief description of the functionality of the various
components is presented below. Specifications for the
baseline configuration of the platform can be found
in Appendix A which details component and message
interfaces, as well as board-specific hardware support.

A. Intersection Unit (IU)

The intersection unit (IU) is a switch between the
processor, local memory, IO, a coherency engine and
the network interface. The initial IU implementation will
support exactly one processor each. The IU manages
the various queues for the ports and keeps track of
outstanding requests for matching replies. It also exposes
a set of programmable address map registers to indicate
which region of global memory the unit is responsible
for. There are four functional interfaces to the IU:

• Processor port: Interfaces with the processor or a
coherent cache

• Memory Controller port: Interfaces with the physi-
cal memory attached to node



x
Physical Link Interface
(Exact link determined by 
platform configuration 
during compile)

x
MicroProcessor Core 

(uP)

AHBproc AHBsnoop

Msg_in

x
Processor Bus 

Adapterx
Coherent Shared 

Cache

x
Intersection Unit (IU)

x
IO Bus Switch

x
GigE IF

x
Timer

x
MP 

Interrupt 
Controller

x
TFT IF Wrapped Bus Port

Wrapped Bus Port

Wrapped Bus Port

Wrapped Bus Port

x
Network Interface

x
On-chip FPGA Link

x
Inter-chip FPGA Link

x
Inter-board FPGA 

Link

Net_msg_in

x
Network Router

SPort (net_msg)

NPort (net_msg)

Wport
(net_msg)

Eport
(net_msg)

x
MultiPorted Memory 

Controller 
(DDR/DDR2)

MC Neutral Connections

Msg_out

Msg_in

Msg_out

Msg_inMsg_out

Msg_inMsg_out

Net_msg_in

Net_msg_out Net_msg_in

x
Cache 

Coherency 
Engine (CCE)

NPort (net_msg)

Eport
(net_msg)

SPort (net_msg)

Wport
(net_msg)

Fig. 1. Baseline RAMP-White Platform Overview

• Network Interface port: Interfaces with the network
for sending request/replies to other nodes in the
system

• IO Bridge: Link to IO Bus and associated devices

B. Processors

RAMP-White processors are full processors appropri-
ately wrapped to interface with the rest of RAMP-White.
The processors used in RAMP-White are restricted to
those that support full operating systems and thus must
include an MMU. These processors can be either hard-
core processors embedded in some FPGA parts, or
soft-cores provided as Verilog/VHDL sources. We have
selected two processors to be supported in the initial
version of RAMP-White: the PowerPC 405 as well as

the Leon3. The PowerPC 405 is an 32-bit embedded
hard-core available in certain Xilinx FPGA parts, while
the Leon3 is a 32-bit SparcV8 compatible soft-core
from Gaisler Research. RAMP-White will support both
cores. We only support the hard-core 405 since the only
currently available PowerPC soft core is larger than is
practical.

To isolate downstream components from processor-
specific bus interface details, each bus is abstracted to a
generic bus interface using a bus adapter that provides
a PLB or AMBA bus interface to the processor and
a RDL connection-based interface to the rest of the
RAMP-White system. Bus operations are translated into
a standard component message format and vice-versa.

If multiple bus operations are supported by the pro-

2



cessor, the bus adapter also keeps track of outstanding
message requests so replies can be matched when they
return. Furthermore, since the IU only exposes a single
bi-directional channel to the processor, at least two
virtual channels in each direction will be supported by
the adapter. From processor to IU, there is a low priority
processor request virtual channel and a high priority
snoop reply virtual channel. From IU to processor there
is a low priority snoop request virtual channel and a high
priority virtual processor reply channel.

C. Coherent Cache (CC)

A coherent cache may be introduced into the system
by inserting it between the processor and the IU. The
specific implementation of these caches vary depending
on their size and resource requirements. In order to
emulate larger shared cache structures that may not fit in
FPGA Block RAMs alone, the use of host-FPGA DRAM
can be used to store cache data and potentially even the
tags, depending on the size requirements of the shared
cache. The caches must adhere to the same Processor-IU
interface.

D. Cache Coherency Engine (CCE)

The cache coherency engine (CCE) implements the
logic necessary to support cache coherency protocols
through the network. While the IU is responsible for
basic request/response buffering from the various in-
put/output ports, the CCE determines how requests are
actually serviced. This partitioning allows the CCE to
service a single request at a time if desired. It also en-
ables experimentation with different coherency schemes
by replacing the CCE.

For the case of a incoherent platform, the CCE de-
generates to a set of simple arbiters driven by address
mapping. For the case of a common directory-based
coherency protocol using MESI, the CCE encloses both
the response logic to service requests, as well as the
coherency logic to issue and collect coherence messages.

E. Network Interface Unit (NIU)

The network interface block connects with the IU
and the network router, using an abstract RDL channel
to provide compatibility across the potential physical
connections. The module is responsible for message
queuing and flow-control. The NIU accepts various
memory request/replies from the IU and appends the
necessary (src, size) tagging to construct a formatted
network message.

F. Network Router

This block is responsible for implementing the actual
network topology for interconnecting processors in the
system. The block accepts the message from one of
the NIUs through a physical channel and routes the
formatted message according to routing policies imple-
mented in the block. A credit-based flow control system
is used to back-pressure the NIU and prevent buffer
overflow for a given destination. The network is assumed
to be reliable and loss-less and provide a minimum of
two virtual channels for request and reply messages.
The platform is designed to support multiple network
topologies through the use of a replaceable network
router. For smaller development platforms, this may be
a single ring.

G. Memory Controller (MC)

The memory controller block is responsible for inter-
facing with the physical DRAM connected to a given
node, providing a abstract logical interface to the IU.
To ensure cross platform compatibility, the memory
controller presents an asynchronous user interface to
upstream blocks. This decouples clock-domains as well
as simplifying the memory protocol interface that the
memory unit must interact with. In order to support
scaling and multiple processors sharing a single set of
DIMMs, the memory controller supports multiple ports
using an arbitration scheme.

H. IO Bus

In order to support the various IO devices available
from either the Gaisler GRLIB IP Library or the Xilinx
EDK IP Library, a suitable replacement for their shared
bus architectures must be created. With the GRLIB
library, the AMBA (AHB/APB/ASB) bus protocols are
used for connecting cores, while the EDK library uses
the IBM CoreConnect PLB/OPB bus technology. To
implement similar functionality, a multi-ported switch
can be used to emulate the behavior of a shared bus
using only point-to-point connections. If the IO devices
need not be emulated directly, they could be grouped
together with a single bus-master bridge serving as the
point to point connection to the remainder of the system,
e.g., an OPB or APB bridge with associated peripherals.

I. Multiprocessor Interrupt Controller (MPIC)

The interrupt controller is responsible for interproces-
sor interrupts and interrupt vectoring to support SMP
operating system support without loading a single pro-
cessor with all the operating system tasks.

3



III. SYSTEM COMPONENTS

A. Node Connections

To promote interchangeable components and alterna-
tive design platforms, a unified message format connect-
ing node components is defined. This message format
is used to communicate between the interfaces inside a
given node. The format of the message is designed to
provide some level of generality in command operation
support and provides support for a large variety of cache
coherent operations.

The message is composed of a request/reply tag
(which is used for fabric priority) followed by several
fields. The actual field specification below presents the
necessary operations needed to support coherent shared
memory memory operations. The primary command
field indicates the type of operation being performed
(read, write, coherency), while the permission field
indicates the coherency permission requested for the
operation. This partition allows a large number of cache
operations to be implemented, providing support for
multiple styles of cache coherency protocols.

The size field is used to allow variable data sizes to
be encoded in the message. Currently there are 4 data
sizes used: byte, word, double word and full cache-line.
The tag field is used to mark an outstanding request
so its reply can be matched when it returns to the
requester. Finally the address and data fields and encoded
in the message. The address specified in the component
message format differs from the processor or physical
address, which is 32-bits for processors selected for
the system. This global address provides the ability to
translate or partition nodes, providing larger memory
space access.

REQ CMD PERM SIZE TAG

GADDR

DATA

Fig. 2. Component Message Format

With distinct fields for a memory command as well
as a coherency permission request, a variety of cache
coherency protocols may be supported. Note however
not all of these operations may be implemented directly;
their support depends on details of the coherency proto-
col, processor ISA support and specific cache configu-
rations selected for the platform.

Name Type Description

REQ bit Request/Reply message indicator

CMD cmd t Command to execute

PERM opt Coherence permission requested

SIZE sizet Size type for data field

TAG tag t Request/Reply tag for matching

GADDR gaddrt Global address of transaction. The global
address provides a means to translate be-
tween a processor address into a larger
global space for flexibility

DATA data t Data field to accompany transaction. The
size of the data is set based on the SIZE
field.

TABLE I

COMPONENTMESSAGEFIELDS

The node messages transfer data in a common format
between modules within a single node.

By decomposing the cmd from the coherency permis-
sion request, a large variety of coherency operations may
be supported in a concise manner.

B. Network Connections

Similar to the node message format, the network
message format provides a common format for commu-
nicating between nodes, independent of network topol-
ogy. A formatted network message is transmitted over
a physical channel to the router. The format of the
network message adds additional fields to the standard
component message, adding source/destination IDs for
routing purposes, as well as a message payload size and
network tag.

PRI DEST SRC TAG CMD SIZE

MSG

Fig. 3. Network Message Format

The network message introduces ID field used to
identify nodes in the platform, which sets an upper
limit on the number of procesors supported without
changing the network message format. The command
and tag fields are specified in the network message
format, although in the baseline implementation these
fields are not currently used. These fields would allow
more complex network messages that could be processed

4



Field Operation State Description

REQ Request 0 Indicates message is a re-
quest

Reply 1 Indicates message is a reply

CMD Read 00 Read transaction

Write 01 Write transaction

Coherency 10 Coherency maintenance op-
eration

PERM Invalidate 00 Requester indicates it does
not want a copy of the cache-
line

Shared 01 Requests a shared copy of
the cache-line

Exclusive 10 Requests an exclusive copy
of the cache-line (invalidate
sharers)

Flush 11 Requests everyone else
should flush the given
cacheline

SIZE Byte 00 Single byte transaction

Word 01 Single word transaction

Double-word 10 Double word transaction

Cache-line 11 Full cache-line transfer

TABLE II

COMPONENTFIELD STATES

CMD/PERM Action

Read/Shared memory read

Read/Exclusive memory read with intent to modify

Write/Shared write-back line keeping shared copy

Write/Invalidate write-back line without keeping
copy

Write/Exclusive write-through keeping an exclusive
copy

Coherency/Invalidate I’m dropping the cache line

Coherency/Shared Clean (force modified copy to be
written back but not flushed)

Coherency/Exclusive upgrade my shared copy to exclu-
sive, forcing other sharers to flush

Coherency/Flush Flush (flush everyone’s copy, includ-
ing initiator’s)

TABLE III

EXAMPLE COHERENTMEMORY REQUESTOPERATIONS

Name Type Description

PRI bit Priority message indicator

DEST nodet Processor NodeID originating the
message

SRC nodet Processor NodeID destination for
the message

TAG net tag t Network tag for matching replies in
network (optional)

CMD net cmd t Network command for generating
messages in network (optional)

SIZE netmsgsize t Message payload size

MSG nodemsgt Message payload (component mes-
sage embedded)

TABLE IV

NETWORK MESSAGEFIELDS

in the router or NIU. Finally a message payload size field
is used to support multiple message payload lengths.

In order to implement flow-control between the NIU
and router, a simple credit-based scheme is used, that
will forward tokens back to NIU when buffer slots are
made available.

C. Processor Connections

A bus adapter is used to translate the processor bus
operations exposed by a processor core into the standard
message format. The adapter implements a master-slave
bus interface on the processor side while a single bi-
directional channel is exposed on the other side of the
adapter. Using the common node message format, bus
transactions are transformed into node messages and sent
downstream to the IU. This component is specific to the
processor core selected for the design as bus-interfaces
typically varies between cores.

A single channel to the processor is selected to limit
resource utilization and provide an easy path to using
RDL for channel implementation. Two virtual channels
are used to implement the processor request/replies as
well as providing support for snoop request/replies. More
virtual channels may be added if a coherence protocol
requires additional support.

D. Cache Coherency Engine Connections

The CCE interacts with the IU by processing requests
queued in the IU block and sending replies back to the
IU. In the baseline configuration, the CCE implements
centralized decision logic as to processing of each re-
quest incoming to the IU. These requests, which come
from IO, processor, or network are serviced by the CCE,
then queued for output to one of the three locations.

5



Further, for a CCE implementing a directory coherence
scheme, the CCE will enqueue memory requests to the
MC to lookup directory state stored in DRAM.

The actual implementation of the CCE can vary in-
cluding a incoherent arbiter, hard-wired coherence pro-
tocol state-machine or programmable protocol processor.
In general a CCE can be seen as a function taking three
potential inputs (heads of the queues from IO, network,
processor) and returns to one of three locations (heads
of queues for IO, network processor). We provide two
examples of protocol processing for a simple incoherent
process as well as a coherent directory-based access.

1) Example: Incoherent Engine:In the incoherent
case, the engine is a simple arbiter that prioritizes
between the 3 input request queues it accepts (IO,
processor, and network) for processing. The servicing of
requests is controlled through a programmable address
mapping that allows the engine to determine the destina-
tion for a given request (local memory, remote memory
or IO).

2) Example: Coherent Engine:To illustrate the coher-
ent case, we assume a directory-based coherency scheme
using a MESI protocol with directory entries stored in
the DRAM for the node. The CCE stores coherency
state in a directory that maintains the list of cache block
locations in the system. The local node would issues
requests (read, write or coherency) to a home node that
is responsible for the given address by consulting the
directory. The home node, which maintains a list of all
copies of the block in the system would then consults its
directory to find the block location. Coherency messages
are sent and collected by the home node before finally
forwarding the request to a remote node which has the
cache-block. The remote node then returns the block to
the local node as well as informing the home node of
this action.

The actual flow of messages in the operation of the
coherent engine is best illustrated by a simple remote
read (to get a shared copy) operation:

Requesting Node:

• CPU accesses the cache and misses→ bus fill
caught by adapter.

• Adapter constructs a message for IU:

– [request][read][shared][size=cacheline]
[adapterreq tag][paddr padded]

• IU accepts processor message into the inbound
processor request queue.

• CCE services outgoing replies then inspects the
pending processor request

• CCE checks [addr] field and determines global
remote address and home node for addr

Algorithm 1 Incoherent Engine Example
if mem.replythen

check outstanding requests
if requests[mem.reply.tag]==IOthen

enqueue mem.reply msg into outbound IO buffer
else if requests[mem.reply.tag]==networkthen

compose network message by appending
src/dest/size fields to mem.reply
enqueue into outbound network buffer

else if requests[mem.reply.tag]==procthen
enqueue mem.reply message into outbound pro-
cessor buffer

end if
end if
if net.requestthen

decode net.request.gaddr field using addr map
push into either the IO or memory queue
if request requires replythen

set net.request.tag into outstanding request buffer
end if

end if
if proc.requestthen

decode net.request.gaddr convert to gaddr using
addr map.
if addr=localthen

push request into outbound queue for IO or local
memory and service as above.

else
mapping is to remote memory, so compose net-
work ’Read request message’
enqueue into outbound net buffer

end if
end if
if net.replythen

if requests[net.reply.tag]==IOthen
enqueue net.reply msg into outbound IO buffer

end if
if requests[net.reply.tag]==procthen

enqueue net.reply msg into outbound processor
buffer

end if
end if

6



• CCE composes a outgoing network message to the
home node:
req [homeID][localID][procreq tag][nodemsg]

• CCE stores tag of network request to indicate return
to processor adapter on reply

• IU sends network message to NIU from outbound
network queue

• Router delivers message to remote NIU
Home Node:
• NIU receives request message from network router
• IU accepts message from NIU into an inbound

network buffer
• CCE processes request in network queue: read

(shared) requested
• CCE-DirectoryController looks up associated entry

– if(entry.inDRAM) CCE-DC issues
[req][read][shared][size=cacheline][dc-
req tag][dir entry addr]

• if(entry.isExclusive)
– CCE composes[request][coherency][shared] to

force exclusive node to downgrade to shared
[dest=remoteNode][src=homeNode]

– IU sends message from outbound network
queue to NIU

• else if (entry.isModified)
– CCE composes[request][coherency][shared]

to force write-back of line
[dest=remoteNode][src=homeNode]

– IU sends message from outbound network
queue to NIU

• else if (entry.isInvalid| entry.isShared)
– CCE composes[request][read][shared] and en-

queues into outgoing MC queue, setting tag
• CCE waits for replies from outstanding requests
Remote Node:
• NIU receives request message from network router
• IU accepts message from NIU into inbound network

buffer
• CCE processes request in network queue: [re-

quest][coherency][shared])
– CCE composes [request][coherency][shared]

and enqueues into processor inbound port (will
go to snoop)

– CCE waits for matching co-
herencysharedreply for acknowledgment

– CCE composes [re-
ply][coherency][shared][cachedline] to home
node [dest=homeNode][src=remoteNode]

• IU sends message from outbound network queue to
NIU

• NIU sends reply message to the network router
Home Node:
• NIU receives message from network router
• IU accepts message from NIU into an inbound

network buffer
• CCE processes request in network queue [re-

ply][coherency][shared]
– CCE matches tag to indicate originating source
– CCE-DM modifies directory entry for address

(remoteNode now in shared)
– CCE composes network message

[reply][coherence][shared][procreq tag]
[dest=localNode][src=homeNode]

• IU sends message from outbound network queue to
NIU

• NIU sends reply message to the network router
Local Node:
• NIU receives message from network router into a

request buffer
• IU accepts message from NIU into an inbound

network buffer
• CCE processes request network queue

[reply][coherency][shared]
– CCE matches tag with outstanding processor

request tag
– CCE strips network header and sends compo-

nent message to outbound processor queue
• IU sends message from outbound processor queue

to NIU
• Processor adapter accepts reply message and

matches with adapter-req-tag
• Processor adapter completes bus request from pro-

cessor to complete the transaction

E. Memory Connections

As components communicate through the standard
component message format, the memory controller inter-
face must translate accepted memory request messages
into the appropriate lower-level control signals. As de-
scribed in the overview, the MC provides an abstract
logical interface to memory, providing support for a
variety of hardware platform memories. To facilitate this
the MC interface translate the message into a set of
neutral memory request signals that can communicate
with a native memory controller core. This decoupling
also provides the ability to run the memory controller
asynchronously to ensure correct timing requirements are
met.

The native memory core itself is specified using a
simple logical interface that abstracts the memory im-
plementation details from the interface. This allows the

7



Name Type Description

msg in nodemsg t Component message input from
upstream IU

msgout nodemsg t Component message output to
upstream IU

req addr paddrt Physical Memory Address to
DDR

req write mask dmaskt One-hot byte-enable for write
transactions

req write memcmd t Read-Write command bit

req write data datat Data to be written to the given
req addr

repl readdata datat Data returned from DDR for the
given reqaddr

repl readvalid bit Data returned is valid

repl busy bit Memory controller is not ready
to accept transactions

TABLE V

MEMORY CONTROLLER INTERFACE

same MC block to connect to a variety of native mem-
ory controllers, providing support for multiple hardware
platform boards.

IV. SOFTWARE SUPPORT

A. Operating System Support

There are three operating support styles that can be
used on the system:

1) SMP Linux: Using a port of SMP-Linux for the
Leon3 processor, direct access for IO, synchronization,
advanced process scheduling and load balancing are all
natively support. This is the ideal case as the shared
memory architecture becomes transparent to the software
layer. This solution is not completely portable as other
processors such as the PPC405 do not currently support
such an operating system as of yet.

2) Master-Slave Linux:Instead of fully porting the
Linux operating system to our specific SMP environ-
ment, the other alternative is to leverage a master-slave
configuration. Using a fully functional master service
node running the operating system, the slave processing
nodes can simply forward requests to the master for
handling. This allows the processing nodes to still exe-
cute user code and system code without needing modify
the operating system significantly. This approach has
been used in the RAMP-Red prototype [7] using the
exception vector register in the PPC405 to employ a
syscall-proxy mechanism. Upon encountering a system
call or associated operating system exception, the slave
processor simply sends a corresponding request to the

master processor who handles the request locally. The
results of this operation are sent back to the slave
processor for any local updating (ex. updating local TLB
as a result of a page fault) and continues executing user
code as before. The complications with such a solution
are the lack of any thread scheduling (as linux sees only a
single uniprocessor machine) and the requirement to port
some user-level thread library to support transfering the
context of the thread to a remote processor. In addition,
this limits the scalability of the system as system calls
are being serviced by a single node.

3) Multiple-Image Linux with Segmented Global
Memory: To create a scaleable solution without fully
porting to a SMP OS environment, multiple copies of the
Linux operating system may be booted, one per node.
Each node would boot out of their own private memory
space, with distributed global memory allocated to a
fixed segment of the global address space. The OS would
provide shared memory access to this region through
a mmap system call. This allows the treatment of the
shared global address space as a single large peripheral
from the application, providing a map from its virtual
space to the physical shared space.

B. Configuration Network

Given the large number of processors to be supported
by the platform, a method of configuring the platform
(with multiple FPGAs per board and multiple boards) is
required. With the use of RDL, much of this complexity
is reduced due to the provisioning of debug and mon-
itoring channels as well as configuration of the FPGA
platform itself.

V. FAST ON RAMP

In this section, we describe usage models that can be
run on the RAMP-White platform.

The first and most obvious option is to run appli-
cations natively on the two embedded PPC405 cores.
This option will clearly be the one with the highest
performance. However, we will be constrained by the
relatively stripped-down PPC405 ISA, which is mainly
targeted for embedded environments. In additionm, We
will not any capability to modify the ISA, leaving the
user with no flexibility at all.

Another option is to make use of off-the-shelf emula-
tors to emulate the functionality of a different machine.
An emulator will allow us to run on any ISA, including
the full blown PowerPC ISA. We could run cross-
architecture simulations, where applications on different
cores run on different ISAs while still sharing memory.
We could even run one application on the emulator and
another application on the embedded PPC405 hard-core

8



natively. Such heterogeneous platforms could be made
possible through time dilation. The RDL connectors are
capable of differentiating host cycles and target cycles,
making time dilation easily implementable. Emulators
also allow us to modify the ISA and experiment with
new or altered instructions. As can be seen, emulators
provide us with an enormous amount of flexibility in
experimenting on the RAMP-White platform.

Several emulators exist, including QEMU[1],
Bochs[6], SimICS[5], M5[2] and Mambo[3]. QEMU
is a full system open source emulator that supports
almost all modern ISAs including x86, PowerPC,
SPARC, ARM and MIPS, making itself a very attractive
option. It exploits dynamic translation techniques and
a translation cache, eliminating the need to translate a
basic block when executed more than once. Through
these techniques, QEMU runs at 10 to 20% host CPU
speed. With the QEMU accelerator, which tries to run
the target code natively on the host processor, QEMU
runs at near native speed. This accelerator, however, is
only available for x86 emulated on x86 host processors.

While working on the FAST simulators[4], we have
ported QEMU to run on the embedded PPC405 and
are able to boot unmodified x86 Linux images and run
unmodified x86 applications. On average, it runs at about
5 MIPS.

In order to correctly model the SMP environment,
synchronization operations need to be implemented pre-
cisely. Since the PPC405 caches are incoherent, they
need to be turned off. The Load and Reserve instruction
(lwarx) and Store Conditional instruction (stwcx) pair
is known only to guarantee local atomicity. Memory
operations across the bus may get interleaved or out
of order. Hence, it is impossible to implement an SMP
environment without additional mechanisms. Message
passing protocols can be used to ensure atomicity.

VI. RAMP-WHITE STATUS AND FUTURE PLANS

The development of the RAMP-White prototype is
currently ongoing at UT-Austin. The current devel-
opment platform utilizes a Xilinx XUP development
board which holds one Virtex-II Pro 30 FPGA with
two PowerPC 405 cores. We are presently working on
validating and verifying the functionality of a baseline
configuration platform. The platform is configured as a
dual-core PPC405 shared-memory machine that uses the
intersection unit and network interface to share memory.
The network interface communicates through a ring
topology.

Future plans for the development of the platform will
include further integration of additional IP cores includ-
ing a parametrizable network router, processor support

for the Leon3 Sparc V8 soft-core, as well as peripheral
support from the open-source GRLib IP library.

REFERENCES

[1] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator.
In USENIX 2005 Annual Technical Conference, FREENIX Track,
pages 41–46, 2005.

[2] Nathan L. Binkert, Erik G. Hallnor, and Steven K. Reinhardt.
Network-Oriented Full-System Simulation using M5. InSixth
Workshop on Computer Architecture Evaluation using Commerical
Workloads (CAECW), February 2003.

[3] Patrick Bohrer, James Peterson, Mootaz Elnozahy, Ram Raja-
mony, Ahmed Gheith, Ron Rockhold, Charles Lefurgy, Hazim
Shafi, Tarun Nakra, Rick Simpson, Evan Speight, Kartik Sudeep,
Eric Van Hensbergen, and Lixin Zhang. Mambo: a full system
simulator for the powerpc architecture.SIGMETRICS Perform.
Eval. Rev., 31(4):8–12, 2004.

[4] Derek Chiou, Huzefa Sanjeliwala, Dam Sunwoo, John Zheng
Xu, and Nikhil Patil. FGPA-based Fast, Cycle-Accurate, Full-
System Simulators. InProceedings of the second Workshop on
Architecture Research using FPGA Platforms, held in conjunction
with HPCA-12, Austin, TX, February 2006.

[5] Peter S. Magnusson et al. Simics: A Full System Simulation
Platform. In IEEE Computer, pages 50–58, February 2002.

[6] Kevin P. Lawton. Bochs: A Portable PC Emulator for Unix/X.
Linux J., 1996(29es):7, 1996.

[7] Njuguna Njoroge, Jared Casper, Sewook Wee, Teslyar Yuriy,
Daxia Ge, Christos Kozyrakis, , and Kunle Olukotun. Atlas:
A chip-multiprocessor with transactional memory support.In
Proceedings of the Conference on Design Automation and Test
in Europe (DATE), Nice, France, April 2007, pages ??–??, 2007.

[8] David Patterson, Arvind, Krste Asanović, Derek Chiou,James C.
Hoe, Christoforos Kozyrakis, Shih-Lien Lu, Jan Rabaey, and
John Wawrzynek. RAMP: Research Accelerator for Multiple
Processors. InProceedings of Hot Chips 18, Palo Alto, CA, August
2006.

9



VII. A PPENDIX A: I MPLEMENTATION

SPECIFICATION

A. Abstract Type Definitions

The bit widths of the various interfaces and messages
are presented for a baseline configuration of RAMP
White.

Type Size Description

paddr t 32 Processor address - initially
defined to be 32bits to di-
rectly support the 32bit pro-
cessors selected for the sys-
tem

datat 64 to variable Data word used in the system

dmask 8 One-hot byte-enable for
memory word writing

mem cmd 1 Readwrite command for
MC

msg t 4 Network message type

gaddrt 32 Global address - Node based
address to allow for segmen-
tation of the address space
into multiple regions and al-
low support large memories

nodet 10 Node identifier allows ad-
dressing of 1024 processing
elements

net tag t 4 Network message tag for
matching

net msgsize t 2 Size of the network message
payload

nodemsg t variable Component message with
variable length to support
variable data sizes

TABLE VI

GENERAL ABSTRACTTYPE DEFINITIONS

B. Processor

1) PowerPC: The PPC405 implements a IBM Core-
Connect PLB interface to connect to the data and in-
struction cache controllers on the core. The PPC405 uses
non-coherent I/D caches that are only accessible from
inside the processor. The lack of a snoop port prevents
the direct usage of the hard I/D caches.

2) Leon 3: The Leon3 uses a ARM AMBA interface
as its bus interface. There is a unified bus interface
for instruction and data requests that interfaces with the
MMU in the core. In addition, the core supports a AMBA
slave interface that is used to implement snooping for
cache coherency purposes.

Snooping support in the Leon3 is limited to a sim-
ple invalidation protocol coupled with a write-through
cache. When snooping support is enabled, the data-cache
is synthesized as a dual-ported Block RAM and the
snooping logic through the AMBA slave interface is
enabled. Eventually, we will want a coherent write-back
L2 cache for Leon3 (coupled with a write-through L1).
As of Jan07, there is no support for both a MMU-enabled
core and snooping due to the virtual tagging used in the
core. This is expected to change soon with the addition
of physical tags and the porting effort to support SMP
Linux in the near future by Gaisler Research.

When using the Leon3, we can see the bus adapter
would implement a AMBA AHB slave interface (to
service processor initiated requests) and a AMBA AHB
master interface (to implement a snoop channel into
the L1 caches). Externally, the bus adapter presents a
simple two unidirectional channels that simply transfer
component messages over the channel.

C. Memory Controller (MC)

The memory controller provides a consistent interface
to the physical memory attached to the node, indepen-
dant of the actual implementation technology supported.
As it is necessary to support both the XUP as well
as the BEE2 board, both DDR and DDR2 memory
must be supported with a common interface to presented
externally. With the BEE2 board, 4 DDR2 DIMMs are
connected to a memory controller @ 200Mhz on a single
FPGA. With the XUP board, 1 DDR DIMM is connected
to a memory controller @ 100Mhz on a single FPGA.

10



Name Direction Description

sys signals out Power Management and
CPU Control signals

core clocks in Core Clock Management
(plb,coreclk,JTAG,timer,clkgen,
etc)

rst req out Reset requests from proces-
sor (chip,core,system)

rst state in Reset status of platform
(chip, core, system)

iplbmi in Instruction PLB master input
protocol, 64bit data

iplbmo out Instruction PLB master out-
put protocol, 30bit addr

dplbmi in Data PLB master input pro-
tocol, 64bit data

dplbmo out Data PLB master output pro-
tocol, 32bit addr, 64bit data

iocmi in Instruction scratchpad mem-
ory input protocol

iocmo out Instruction scratchpad mem-
ory output protocol

docmi in Data scratchpad memory in-
put protocol

docmo out Data scratchpad memory
output protocol

dcrmi in Device control register mas-
ter input protocol

dcrmo out Device control register mas-
ter output protocol

irqi in Interrupt inputs

jtagi in JTAG input protocol

jtago out JTAG output protocol

dbgi in Debug input protocol

dbgo out Debug output protocol

trci in Debug trace input protocol

trco out Debug trace output protocol

TABLE VII

PPC405 PORT DEFINITIONS

Name Direction Description

clk in Core clock

rstn in Core reset

ahbi in AMBA master-in protocol

ahbo out AMBA master-out protocol

ahbsi in AMBA slave-in protocol

ahbso out AMBA slave-out protocol

irqi in Processor interrupt inputs

irqo out Processor Interrupt request

dbgi in Debug channel input

dbgo out Debug channel output

TABLE VIII

LEON3 PORT DEFINITIONS

Name Type Direction Description

ahbsi ahbsit proc to adapter AHB slave inputs
from processor for
requests

ahbso ahbsot adapter to proc AHB slave outputs to
processor for replies

ahbmi ahbmit proc to adapter AHB master inputs
from processor snoop
for replies

ahbmo ahbmot adapter to proc AHB master outputs
to processor snoop
for requests

msg in nodemsgt cache to adapter Component
message input
from downstream
cache or IU

msgout nodemsgt adapter to cache Component message
output to downstream
cache or IU

TABLE IX

PROCESSORBUS ADAPTER

11


