
FPGA-Accelerated Simulation Technologies (FAST):

Fast, Full-System, Cycle-Accurate Simulators

Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil A. Patil,
William Reinhart, D. Eric Johnson, Jebediah Keefe and Hari Angepat

The University of Texas at Austin
{derek,sunwoo,turo,npatil,wreinhar,dejohnso,jkeefe,angepat}@ece.utexas.edu

Abstract

This paper describes FAST, a novel simulation methodol-

ogy that can produce simulators that (i) are orders of mag-

nitude faster than comparable simulators, (ii) are cycle-

accurate, (iii) model the entire system running unmodified

applications and operating systems, (iv) provide visibility

with minimal simulation performance impact and (v) are

capable of running current instruction sets such as x86.

It achieves its capabilities by partitioning simulators into

a speculative functional model component that simulates

the instruction set architecture and a timing model com-

ponent that predicts performance. The speculative func-

tional model enables the simulator to be parallelized, im-

plementing the timing model in FPGA hardware for speed

and the functional model using a modified full-system simu-

lators. We currently achieve an average simulation speed of

1.2MIPS running x86 applications on x86 Linux and Win-

dows XP and expect to achieve 10MIPS over time. Such

simulators are useful to virtually all computer system sim-

ulator users ranging from architects, through RTL design-

ers and verifiers to software developers. Sharing a common

simulation/design infrastructure could foster better commu-

nication between these groups, potentially resulting in bet-

ter system designs.

1. Introduction

The ability to accurately, quickly and easily predict prop-

erties of computer systems is useful for computer architects,

designers, software developers and users. Simulators pro-

vide a window into the inner workings of the computer that

helps promote understanding and enable the accurate evalu-

ation of ideas and theories. Because simulators are not sub-

ject to the same constraints as a real implementation, they

are easier to create, modify and observe.

Good simulators are (i) fast (ii) accurate, accurately pre-

dicting whatever metrics are being measured (in this pa-

per, we focus on predicting performance), (iii) complete,

modeling the entire system and able to run unmodified ap-

plications and operating systems, (iv) transparent, provid-

ing visibility into the simulated system, (v) inexpensive,

(vi) current, running current ISAs such as x86 and mod-

eling current mainstream microarchitectures and (vii) easy-

to-use. Many of these properties, however, conflict with

each other, necessitating simulators specialized for a spe-

cific application. For example, architectural simulators of-

ten trade speed for cycle-accuracy while full-system simu-

lators often trade cycle-accuracy for speed.

Industrial and academic architects traditionally use

software-based cycle-accurate simulators to evaluate next

generation processor and system architectures[28, 21, 16, 7,

34, 2, 26, 5, 19, 27, 31, 32]. Such simulators are transpar-

ent, easy-to-use and can be cycle-accurate but are generally

not fast or complete and often not current. Intel’s[15] and

AMD’s[4] fastest true cycle-accurate x86 simulators run at

1KHz to 10KHz which translates to two minutes of simu-

lated time in approximately one to ten years of simulation

time. At such speeds, it is impractical to use real program

runs to explore, evaluate and refine microarchitectures.

Benchmarking and sampling[29, 33, 14] reduce the num-

ber of executed instructions to speed up simulation runs.

Though such techniques can be effective, they rely on sim-

plifying assumptions that, if incorrect, produce incorrect re-

sults. As (i) complex interactions between applications and

the operating system, (ii) the number of external events, (iii)

parallelism and (iv) the potential performance impact of a

rare event all increase over time, what might initially ap-

pear to be a reasonable simplifying assumption might result

in significant prediction inaccuracies.

A fast and accurate simulator could run a real software

stack on real data, thus avoiding the potential unseen inac-

curacies of benchmarking/sampling. In this paper, we ex-

plore a novel way to create fast and accurate simulators.

Since modern computer systems use extensive paral-

lelism and high clock frequencies to achieve high perfor-

1

Preprint: To Appear in MICRO 2007.

mance we argue that parallelism is required to significantly

improve cycle-accurate computer simulator performance.

Simulators, however, have traditionally resisted paralleliza-

tion. There are, for example, no commercial parallel Ver-

ilog simulators. Recent studies of parallelizing processor

simulators[24, 12] have yielded only modest speedups, in

the two to six range, probably due to the tight interdepen-

dence of parallel activity in modern microprocessors.

Because hardware inherently exploits the fine-grain par-

allelism that pervades cycle-accurate simulators, a hardware

host (we use the term host to mean the system that runs

the simulator and the term target to mean the system be-

ing simulated) could support a significant amount of par-

allelism and, therefore, high simulation speeds. Hardware

is, however, difficult and time consuming to develop. To

make hardware-based simulation viable, it is necessary to

simplify the hardware development process. One poten-

tial simplification is to implement part of the simulator in

software and part of the simulator in hardware. Incorrect

partitioning, however, could result in lower performance

than a pure software simulator. An Intel experiment that

moved the Simplescalar sim-outorder L1 data cache into a

field-programmable gate-array (FPGA) sitting on the front-

side bus of the host Pentium III processor (as close as an

FPGA can get to a standard processor) produced lower per-

formance than the original, unmodified Simplescalar[30].

This paper describes FPGA-Accelerated Simulation

Technologies (FAST)[8, 9, 10] simulators, a new class of

simulators that use FPGAs to generate very fast, com-

plete, cycle-accurate and current simulators that are rel-

atively inexpensive, transparent and easy-to-use. FAST

simulators are based on a variant of the well-known func-

tional model/timing model partitioning that is used in many

pure software simulators including FastSim[28], Timing-

First[20], Asim[16], an IBM Power simulator[21] and cer-

tain versions of Simplescalar[2] and M5[5]. FAST simu-

lators are different than traditional functional/timing par-

titioned simulators because they leverage two novel real-

izations: (i) the communication between the functional and

timing partitions can be made latency-tolerant, allowing the

functional model to run efficiently in parallel with the tim-

ing model and (ii) that the timing model is very parallel and

very silicon-efficient compared to a full implementation of

the target architecture, enabling most timing models to be

implemented in a single FPGA.

The next section gives an overview of the architecture

of FAST simulators. Section 3 then gives important de-

tails about how FAST simulators run in parallel and how

the full system, including interrupts and exceptions, is mod-

eled. Section 4 gives status and performance of our proto-

type cycle-accurate simulator that models an out-of-order,

branch-predicted processor, executes the x86 ISA and runs

unmodified applications on top of unmodified Linux and

Windows XP. Though the FAST methodology also supports

multiprocessor simulation, due to space constraints this pa-

per addresses only uniprocessor simulation. Section 5 com-

pares and contrasts FAST to closely related work. Section 6

gives some future work and conclusions.

2. FAST Partitioning

There is a wide range of functional/timing partitioned

simulators, each with different tradeoffs. In this section,

we first give a brief overview of the partitioning and then

describe the specific partitioning used in FAST.

The functional model (i) simulates the computer at the

functional level including the instruction set architecture

(ISA) and peripherals, and (ii) executes application, oper-

ating system and BIOS code. The timing model simulates

only the microarchitectural structures that affect the desired

metrics. For example, to predict performance, we need to

model such structures as pipeline registers, arbiters and as-

sociativity. Because data values are often not required to

predict performance, data path components such as ALUs,

data register values and cache values are generally not in-

cluded in the timing model. Even much of the control struc-

ture, such as decoding, can be simplified using informa-

tion from the functional model. The orthogonality between

functional and timing models simplifies each significantly.

The functional model sequentially executes the program,

generating a functional path instruction trace, and pipes that

stream to the timing model. It is often the case that the func-

tional path is equivalent to the right path where branches

are always correctly predicted. Each instruction entry in

the trace includes everything needed by the timing model

that the functional model can conveniently provide, such as

a fixed-length opcode, instruction size, source, destination

and condition code architectural register names, instruction

and data virtual addresses and data written to special regis-

ters, such as software-filled TLB entries. Additional and/or

redundant information, such as physical addresses or data,

can also be passed in the trace to further simplify the timing

model at the expense of a larger trace.

In the example shown in Figure 1, the functional model

executes and outputs eight instructions to the timing model

via the trace buffer (TB). Each logical TB entry contains in-

formation used by multiple stages in the timing model and

is thus not deallocated until the instruction is fully commit-

ted. Note that the instructions are not necessarily produced

by the functional model in lockstep with the timing model.

The target is a single issue machine with three functional

units, ALU (+), Load/Store-DataCache ($) and Branch (B),

and the ability to write up to three instructions (one per

functional unit) to the ROB per cycle. The timing model

first “fetches” from the TB, then cycle-by-cycle “processes”

each instruction by arbitrating for and consuming the re-

2

Preprint: To Appear in MICRO 2007.

Functional
Model

B
+

$

RS

ROB

Decode

Fetch

$

1

5

h
e

a
d

ta
il

1

2
3

c
o

m
m

it
c
o

m
m

it 4
5

Functional
Model

B
+

$

RS

ROB

Decode

Fetch

$

1
2

5

h
e

a
d

ta
il

1

2

3

c
o

m
m

it
c
o

m
m

it 4
5

Functional
Model

B
+

$

RS

ROB

Decode

Fetch

$

1
2
3

5

h
e

a
d

ta
il

1

2

3

c
o

m
m

it
c
o

m
m

it 4
5

Functional
Model

B
+

$

RS

ROB

Decode

Fetch

$

1
2
3
4
5

h
e

a
d ta

il

1

2

3

c
o

m
m

it
c
o

m
m

it

4

5

Functional
Model

B
+

$

RS

ROB

Decode

Fetch

$

1
2
3
4
5 h

e
a

d
ta

il

1

23

c
o

m
m

it
c
o

m
m

it

4

5

6
7
8

Functional
Model

B
+

$

RS

ROB

Decode

Fetch

$

1
2
3
4
5
6 h

e
a

d
ta

il

1

23

c
o

m
m

it
c
o

m
m

it

4

5

6

7
8

Functional
Model

B
+

$

RS

ROB

Decode

Fetch

$

1
2
3
4
5
6
7

ta
il

&
 h

e
a

d

1

2

3

c
o

m
m

it
c
o

m
m

it

4

5

7

8

6

Functional
Model

B
+

$

RS

ROB

Decode

Fetch

$

2
3
4
5
6
7
8

2

3

c
o

m
m

it
c
o

m
m

it

4

5

7

8

6

1

1: R0 = MEM[R1]
2: R0 = MEM[R0]

3: R0 = R0 + R3

4: R4 = R5 + R6

5: R1 = MEM[R0]

6: R6 = R7 + R8

T = 0 T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7

T
im

in
g

 M
o

d
e

l
T

ra
c

e
 B

u
ff

e
r

h
e

a
d

ta
il

Figure 1. An Example of a FAST Simulator

quired resources in the correct order, thus accurately pre-

dicting what would happen in the target microarchitecture.

At T = 3, I2 waits in the reservation station, blocked by

a dependency on I1 and a functional unit hazard. At T = 4,

I3 waits in the reservation station for I2. At T = 5, I4 goes

directly to the ALU since it has no dependencies. At T = 6,

I1 and I4 complete and go to the ROB, while I2 accepts I1’s

bypassed data and goes to the DataCache unit. At T = 7, I1

is committed by the ROB that informs the TB to deallocate

the TB entry by advancing the commit pointer and the FM

for roll back management (see Section 3.2.)

The simulation is very accurate because it models all

register-to-register transitions in a cycle-by-cycle fashion.

It is, however, very computationally-intensive since every

instruction is moved through every pipeline stage, each of

which might perform multiple associative lookups, arbitra-

tions, etc. Generally, much more computation is done in the

timing model than in the functional model.

2.1. Target and Host Speculation

We call the dynamic instruction stream that would be

fetched by the target microarchitecture the target path or

correct path. The functional path is sometimes differ-

ent than the target path, such as when a branch is mis-

speculated causing wrong path instructions to be fetched

and executed until the mis-speculation is resolved. The

functional model must somehow determine when the two

paths diverge and change its own path to conform to the tar-

get path. Instructions on the functional path that are not on

the target path are called incorrect path instructions.

FAST simulators simulate the branch predictor to deter-

mine when mis-speculation and branch resolution occurs.

Since most branch predictors depend on timing information,

the branch predictor must be implemented in the timing

model, though a branch predictor predictor can be imple-

mented in the functional model to keep the functional path

as similar as possible to the target path. On a branch mis-

prediction, the timing model notifies the functional model

to produce the correct wrong path instructions. On a branch

resolution, the timing model notifies the functional model

to produce the correct right path instructions.

To facilitate communication, every dynamic instruction

passed from the functional model to the timing model is

assigned an instruction number (IN). The functional model

supports a set pc command that takes two arguments, an

IN and a program counter (PC). Calling set pc rolls back

the functional model to that IN, removing the effects of

that instruction, changing to the new PC and then executing

from that PC on. set pc can be used to correct path diver-

gences, including those caused by branch mis-speculations

and resolutions. The more accurate the target speculation,

implying a faster target, the less the paths diverge and the

faster a FAST simulator simulates that target.

The timing model does not need to be rolled back due to

mis-prediction. Since branch prediction is performed at the

head of the pipeline, the timing model ignores incorrect path

instructions and stalls until correct path instructions arrive.

Figure 2 shows an example of how mis-speculation is

handled in a FAST simulator. I2 (I is an instruction pointer,

not the dynamic instruction number IN) is a branch that is

mis-speculated. At time T = 1, the functional model is no-

tified that I2 is mis-speculated and to execute I4∗ (we use

either a “*” or a dark border to indicate a mis-speculated

instruction) next. The timing model stalls until the wrong

path instructions arrive. At T = 1+m (the “1” is the target

cycle and the “m” indicates a later host time) the functional

model has written two mis-speculated instructions, I4∗ and

3

Preprint: To Appear in MICRO 2007.

Functional
Model

B
+

$

RS

ROB

Decode

Fetch

$

1
2

5

h
e

a
d

ta
il

1

2

3

c
o

m
m

it 4
5

1: R0 = R0 + R2

2: BRz L1

3: R0 = R0 + R3

4: L1:

 R0 = R0 + R4

5: ...

T = 1

Functional
Model

B
+

$

RS

ROB

Decode

Fetch

$

1
2 h

e
a

d
ta

il

1

2

4

c
o

m
m

it 5

T = 1+m

M

Functional
Model

B
+

$

RS

ROB

Decode

Fetch

$

1
2
4* h

e
a

d
ta

il

1

2

4

c
o

m
m

it 5

T = 2+m

6

Functional
Model

B
+

$

RS

ROB

Decode

Fetch

$

1
2
4*
5* h

e
a

d
ta

il

1

2

4

c
o

m
m

it

5

T=3+m

6
7
8

R

Functional
Model

B
+

$

RS

ROB

Decode

Fetch

$

1
2
4*
5*
3
4
5

h
e

a
d

ta
il

1

2

4

c
o

m
m

it

5

T=3+m+n

3
4
5

Functional
Model

B
+

$

RS

ROB

Decode

Fetch

$

2
4*
5*
3
4
5

h
e

a
d

ta
il

1

2

4

c
o

m
m

it

5

T=4+m+n

3

4
5

T
im

in
g

 M
o

d
e

l
T

ra
c

e
 B

u
ff

e
r

Figure 2. Handling Mis-Speculation

I5∗ to the trace buffer, overwriting the incorrect path in-

structions I3, I4 and I5. During the next two cycles, the tim-

ing model fetches I4∗ and I5∗ respectively and feeds them

to the pipeline. At time T = 3 + m, the timing model re-

solves the branch and notifies the functional model that then

produces correct path instructions overwriting the incorrect

path instructions by time T = 3 + m + n. The next cy-

cle, the timing model fetches the next instruction, pushes it

to Fetch and commits I1 by advancing the commit pointer.

The timing model notifies the functional model of commits

so that the functional model can release rollback resources.

Out-of-order targets are simulated in the same way as in-

order targets. Since out-of-order targets fetch in-order, the

functional path is still likely to closely match the target path.

OOO processors provide the illusion that instructions are

executed in-order even if they execute out-of-order, mean-

ing the in-order execution of the functional model will still

likely be functionally correct. Consequently, out-of-order

execution alone does not cause roll back1.

3. Making FAST Fast and Complete

The main contribution of FAST is how the func-

tional/timing partitioning is leveraged to efficiently par-

allelize simulators at two levels: (i) within the timing

model and (ii) between the timing model and the functional

model. Timing models are very lightweight, requiring few

resources, but require very frequent, low-latency commu-

nication between timing model modules making hardware

an ideal host platform. To the best of our knowledge, we

are the first to propose implementing such timing models

1An important exception is parallel access to shared memory, but that

is beyond the scope of this paper.

in hardware/FPGAs. We believe that the FAST prototype

contains the first implementation of an FPGA-based timing

model. The timing model can also be implemented in pure

software, at lower performance.

Since the functional model can roll back and thereby

clean up any incorrect instructions, it can speculatively pro-

ceed, executing each instruction to completion and moving

to the next, without immediate feedback from the timing

model. The functional model can efficiently run in paral-

lel with the timing model as long as the timing model does

not need to resteer the functional model often. To the best

of our knowledge, we are the first to propose parallelizing

on the functional/timing boundary, leveraging functional

model speculation to further relax dependency on commu-

nication. We also believe the FAST prototype is the first

such simulator.

Statistics gathering and processing can be implemented

in hardware, thus avoiding simulation slowdown given suf-

ficient hardware resources. More complex queries that are

normally unaffordable in software simulators are also en-

abled. For example, run-time queries, such as “when does

the number of active functional units drop below 1?”, can

continuously run in hardware at full speed.

3.1. Analytical Model of Simulator Perfor-
mance

To demonstrate why parallelizing between the func-

tional/timing boundary works well, we present a very

simple analytical model of parallel simulator performance

based on Amdahl’s Law. Partition the simulator into two

components, A and B, that run in parallel. Each compo-

nent takes TA and TB seconds per target cycle, including all

one-way communication, that is, nothing needs to be imme-

4

Preprint: To Appear in MICRO 2007.

diately returned for the component producing the commu-

nication to continue making progress.

Round-trip communication, where one component can-

not make progress until a response to a request is received

from the other component, occurs at a fraction F of the to-

tal number of cycles. The communication latency of that

round-trip is Lrt.

There may be additional extra work required to handle

round-trip communication. For example, in a FAST simu-

lator, rolling back over incorrect instructions is extra work

caused by a round-trip communication. The time for that

extra work, which is part of the total latency of the round-

trip, is αAA
/αAB

for the extra overhead on A for an A/B
initiated request and αBA

/αBB
for the extra overhead on B

for a A/B initiated request.

CA (cycles/sec) for A, is:

CA =
1

TA + F × (Lrt + αAA
+ αBA

)

The simulator cycles/sec is the minimum of CA and CB .

T , F , Lrt and α are all functions of the partitioning,

making an efficient partitioning extremely important. A

good partitioning can lead to TA and TB each being signifi-

cantly less than the unpartitioned simulator, since partition-

ing may enable mapping one or more components onto a

different, faster execution platform or each component may

be better optimized for the current execution platform.

This equation shows why it is difficult to parallelize, on

module boundaries, a simulator that combines timing and

functionality in each simulator module. In most cases, ei-

ther (i) one or both modules requires a round-trip almost ev-

ery cycle, making F large and putting communication costs

on the critical path or (ii) TA and/or TB are not significantly

reduced, limiting the amount of performance improvement.

For example, add an infinitely fast FPGA-based L1 iCache

(TB = 0) to a software simulator that runs at 10MIPS (TA

= 100ns) without memory hierarchy simulation. Assuming

a target IPC of 1 and Lrt = 469ns, the parallelized perfor-

mance is 1
100ns+469ns

= 1.8MIPS, or less than one fifth of

the original performance. Even if the original simulator was

infinitely fast, performance could not exceed 2.1MIPS be-

cause of the necessity of a round-trip communication to the

FPGA for every instruction. Also, the latency of the FPGA-

based cache model (αBA
) must be added to the round-trip

latency.

In a FAST simulator, round-trip communication is only

required for every branch mis-speculation and resolution.

Thus, starting with the same assumptions as above, a 92%

branch predictor and a 20% dynamic branch instruction ra-

tio, F = 0.08 × .2 × 2 = 0.032, resulting in a simulation

speed of 1
100ns+.032×469ns

= 8.7MIPS. The factor of two

accounts for the round-trip for branch mis-predict and the

round-trip for branch resolution. If αBA
= 1000ns (ap-

proximately five instructions per basic block plus a roll back

re-execution of five instructions), then the simulation per-

formance becomes 1
100ns+.032×(469ns+1000ns) = 6.8MIPS.

Additionally, the latency of the FPGA-based cache model

is not additive, since it runs in parallel with the functional

model. Thus, the timing model could model the entire

system microarchitecture and not just the cache and still

achieve this performance.

3.2. FAST Functional Model

Since the timing model is implemented in an FPGA, it

might naturally follow that the functional model should be

implemented in the FPGA as well[22]. Though we eventu-

ally plan to do so in an attempt to further improve speed,

writing a full system simulator that boots unmodified Win-

dows and Linux on top of the x86 instruction set is a non-

trivial task. Thus, existing software-based full system simu-

lators are an attractive starting point for a functional model.

Full-system simulators are highly tuned for performance

and microprocessors are the fastest known hardware struc-

tures to execute instruction sets. For these reasons, our cur-

rent prototype FAST simulator uses a software-based full-

system simulator as the functional model. Thus, we support

a full system, including network, disk, video, etc.

FAST functional models generate an instruction trace

and support a set pc operation. Generating a trace is, in

principle, straightforward, since one can generate a trace by

augmenting each instruction execution to also dump that in-

struction to the instruction trace. Performance is impacted

due to the additional operations and memory bandwidth re-

quired. Some of the performance impact of trace gener-

ation can be reduced by compression techniques such as

mirroring translation caches (pass just a basic block num-

ber and addresses rather than all of the instructions in the

basic block) and/or TLBs to remove the need to send phys-

ical addresses, compacting opcodes and so on.

We currently support set pc using periodic software

checkpoints of architectural state along with memory and

I/O logging. At least two checkpoints that leapfrog each

other are maintained to ensure that the functional model can

rollback to any non-committed instruction. As commits re-

turn from the timing model, checkpoints are released and

others are taken. Though these modifications are substan-

tial, they only need to be done once.

3.3. Mapping to Hardware

FAST is subject to hardware/FPGA constraints that are,

in some cases, more restrictive than in software. For ex-

ample, only two-ported memory structures are available in

current FPGAs. Consequently, a twenty-ported memory

needed to implement a particular microarchitecture cannot

5

Preprint: To Appear in MICRO 2007.

be directly implemented in an FPGA. One important point

that is often overlooked, however, is that hardware is much

easier to implement if performance is a secondary concern.

Modern FPGAs run in the 100MHz-200MHz+ range for

reasonable designs. Depending on the desired target cycle

time, multi-cycle operations can be affordable. For exam-

ple, a twenty-ported memory can be simulated by cycling

a dual-ported memory ten times, resulting in 20MHz per-

formance (in fact, Xilinx block RAMs can be clocked at

up to about 550MHz meaning that, with some effort, even

better performance can be obtained.) Of course, care must

be taken to balance the speed of the timing model with the

speed of the functional model to maximize performance.

Using multiple host cycles can dramatically simplify

hardware. For example, highly associative caches and re-

naming multiple instructions per target cycle is trivial if

multiple host cycles are used to model a single target cy-

cle. A similar process, performing an entire operation in the

first target cycle and then delaying the results to correctly

model a multi-cycle target, is commonly done in software

simulators to both simplify the implementation and to ease

verifying correctness while maintaining accuracy.

3.4. Full System Capabilities

In addition to microprocessors, computer systems in-

clude components and peripherals such as memory, disk,

network and video. FAST simulators can also simulate such

components. The functional model simulates the correct

functionality while the timing model predicts component

timing. Like FAST processor models, component timing

models simulate all the delays, resource arbitrations and

queuing components necessary to build an accurate perfor-

mance model of these structures. For example, accurate

disk modeling can be achieved by tracking rotational speed,

head position, buffers, and whether the disk is accelerating

or decelerating. Thus, FAST simulators are capable of sys-

tem cycle-accuracy and not just processor cycle-accuracy.

Accurately handling interrupts and exceptions is criti-

cal to both full system simulation and true cycle-accurate

modeling. The timing model generates interrupts for re-

producibility and passes those interrupts to the functional

model. Exceptions could either be produced by the tim-

ing model (e.g., TLB misses handled in software) or by the

functional model (e.g., arithmetic exceptions.) If the func-

tional model discovers an exception, it indicates that in the

instruction trace. It is, however, the responsibility of the

timing model to signal when an interrupt/exception occurs.

When the timing model detects an interrupt/exception at

the appropriate place, such as when an instruction that will

cause an arithmetic exception reaches the ALU, it freezes,

notifies the functional model to start generating the inter-

rupt/exception handler instructions and waits until those in-

Fetch

BRU

R/S
Rename/

ROB
D

ALU

LdSt Queue

iL1 dL1L2

ResultBus

TLB

MEM

BP

25 25

8

8 8

8

11

1 1

1 1

1 1

1

1 1

1 1

Figure 3. Target µArch With Default Delays

structions arrive in the trace buffer.

4. FAST Prototype

We are in the process of implementing a prototype FAST

system. We have not yet started aggressive performance or

area tuning. Also, due to the current communication inter-

face that will improve over time, we are paying a round-

trip communication cost every two basic blocks rather than

twice per mis-predicted branch. Thus, the numbers pre-

sented here should be seen as a lower bound on the potential

of the FAST approach.

Our current prototype executes the x86 ISA, boots un-

modified Linux kernel versions 2.4 and 2.6 and unmodi-

fied Windows XP. Though any application that would run

on those operating systems should run on the prototype,

we have tested SPECINT2000, MySQL running some test

cases and the Department of Energy’s Sweep3D benchmark

on Linux.

The prototype’s target microarchitecture is shown in Fig-

ure 3. The major stages include Fetch (with a gshare branch

predictor, an iTLB and an L1 instruction cache), Decode,

Rename/ROB, r Reservation Stations, n general-purpose

ALUs, b Branch Units and a simple delay model of memory.

We can support a configurable number of nested branches.

Our target is configured as a two-issue single core with

eight-way 32KB L1 instruction and data caches, an eight-

way 256KB shared L2 cache, 64 ROB entries, 16 shared

reservation stations, 16 load/store queue entries, a 4-way

and 8K BTB gshare branch predictor, multiple branch units,

one load/store unit, eight general-purpose ALUs and up to

four nested branches. The pipeline is between eight and ten

stages deep, not including accesses beyond the L1 caches.

The functional model is based on QEMU[3], an open

source full-system simulator capable of executing x86 as

well as x86-64, PowerPC, Sparc and ARM ISAs. We heav-

ily modified QEMU to support instruction trace and roll

back, including across I/O operations. We have compressed

opcodes to 11bits and instructions down to an average of

6

Preprint: To Appear in MICRO 2007.

about four 32bit words per x86 instruction.

The timing model executes on an FPGA. It is constructed

from configurable hierarchical Modules. The base Modules

consist of structures such as CAMs, FIFOs, memories, reg-

isters and arbiters (currently LRU and round-robin) from

which are built caches and load/store queues from which are

built branch predictors (currently perfect, 2b saturating and

gshare), from which are built our top-level modules, Fetch,

Decode, Rename, Reservation Stations, ALUs, BranchUnit,

Load/StoreUnit and ROB. Like many other simulators such

as Flexus[32], modules of the same type are interchange-

able, enabling quick configuration changes.

Modules are connected by Connectors[10] which are FI-

FOs that enforce timing and throughput constraints. Con-

nectors can be configured for input throughput, output

throughput, minimum latency and maximum transactions

and will also provide statistics gathering and logging capa-

bilities. By specifying parameters to a Connector, one can

do such things as reconfigure a target from a single issue

machine to a multi-issue machine (increasing throughput

and maximum transactions on each Connector), change the

latency or change the number of outstanding transactions

allowed. Using such a scheme, one can quickly and easily

explore a wide range of microarchitectures.

The timing model is written in Bluespec[6], a high-level

hardware description language. Bluespec provides pow-

erful features, including parameterized types, that enable

components to be written with parameterized interfaces that

are specified during instantiation.

We have successfully incorporated the FAST prototype

into Intel’s Architect’s WorkBench (AWB)[17], the Asim

infrastructure. By doing so, we have the potential to use

Asim configuration and statistics viewing capabilities and

have also enabled easy integration with other Asim compo-

nents.

4.1. Prototype Limitations

The current prototype has some limitations. Caches are

currently blocking. Resolving mis-predictions currently re-

quire flushing the pipeline through the ROB before right-

path instructions can enter the pipeline. Our simple gshare

branch predictor has fairly low branch prediction accura-

cies. The reservation station implementation limits us to 16

entries. We are working on solving these limitations.

We currently do not model peripherals and DRAM, be-

yond a fixed delay. We also do not model interrupts and

exceptions accurately (though they are handled functionally

correctly.) The prototype does not pass in or store data val-

ues in the timing model beyond those used by the control

path such as software-TLB entries. Thus, we currently do

not handle microarchitectures whose performance is data-

dependent. The current prototype also does not handle cer-

tain architectural mechanisms such as data speculation.

However, FAST can simulate such mechanisms by pro-

viding the timing model with a way to detect that the

functional model has not correctly mis-speculated on the

data and then forcing the functional model down the mis-

speculated path with the wrong data. One way to provide

detection capabilities is to save some data (or an abbre-

viation of the data like a checksum) in the timing model

to be compared with the data that the functional model

used to compute the instruction. Another approach for

data-dependent ALU performance is to have the functional

model do that computation.

4.2. Execution Platforms

Our primary execution platform is a DRC Computer de-

velopment platform[13]. This machine contains a dual-

socket motherboard, where one socket contains an AMD

Opteron 275 (2.2GHz) and the other socket contains a Xil-

inx Virtex4 LX200 (4VLX200) FPGA. The Opteron com-

municates to the FPGA via HyperTransport. In our pro-

totype, the functional model runs on the Opteron and the

timing model runs on the FPGA. DRC provides libraries to

read and write from the FPGA.

We also run on a Xilinx Virtex2Pro FPGA (2VP30) in

the low-cost Xilinx University Platform board that con-

tains a pair of embedded PowerPC 405 processors running

at 300MHz with the functional model running on the em-

bedded PowerPC processor and the timing model running

within the FPGA fabric. Because the serial interface to the

embedded processors is less convenient than the DRC box,

we currently do all development on the DRC platform and

thus do not present numbers from the Xilinx boards.

4.3. Microcode Generation

As is well known, the x86 ISA presents a greater im-

plementation challenge than many other modern ISAs. x86

instructions are variable-length (1B to 15B) CISC instruc-

tions that can potentially specify a loop that performs hun-

dreds or thousands of operations. Virtually all modern im-

plementations of the x86 ISA crack each x86 instruction

into smaller, RISC-like instructions call micro-ops. Our

prototype models instruction cracking. The micro-ops for

each x86 instruction are stored in a microcode table that is

automatically generated by a compiler we have developed.

The compiler takes C code that specifies the functionality

of each instruction (currently taken from a instruction set

simulator) and compiles it into fairly optimized microcode

for that instruction on the specified microarchitecture. The

compiler was developed to ease the process of (i) porting

new ISAs, (ii) generating new instructions and (iii) porting

to new microarchitectures with different microcode. Cur-

7

Preprint: To Appear in MICRO 2007.

App Fraction µOps/inst

Linux-2.4 95.94% 1.15

164.gzip 99.98% 1.34

175.vpr 84.62% 1.19

176.gcc 99.90% 1.30

181.mcf 99.93% 1.17

186.crafty 98.96% 1.15

197.parser 99.74% 1.27

252.eon 52.32% 1.24

253.perlbmk 98.64% 1.29

254.gap 99.80% 1.31

255.vortex 99.91% 1.21

256.bzip2 99.98% 1.29

300.twolf 95.20% 1.25

Linux-2.6 98.02% 1.45

Sweep3D 44.05% 1.19

MySQL 99.15% 1.51

Table 1. Fraction of Dynamic Instructions

Translated to µOps

rently, we generate about 1.27 micro-ops (dynamic aver-

age) per x86 instruction. The microcode table is, to first

order, a lookup table and can be easily populated with x86-

to-microcode mappings from other sources if desired.

Table 1 gives the fraction of the total dynamic instruc-

tions executed that have valid microcode. Our microcode

compiler generated almost all of the microcode automati-

cally. We currently support only about 25% of the dynamic

floating point instructions executed by the SPEC2000 FP

benchmarks. eon and vpr both have a significant number

of floating point operations, lowering the number of instruc-

tions covered. Although it is not difficult to support these

instructions, we have been focusing on the integer bench-

marks. Instructions that we do not yet have automatic trans-

lation for are either inserted into the table by hand or are

replaced with a NOP.

4.4. Prototype Performance

Figure 4 shows the simulation performance of several

benchmarks running on the current FAST prototype exe-

cuting on the DRC platform. The statistics are target path

MIPS and thus include requested wrong path instructions,

but not incorrect instructions. Figure 5 shows the branch

prediction accuracy (including all branches). The FPGA

cycle time is 100MHz. Since simulator performance is de-

pendent on branch prediction accuracy, we ran with three

branch predictor configurations: Perfect, 97%, and gshare

with a four-way, 8K BTB.

Windows XP was quite difficult to get to work on the

prototype because it uses a wider range of instructions and

0

0.5

1

1.5

2

2.5

3

3.5

Li
nu

x

W
in
do

w
s
XP

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip
2

30
0.

tw
ol
f

am
ea

n

M
IP

S

gshare
BP 97%
BP 100%

Figure 4. Simulator Performance

75

80

85

90

95

Li
nu

x

W
in
do

w
s
XP

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip
2

30
0.

tw
ol
f

am
ea

n

B
P

 A
c
c
u

ra
c
y
 (

%
)

Figure 5. Branch Prediction Accuracy

touches more devices than Linux does.

One interesting thing to notice is that branch prediction

performance is not always correlated with simulator perfor-

mance. perlbmk has reasonable branch prediction accu-

racy (90.2%) but still performs poorly. The reason is that

perlbmkmakes several calls to the sleep and time sys-

tem calls that use the HALT instruction. The default QEMU

behavior stops the processor until the timer interrupt fires

when it reenables the perlbmk application (we are not

running any other applications on the system.) During this

time, the timing model gets no instructions, reducing MIPS.

eon is another example where branch prediction accu-

racy is below average but performance is about average.

The reason is eon uses a large number of floating point op-

erations that are not mapped to microcode. Thus, floating

point dependencies within eon are not currently enforced,

resulting in higher simulator performance.

8

Preprint: To Appear in MICRO 2007.

4.5. Bottleneck Analysis

The current bottleneck is the timing model. We had not

paid sufficient attention to the number of host cycles con-

sumed, resulting in a larger number of host cycles per target

cycle than the approximately twenty or so host cycles per

target cycle we feel is reasonable. Also, because the target

microarchitecture is currently less than ideal, especially in

the branch predictor, IPCs range from 0.17 to 0.62. Low

IPCs slow down the simulator because even bubbles con-

sume some host cycles and if there are many bubbles, those

host cycles add up and become a bottleneck. Improving

performance requires both improving the target microarchi-

tecture (e.g., non-blocking caches and better handling of

branch mis-speculation) and going over each module to re-

duce the number of host cycles per target cycle being used.

Any module improvements will automatically be incorpo-

rated into any future design, while an improved microarchi-

tecture will form the basis of future designs and thus likely

automatically incorporated as well.

Because the timing model is currently a bottleneck, we

cannot accurately project future performance using num-

bers generated with hardware. Thus, we also ran QEMU in

a variety of configurations and compared the performance

with that of the total simulator. All runs, including ones

that do not use the FPGA, were done on the DRC System.

Unmodified QEMU runs at about 137MIPS (Linux boot).

We turned off several optimizations, including block chain-

ing, an assembly softMMU and the real timer interrupt, to

make our modifications easier. The performance with those

optimizations turned off is 45.8MIPS.

Performance with tracing and checkpointing support

running with a software verification test rig emulating

a DRC interface is 11.5MIPS. Performance adding a

97% count-based branch predictor that causes rollbacks is

8.6MIPS while a 95% BP is 5.9MIPS. With a software 2bit

branch predictor, performance is 5.1MIPS with BP accura-

cies of 94.8%. If we replace the test rig with an immediate-

commit FPGA-based dummy timing model which appears

to have perfect branch prediction, performance is 5.4MIPS.

With our real Fetch unit and a perfect branch predictor, per-

formance is 4.6MIPS.

We also measured DRC latencies between the Opteron

and the FPGA. The numbers are computed by looping on

the same operation and taking the total time and dividing

by the number of operations.

The minimum latencies are measured by doing opera-

tions to registers very close to the I/O pins of the FPGA

connected to HyperTransport. A user direct read from

the Opteron to the register takes 378ns, a write from the

Opteron takes 287ns and a burst write from the Opteron of

20 32bit words takes 13.3ns/word. Reading from our own

logic (more realistic) takes 469ns while a write takes 307ns

and a burst write of 20 32bit words takes 20ns/word. Cur-

rently, the reads are blocking, a serious issue that eliminates

the benefits of prefetching and transforms what should be a

one-way communication, polling for a set pc or a com-

mit, into a round-trip communication.

Our functional model polls an FPGA queue (1 read for

a commit, 2 reads for a mis-prediction) every other basic

block, incurring 469ns of latency for each blocking read.

Our basic blocks average about 5 instructions for Linux

boot. Thus, every 10 instructions we issue a single read

(assuming a 100% branch predictor). We use burst writes to

write the instruction stream to the FPGA. We average about

20 32bit writes per basic block. Thus, for each pair of basic

blocks, we would add 469ns for the polling reads and 800ns

for the instruction trace writes. At 11.5MIPS (verification

test rig, Linux boot), each instruction takes about 87ns.

Thus, for each pair of basic blocks we take 10 * 87ns +

469ns + 800ns = 2139ns. Each instruction takes 2139ns/10

= 214ns, or 4.7MIPS, which is very close to the measured

real Fetch, perfect BP run performance of 4.6MIPS.

While the current DRC platform supports uncached IO

accesses, future systems are expected to allow for cache-

coherent HyperTransport access from the Opteron. Using

such an interface, Opteron writes can be buffered up in the

cache and automatically written back via coherence when

the FPGA reads those locations, reducing trace writes to

the speeds of cached writes operations. Likewise, Opteron

reads to a shared buffer will read from memory (75ns -

100ns) when there is a new FPGA write to the buffer and

will hit in the cache when there are no new FPGA writes.

Instruction commits and branch mis-speculates and resolu-

tions will be written by the FPGA into a dedicated cache-

line sized location within the Opteron memory. Commit

writes will be aggregated, while branch mis-predicts and

resolutions will be written immediately. Thus, the cost of a

poll, currently 938ns per 14 instructions, will drop to (75ns

* 2) + 19ns (estimate to do 19 cached reads) per 20 * 7

instructions = 1.2ns/instruction. Thus, we should achieve

performance very similar to the soft timing model, 95% BP

performance of 5.9MIPS, assuming a fast timing model.

QEMU can be much more optimized. For example,

block chaining (jumping directly from one basic block to

the next without returning to the block scheduler) was re-

moved to allow us to implement polling the timing model in

the block scheduler. Block chaining could be re-introduced

by inserting the FPGA poll code (a load, a compare and a

branch) in each block rather than in the block scheduler. By

reintroducing optimizations that were turned off for expedi-

ency and removing debug code, we believe QEMU perfor-

mance can be significantly increased.

9

Preprint: To Appear in MICRO 2007.

0

20

40

60

80

100

120

10
00

00

13
00

00
0

25
00

00
0

37
00

00
0

49
00

00
0

61
00

00
0

73
00

00
0

85
00

00
0

97
00

00
0

1.
1E

+0
7

1.
2E

+0
7

1.
3E

+0
7

1.
5E

+0
7

1.
6E

+0
7

1.
7E

+0
7

1.
8E

+0
7

1.
9E

+0
7

2.
1E

+0
7

Basic Block

P
e
rc

e
n

ta
g

e

I-Cache Hit Rate

BP Accuracy

Pipeline Drain Percentage

Figure 6. A Statistic Trace

4.6. Statistics Gathering

FAST simulators can gather statistics with little to no

simulation performance degradation since hardware can be

dedicated to gather and aggregate statistics. Figure 6 shows

a combined graph of some of the counter-based statistics

that our current prototype gathers. These graphs show three

performance metrics while booting Linux: pipe drain cy-

cles due to branch mis-prediction, iCache hits and branch

prediction accuracy. The statistics are gathered every 100K

basic blocks.

The phases of the Linux boot can be easily seen in the

trace. The beginning of the trace is running through the

BIOS that is comprised of many branches that are executed

only once explaining the large number of branch mispre-

dictions. Since there is a low limit on the number of out-

standing branches and a small number of instructions be-

tween branches, however, the percentage of time spent in

pipe drains are bounded in that region of the code. The

relatively flat iCache and BP period of time following is

the Linux kernel being decompressed. Then the OS really

starts running accounting for decreased BP and iCache hits

and increased pipe drains.

Our long term plans include the logging/tracing statis-

tics that will provide substantially more powerful and more

configurable statistics gathering capabilities.

4.7. FPGA Issues and Lessons

The FPGA resources required for a complete superscalar

processor are fairly minimal. The percentages listed in Ta-

ble 2 are the percentage of the total number of resources

in a Virtex4 LX200 that has 89,088 slices and 336 Block

RAMs. We vary the issue width from one to eight through-

Issue Width 1 2 4 8

User Logic 32.84% 32.76% 32.81% 32.87%

Block RAMs 50.0% 51.2% 51.2% 51.2%

Table 2. Fraction of a Virtex4 LX200 Con-
sumed by Default FAST Timing Model

out the entire pipeline. All configurations met the 100MHz

target cycle time without optimization for time or space. In

particular, we know the ubiquitous Connectors are under-

optimized regarding area, especially in the block RAMs.

Thus, we expect these numbers will improve over time.

The timing model was written initially without signifi-

cant optimization for FPGA routing and placement. While

this allowed rapid development times, such a strategy is

not without cost. In particular, while developing a unified

statistics tracing fabric, a temporary mechanism was imple-

mented in each Module to track relevant metrics. Collect-

ing and piping this data out of the FPGA required signif-

icant global routing resources that limited the number of

metrics tracked as well as impacted FPGA timing closure.

We are developing a tree-based statistics network that will

flow back through the Connectors, ensuring distributed and

easy resource routing.

By encapsulating FPGA-specific optimizations in li-

brary components such as the statistics network, we are

able to maintain rapid development time without sacrific-

ing area/performance. As our simulation library expands

through Modules and Connectors, we incorporate these

lessons to ensure that future users will not run into similar

problems.

A fresh build consisting of a compile (Bluespec → Ver-

ilog), synthesis (Verilog → Netlist) and place-and-route

(Netlist → bit file) takes a total of about two hours. We are

implementing support for incremental builds that should re-

duce time by only rebuilding what has changed rather than

the entire design.

Debugging hardware is definitely more difficult than de-

bugging software. In particular, observability into running

hardware is far less than observability into running soft-

ware. Thus, determining where performance is being lost

in the hardware has been difficult. We will address the

observability issue by introducing logging/tracing statistics

support with triggering (start, stop and dump logs/traces

based on user-specified criteria) and user-specified aggre-

gation/compression into the Connectors in the near future.

5. Related Work

FAST is most similar to FastSim[28] that is partitioned

across a functional model and a timing model and uses roll

10

Preprint: To Appear in MICRO 2007.

back to return to the right path after executing down the

wrong path as required by the target. FastSim’s functional

model calls the timing model branch predictor every branch

to determine if the branch is mis-speculated, in which case

the functional model goes down the wrong path immedi-

ately. Thus, a FastSim simulator never needs to rollback

for a branch mis-speculation, only for a branch resolution.

Though a FAST functional model could also either read

branch predictor information every branch (round-trip com-

munication) or implement its own branch predictor predic-

tor to make the functional path much more similar to the

target path, it is also capable of executing the right path be-

yond the mis-speculated branch for some time before the

timing model corrects it.

FastSim uses instrumented binaries as its functional

model, making full-system simulation very difficult to sup-

port whereas our FAST prototype uses a full-system sim-

ulator as a functional model. Also, FastSim uses simplifi-

cations that reduce accuracy for some microarchitectures.

For example, when a load/store is selected by the load/store

queue to be issued to the cache, a cache simulator is called

to determine when that operation will complete. In many

modern processors, subsequent load/stores may affect an

earlier load/store in the next level of the memory hierarchy.

The biggest difference, however, is that FAST is archi-

tected to run in parallel. The authors of FastSim noted

that performance of the partitioned simulator was similar to

other approaches and thus introduced memoization to fast-

forward over previously seen microarchitectural states.

Unlike FAST, Asim[16], Timing-First/Opal[20] and cur-

rent M5[5] simulators are always driven by the timing

model. In Opal/M5, an instruction is executed by the func-

tional model exactly when the timing model indicates it

will be executed. In Asim, the functional model is divided

into seven components, each component performing its task

only when the timing model tells it to. Thus, the functional

model does not even fetch an instruction until instructed by

the timing model Fetch module. In such a scheme, the func-

tional model never needs to rollback, since each component

of the instruction execution is performed at the correct time.

However, such a scheme requires continuous communica-

tion between the functional model and the timing model. In

order to operate, both components must run in essentially

lock-step order with each other and generally must round-

trip communicate every simulated cycle. It also requires a

fairly complex, out-of-order, infinitely renamed functional

model. Additionally, some studies, such as perfect branch

predictor studies, cannot be done on Asim, since the func-

tional model relies on the timing model for the address of

the instruction to fetch, and the timing model cannot know

which way a branch will go since it does not implement

functionality.

Earlier versions of M5 and some versions of Sim-

Simulator ISA µarch Speed OS

Intel x86-64 Core 2 1-10KHz Y

AMD x86-64 Opteron 1-10KHz Y

IBM Power Power5 200KIPS Y

Freescale PPC e500 80KIPS N

PTLSim x86-64 Athlon 270KIPS Y

sim-outorder Alpha 21264 740KIPS N

GEMS Sparc generic 69KIPS Y

FAST x86 generic 1.2MIPS Y

Table 3. Software Simulator Performance

plescalar used a scheme that reserved all necessary microar-

chitectural structures at the time an instruction is fetched.

Such a scheme is inherently inaccurate because a later in-

struction can never contend with an earlier one.

Though all functional/timing partitioned simulators ben-

efit from the complexity reduction that the orthogonality

buys, they are still inherently slow due to the large num-

ber of tasks in the timing model required to simulate com-

plex and/or parallel processors. Since the functional mod-

els in such simulators consume a very small fraction of the

total cycles, their performance is often ignored and under-

optimized. The slowness of such simulators often make it

impractical to provide full-system support.

We have surveyed and run software cycle-accurate or

near cycle-accurate simulators from a variety of different

industry and academic sources. We present performance

numbers in Table 3. The OS column indicates whether the

simulator simulates the full-system.

The first four simulators (Intel[15], AMD[4], IBM[35]

and Freescale[18]) are from industry. The numbers reported

are averages. PTLSim is an open-source, full-system, cycle-

accurate x86-64 simulator that runs purely in software. The

reported performance number[34] of 415KHz (270KIPS)

is for one benchmark, rsync. Accuracy is claimed to be

within 5%. PTLSim is extremely fast for a pure soft-

ware simulator, but it appears to have already been highly

tuned. sim-outorder is the detailed Simplescalar[2] simula-

tor. GEMS[19] is a cycle-accurate simulator from the Uni-

versity of Wisconsin. The sim-outorder and GEMS runs

were both done on the DRC platform.

5.1. Hardware Simulation/Prototyping

HASim[11] uses Asim-like partitioning but imple-

mented in fully in FPGAs. Because round-trip commu-

nication is required for every simulated target cycle, both

the functional model (an infinitely renamed, superscalar

processor) and the timing model must be implemented in

closely coupled hardware to ensure the low latencies re-

quired for high performance.

11

Preprint: To Appear in MICRO 2007.

If RTL is available, which is obviously not possible dur-

ing architectural exploration, one could retarget it or part

of it for one or more FPGAs or other programmable de-

vices. Unfortunately, only the smallest current processors

fit into a single FPGA; most take much more. For exam-

ple, Intel was recently able to fit a single Pentium (3.1M

transistors, circa 1993) into the largest Xilinx Virtex4 part

(4VLX200). Though most ARM processors will fit into

a Xilinx 2V8000 (about half the size of the 4VLX200), a

CORTEX-A8 core barely fits into Xilinx’s largest FPGA

(5VLX330)[25]. FAST simulators, on the other hand, are

able to fit a modern processor into the same part and do not

require full RTL to run.

Several companies such as Cadence (Quick-

turn/Palladium), Axis, Mentor/IKOS/Virtual Machine

Wires, Synopsys, Synplicity and EVE/Tharas sell FPGA-

based accelerators, emulators or tools that take arbitrary

RTL and map it to hardware to improve simulation perfor-

mance. They are often difficult to map to and tend to be

very expensive.

The RAMP collaboration[23] is building the necessary

infrastructure to build 1000 core machines that run real soft-

ware including OSs. RAMP systems, however, are cycle-

accurate only if the real RTL of all components, including

the processors, is used; otherwise, FAST-like timing model

technology is required.

6. Future Work and Conclusions

We are continuing to improve our FAST simulator proto-

type. We are currently fixing our mis-speculation flush and

improving the configurability of our generic timing model

and will be adding additional timing model modules for sys-

tem devices such as disk and network. We will then have a

fast, full-system uniprocessor simulator that we intend to

use to study a variety of topics, starting with the effects

of real applications/real operating systems on architectural

mechanisms. The long term plan of getting a timing model

calibrated to real hardware is to help industry build a model

of a modern processor. The speed, accuracy and observ-

ability of the simulator should provide us with the ability

to observe new phenomena that were difficult to discover in

the past. We plan to study applications in order to improve

their performance both by changing code and modifying the

microarchitecture. We will also evaluate various forms of

hardware support for performance observation and tuning.

We plan to add support for multiprocessor targets such

as CMPs. We plan to use RAMP-White[1] as a parallel

host for the functional model and thus eliminate the slow-

down generally associated with simulating parallel targets.

The roll back capability of the functional model described

in this paper along with other capabilities not described in

this paper will be used to reorder memory operations to tar-

get order when necessary.

We have started the process of incorporating power es-

timation into the timing model. The initial goal is not to

perfectly estimate power, but to provide relative power es-

timates that will permit architects to compare different ar-

chitectures. Such a simulator can also be used by applica-

tion writers to optimize power algorithms and to better write

code that trades off power for performance.

In conclusion, we have developed a simulation method-

ology and built a simulator using that methodology that has

more desirable properties than are normally found in a sin-

gle simulator. A version that boots Windows XP and Linux

is running today. Though implementing the first version of

such a simulator has been more difficult than a more con-

ventional software simulator, we are achieving performance

that exceeds any similarly-accurate simulator that we are

aware of. In addition, most of the implementation difficul-

ties, from incorporating tracing and roll back capabilities

into a full-system simulator to reducing the number of host

cycles consumed by timing model Modules, only need to be

solved once and can then be easily reused in future designs.

We are developing tools, such as the microcode compiler,

to further reduce the effort to build and modify such sim-

ulators. We expect that FAST simulators, with their com-

bination of speed, accuracy and observability, will provide

much insight into the inner workings of computer systems.

7. Acknowledgments

This work was partially supported by a Department

of Energy Early Career Principal Investigator Award

(ER25686), the National Science Foundation (0615352,

0541416), grants and equipment donations from Intel,

equipment (including one DRC Computer system and the

loan of another) and software donations from Xilinx, Fac-

ulty Awards from IBM, and a gift from Freescale. We would

like to thank all of them for their generous support.

We would like to thank Joel Emer of Intel for helpful

discussions and assistance in integrating FAST into AWB,

Paul Hartke of Xilinx for his help with everything FPGAs

and Michael Monkang Chu of DRC Computer for his dili-

gent support of the DRC product.

References

[1] H. Angepat, D. Sunwoo, and D. Chiou. RAMP-White: An

FPGA-Based Coherent Shared Memory Parallel Computer

Emulator. In 8th Annual Austin CAS Conference, Mar. 2007.
[2] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An Infras-

tructure for Computer System Modeling. IEEE Computer,

35(2):59–67, Feb. 2002.
[3] F. Bellard. QEMU, a Fast and Portable Dynamic Translator.

In USENIX 2005 Annual Technical Conference, FREENIX

Track, pages 41–46, 2005.

12

Preprint: To Appear in MICRO 2007.

[4] R. Bhargava, L. Barnes, and B. Sander. AMD. personal

email communication.
[5] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt. Network-

Oriented Full-System Simulation using M5. In Sixth Work-

shop on Computer Architecture Evaluation using Commeri-

cal Workloads (CAECW), Feb. 2003.
[6] Bluespec webpage. http://www.bluespec.com.
[7] P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony,

A. Gheith, R. Rockhold, C. Lefurgy, H. Shafi, T. Nakra,

R. Simpson, E. Speight, K. Sudeep, E. V. Hensbergen,

and L. Zhang. Mambo: A Full System Simulator for the

PowerPC Architecture. SIGMETRICS Perform. Eval. Rev.,

31(4):8–12, 2004.
[8] D. Chiou. FAST: FPGA-based Acceleration of Simulator

Timing models. In Proceedings of the first Workshop on

Architecture Research using FPGA Platforms, held in con-

junction with HPCA-11, San Francisco, CA, Feb. 2005.
[9] D. Chiou, H. Sanjeliwala, D. Sunwoo, J. Z. Xu, and N. Patil.

FPGA-based Fast, Cycle-Accurate, Full-System Simulators.

In Proceedings of the second Workshop on Architecture Re-

search using FPGA Platforms, held in conjunction with

HPCA-12, Austin, TX, Feb. 2006.
[10] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. H. Reinhart,

D. E. Johnson, and Z. Xu. The FAST Methodology for High-

Speed SoC/Computer Simulation. In Proceedings of Inter-

national Conference on Computer-Aided Design (ICCAD),

2007.
[11] N. Dave, M. Pellauer, Arvind, and J. Emer. Implementing

a Functional/Timing Partitioned Microprocessor Simulator

with an FPGA. In Proceedings of the Workshop on Archi-

tecture Research using FPGA Platforms, held at HPCA-12,

Feb. 2006.
[12] J. Donald and M. Martonosi. An Efficient, Practical Paral-

lelization Methodology for Multicore Architecture Simula-

tion. Computer Architecture Letters, 5, Aug 2006.
[13] DRC Computer. http://www.drccomputer.com/.
[14] L. Eeckhout, R. H. B. Jr., B. Stougie, K. D. Bosschere, and

L. K. John. Control Flow Modeling in Statistical Simula-

tion for Accurate and Efficient Processor Design Studies. In

Proceedings of the International Symposium on Computer

Architecture (ISCA), June 2004.
[15] J. Emer. HASim talk at RAMP Retreat, June 2007.
[16] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk,

S. Manne, S. S. Mukherjee, H. Patil, S. Wallace, N. Binkert,

R. Espasa, and T. Juan. Asim: A performance model frame-

work. Computer, 35(2):68–76, 2002.
[17] J. Emer, C. Beckmann, and M. Pellauer. AWB: The Asim

Architect’s Workbench. In Proceedings of MOBS 2007, San

Diego, CA, June 2007.
[18] J. Holt. Freescale. personal email communication, July

2007.
[19] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,

M. Xu, A. R. Alamelden, K. E. Moore, M. D. Hill, and D. A.

Wood. Multifacet’s General Execution-driven Multiproces-

sor Simulator (GEMS) Toolset. submitted to Computer Ar-

chitecture News.
[20] C. J. Mauer, M. D. Hill, and D. A. Wood. Full-system

timing-first simulation. In SIGMETRICS ’02: Proceedings

of the 2002 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, pages

108–116, New York, NY, USA, 2002. ACM Press.

[21] M. Moudgill, J.-D. Wellman, and J. H. Moreno. Environ-

ment for PowerPC Microarchitecture Exploration. IEEE Mi-

cro, 19(3):15–25, 1999.
[22] E. Nurvitadhi and J. Hoe. Full-System Architectural Explo-

ration Sandbox. In Proceedings of the Workshop on Archi-

tecture Research using FPGA Platforms, held at HPCA-11,

Feb. 2005.
[23] D. Patterson, Arvind, K. Asanović, D. Chiou, J. C. Hoe,

C. Kozyrakis, S.-L. Lu, , M. Oskin, J. Rabaey, and

J. Wawrzynek. RAMP: Research Accelerator for Multiple

Processors. In Proceedings of Hot Chips 18, Palo Alto, CA,

Aug. 2006.
[24] D. A. Penry, D. Fay, D. Hodgdon, R. Wells, G. Schelle, D. I.

August, and D. Connors. Exploiting Parallelism and Struc-

ture to Accelerate the Simulation of Chip Multi-processors.

In 12th International Symposium on High-Performance

Computer Architecture, pages 27–38, Feb 2006.
[25] S. Ravet. ARM. personal email communication, Sept. 2007.
[26] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod.

Using the SimOS machine simulator to study complex com-

puter systems. ACM Trans. Model. Comput. Simul., 7(1):78–

103, 1997.
[27] L. Schaelicke and M. Parker. ML-RSIM Reference Man-

ual. Technical report, Department of Computer Science and

Engineering, Notre Dame, 2002.
[28] E. Schnarr and J. R. Larus. Fast out-of-order processor simu-

lation using memoization. In Proceedings of the Eight Inter-

national Conference on Architectural Support for Program-

ming Languages and Operating Systems, pages 283–294,

Oct. 1998.
[29] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-

tomatically characterizing large scale program behavior. In

ASPLOS-X: Proceedings of the 10th international confer-

ence on Architectural support for programming languages

and operating systems, pages 45–57. ACM Press, 2002.
[30] T. Suh, H.-H. S. Lee, S.-L. Lu, and J. Shen. Initial Obser-

vations of Hardware/Software Co-Simulation using FPGA

in Architectural Research. In Proceedings of the Workshop

on Architecture Research using FPGA Platforms, held at

HPCA-12, Feb. 2006.
[31] M. Vachharajani, N. Vachharajani, and D. I. August. The

Liberty structural specification language: a high-level mod-

eling language for component reuse. In PLDI ’04: Proceed-

ings of the ACM SIGPLAN 2004 conference on Program-

ming language design and implementation, pages 195–206.

ACM Press, 2004.
[32] T. F. Wenish, R. E. Wunderlich, M. Ferdman, A. Ailamaki,

B. Falsafi, and J. C. Hoe. SimFlex: Statistical Sampling of

Computer Architecture Simulation. IEEE Micro, 26(4):18–

31, July/August 2006.
[33] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe.

Smarts: accelerating microarchitecture simulation via rigor-

ous statistical sampling. In Proceedings of the 30th Annual

International Symposium on Computer Architecture, pages

84–97, 2003.
[34] M. T. Yourst. PTLSim: A Cycle Accurate Full System x86-

64 Microarchitectural Simulator. In Proceedings of ISPASS,

Jan. 2007.
[35] L. Zhang. IBM. personal email communication, Aug. 2007.

13

Preprint: To Appear in MICRO 2007.

