
Implementing Microprocessors from Simplified Descriptions

Nikhil A. Patil
Department of Electrical & Computer Engineering

The University of Texas at Austin

Email: npatil@utexas.edu

Derek Chiou
Department of Electrical & Computer Engineering

The University of Texas at Austin

Email: derek@ece.utexas.edu

Abstract—Despite the proliferation of high-level synthesis tools,

hardware description of microprocessors remains complex. We argue

that much of the incidental complexity can be relieved by untan-

gling the description into separate functional and microarchitectural

components. Such an untangling can be achieved using a high-level

microcode compiler that can generate not only microcode, but also

the micro-instruction format and the interpretations of each control

bit. Simplifying hardware description will help the designer make

better design-space trade-offs, and close the design and verification

loop faster. This paper takes the reader through an implementation

of a simple Y86 processor to qualitatively illustrate the complexity

reduction from the untangling.

I. INTRODUCTION

Despite strides in high-level synthesis tools and techniques, imple-

menting processors remains a complex task. Our goal is to simplify

hardware description of microprocessors.

To make something fundamentally simpler, one must disentan-

gle interwoven concerns. A braid is more complex than indepen-

dent strands of rope. Disentangling the strands allows us to study

each strand independently and scrutinize it for defects. Processor

description entangles the concerns of functional and performance

correctness: it is hard to reason whether a certain change to the

microarchitecture would preserve functional correctness.

The functional specification of a processor is conveniently specified

as a set of instructions operating on a programmer-visible state.

Since instruction-sets are usually backward compatible to allow

software reuse, they tend to grow over time. The canonical example

for this is the x86 ISA, however even ARM and PowerPC, while

originally designed for simplicity, have grown to be quite complex.

In addition, processors have very tight performance requirements and

power budgets that change at each technology node. Thus, over time

functional specifications get increasingly divorced from performance

specifications, further increasing the entanglement of concerns.

Both the disparity between the ISA and the microarchitecture as

well as the sheer size of the instruction set (e.g., there are more than a

thousand x86 instructions, considering all variations) make processor

implementation even more challenging. We argue that the complexity

stemming from ensuring that instructions work as advertised is merely

incidental, and can be alleviated without affecting the ability to

specify inherently complex microarchitectural structures like branch

predictors, caches, out-of-order issue etc. that enhance performance

and save energy. (Note that even if functional correctness can be

automatically guaranteed, e.g., by using formal methods, this does

not actually simplify the description of hardware itself.)

II. MICROCODE COMPILER

Imagine that the user could insert “holes” representing combina-

tional logic anywhere in the hardware description of a processor. And

imagine that a genie automatically filled these holes, while ensuring

rule Rstg2; Ź Execute Stage

let u1 “ stg1 .first()

let x “ case (u1.i alu x) matches

11h0 : u1.rd1

11h1 : u1.rd2

let y “ case (u1.i alu y) matches

21h0 : u1.imm

21h1 : u1.rd1

21h2 : 321h4
let z “ case (u1.i alu k) matches

21h0 : x ` y

21h1 : x ´ y

21h2 : x & y

21h3 : x ^ y

let u2 “ ExecUop { imm: u1.imm, rd1: u1.rd1,

rd2: u1.rd2, alu: z, ¨ ¨ ¨ }
stg1 .deq()

stg2 .enq(u2)

(a) A Bluespec rule implementing the execute stage

ó
rule Rstg2; Ź Execute Stage

let u1 “ stg1 .first()

let x “ #alu x (u1)

let y “ #alu y(u1)

let z “ case (#alu k (u1)) matches

add: x ` y

sub : x ´ y

and: x & y

xor: x ^ y

let u2 “ rAdd (u1, alu, z) Ź extend u1 with field alu

stg1 .deq()

stg2 .enq(u2)

(b) Same code using placeholder functions (#f) and extensible records

Fig. 1. Typical Bluespec code for the execute stage in an in-order processor
pipeline (condition code generation not shown). Syntax for placeholder
functions and record field specifiers has been changed for consistency with
the µL language used in the rest of the paper.

that the implementation adhered to the ISA. Such an approach disen-

tangles the instruction set from the microarchitectural specification,

since the job of implementing instructions is now delegated to the

genie. However, this is a very hard problem, because the genie must

be able to reason about the user’s code (which might even have bugs),

as well as optimize over a large number of axes to come up with

a good solution. However, by restricting where these holes can be

inserted and by asking the user to specify a functional specification of

the description template (implementation with “holes”), it is possible

to make this strategy practical.

Figure 1(a) shows the Bluespec SystemVerilog [1] implementation

of the execute stage of a simple processor pipeline. The rule Rstg2

implements an arithmetic/logic unit with four binary operations

(`, ´, &, ^). There are three instruction-specific decisions to be

made: (a) what is the left input? (b) what is the right input?

and (c) which operation to perform? These decisions are encoded

into control-bits in the micro-instruction at fields i alu x, i alu y,

and i alu k. It is quite easy to make mistakes in encoding and

decoding these bits (in the microcode table and the case statements

respectively). We wish to replace such references to control bits by

holes that will be filled in automatically. These holes are specified as

placeholder functions (#alu x, #alu y, #alu k) in fig. 1(b).

Patil et al. [2] have described a compiler that can generate

microcode for an implementation of (i) an instruction set from

(ii) the functional description of the connectivity of microarchi-

tectural resources, as well as the micro-instruction format and the

interpretation of each control bit. This allows them to implement

(iii) the microarchitecture in Bluespec SystemVerilog, in a way that

is orthogonal to the instruction set. In other words, they have factored

the description so that the user can rapidly swap different instruction

sets for the same microarchitecture, and different microarchitectures

for the same instruction set. But they have not shown that the three

specifications put together are simpler than the complected whole.

The purpose of this paper is to argue that the use of such a

microcode compiler does in fact reduce the complexity of describ-

ing hardware. This paper showcases µL, a simple domain-specific

language, to specify the instruction set and functionality of the

microarchitecture template. We have re-implemented the microcode

compiler from scratch targeting our new language.

We shall describe our use of this strategy to implement a six-stage

pipeline for the Y86 ISA [3] in Bluespec SystemVerilog. Relevant

code samples (with few syntactic changes) are included in this paper,

and the reader is invited to judge our qualitative conclusions.

III. RELATED WORK

Our previously published work that describes such a microcode

compiler [2] has various awkward restrictions [4]: (a) there is no

support for data types or type inference (so the output functions may

not be not fully compatible with user-specified Bluespec), (b) compile

times can extend to over 30 minutes per instruction for a Y86-like

processor, (c) the µop format is very rigid: each resource must insert

data into a unique field in the µop, (d) multiple temporary registers are

not correctly supported, (e) micro-instructions may generate spurious

register-file reads and memory loads (causing pipeline stalls). The

current version of the compiler avoids all of these issues.

Sketch [5] is a software synthesis technique that allows “holes”

in software implementations to be filled in automatically using

functional specifications. An analogous idea has been proposed for

hardware synthesis [6]. Gulwani et al. [7] use the Z3 SMT solver to

synthesize loop-free programs from functional specifications.

Architecture Description Languages (ADLs) [8] allow the user to

specify a behavioral instruction-set description and provide several

knobs to configure the generated microarchitecture. For example,

Tensilica [9] allows the user to add instructions and data-path

elements to the Xtensa processor family. ADLs are also useful to

generate instruction-set simulators, compiler back-ends, etc.

C-synthesis languages have rarely been used for processor syn-

thesis. User-guided high-level synthesis [10] is an enhancement over

C-synthesis that requires the designer to specify a draft data-path over

which instruction behavior is scheduled.

No Instruction Set Computer (NISC) [11] is configured using an

XML-based language called Generic Netlist Representation (GNR).

The compiler automatically generates a micro-instruction format and

compiles software directly to micro-instructions.

EXTENSIBLE RECORDS

fieldname Field specifier of some record

rec.f Lookup field f in record rec

rec :̀ (f, x) Add a new field f to rec, changing its type

rec :́ f Remove field f from rec, changing its type

rec ă: (f, x) Update field f in rec without changing type

COMPUTATIONS OVER IMPLICIT STATE

Σ Implicit state record

do-computation May involve accesses to implicit state Σ

x Ð ¨ ¨ ¨ Assign value to variable x

compute (¨ ¨ ¨) Computation that does not access Σ

select (f) Lookup field f in record Σ : i.e., Σ.f

update (f, x) Update field f in Σ : i.e., Σ ă: (f, x)

read (f, r) (Σ.f)[r]; i.e., index into array select (f)

write (f, r, x) In-place update at index r in array select (f)

pselect (f, p)

p - predicated versions of the above
pupdate (f, p, x)

pread (f, p, r)

pwrite (f, p, r, x)

read4 , write4 ,

pread4 , pwrite4

Read or write at four adjacent array indexes;

these functions perform 32-bit accesses on

byte-addressible memories

constrain Add a boolean constraint

MISCELLANEOUS

#func(¨ ¨ ¨) Placeholder (unknown) function

`, ´, ˚, Arithmetic functions

&, ^, zeroExtend Bitwise functions

&&, | |, not Boolean functions

ifpp, a, bq if p then a else b

x @: τ Type ascription: value x has type τ

Array (Bit n) τ Type of array of 2n elements of type τ

Fig. 2. µL syntax cheat sheet

IV. Y86

Y86 is a simple 29-instruction ISA used for teaching introductory

computer systems [3] in several schools worldwide. We chose a

simple ISA so we could talk about more interesting facets of the

compiler without complicating the presentation.

The source code consists of: (a) an implementation of the microar-

chitecture template (figs. 1(b) and 6) in Bluespec SystemVerilog, a

high-level synthesis language based on atomic transactions, (b) an

ISA description consisting of the architectural state (fig. 4) and a list

of instruction definitions (fig. 5), and (c) a functional specification

of the microarchitecture template describing the flow of a micro-

instruction through the hardware (fig. 7). The instruction and flow

definitions are in µL, a domain-specific language defined in Haskell.

Our overall toolflow is shown in fig. 3

A. Guide to µL syntax

Figure 2 provides a cheat-sheet for the syntax1 of the µL language.

1) Type system: Like Bluespec, our language for specifying in-

struction and flow definitions is statically typed; all types must be

statically resolved at compile time. The compiler implements classical

ML-style type inference, allowing types to be inferred through most

1Some minor syntax changes were made for the paper. In particular, the
allcaps record field specifiers and #func placeholder functions are actually
double-quoted strings.

ISA (µL) Flow (µL)

Microarchitectural

Template

(Bluespec)

µL

compiler

Bluespec

compiler

Hardware

Fig. 3. Overall Toolflow

RegID Ð defenum [eax, ecx, edx, ebx, esp, ebp, esi, edi]

let Addr = Bit 32

Inst Ð defstruct Ź Instruction Record
[(RegID , ra)

, (RegID , rb)

, (Bit 32 , imm)

, (CCTest , tst)

]

State Ð defstruct Ź Architectural State
[(Bit 32 , pc)

, (Array RegID (Bit 32) , rf)

, (Array Addr (Bit 8) , mem)

, (CCode , cc)

, (Bool , hlt)

]

Fig. 4. Y86 State

of the code. However, in the presence of placeholder functions, it

may not be possible to infer all types. In such cases, type ascriptions

can be specified using the @: operator.

2) Extensible records: Our language allows record types (structs)

to be extended by new fields. Fields are specified by allcaps tags

by convention. The `: operator (or rAdd) adds a new field to the

record, returning a different record type. The field must not already

exist in the record; this is fully ascertained at compile time. The type

inference framework is able to infer the return type automatically;

the user need not specify it manually. Similarly, :́ (or rDel) deletes

a field and ă: (or rUpd) updates an existing field. We have made the

same capability available in Bluespec as a library. Figure 1(b) shows

a use of the rAdd function in Bluespec. Extensible records allow

us to implement a simple version of subtyping: given a function that

expects a record type as the argument, it is legal to pass to it a record

type that has more fields than its expects; this property is useful to

have for placeholder functions.

3) Implicit State: Both the instruction definitions and the flow

definition will be functions operating on a state record Σ. For

convenience, the state record is not made explicit in the specification.

Instead, its fields can be accessed using special functions select

and update . When the select -ed field is of array type, the array

can be manipulated into using the read and write functions. For

example, when the state record Σ contains a register file at field rf,

select (rf) selects the entire array, whereas read (rf, r) returns

only the rth element of that array.

B. Y86 ISA

An instruction set architecture (ISA) defines the functional speci-

fication of the processor as a set of instructions operating on some

programmer-visible state, without prescribing any particular imple-

let inc pc(x) “ do Ź Helper function

pc Ð select (pc)

update (pc, pc ` x)

def Nop(inst) “ do Ź Instructions

inc pc(1)

def Sub(inst) “ do

inc pc(2)

a Ð read (rf, inst .ra)

b Ð read (rf, inst .rb)

x Ð compute (b ´ a)

write (rf, inst .rb, x)

update (cc, mkcc(ccsub, b, a, x))

def Jxx(inst) “ do

inc pc(5)

cc Ð select (cc)

pupdate (pc, test(cc, inst .tst), inst .imm)

def Pop(inst) “ do

inc pc(2)

sp Ð read (rf, esp)

x Ð read4 (mem, sp)

write (rf, esp, sp ` 4)

write (rf, inst .ra, x)

Fig. 5. Y86 Instructions (sample)

mentation for the state. For example, accesses to the architectural

register file may be renamed to a physical register file, so long as the

translation is transparent to the programmer.

The Y86 ISA defines a total of 29 instructions. We found it more

convenient to combine the 6 conditional and 1 unconditional jumps

into a single Jxx instruction, and the 6 conditional and 1 uncondi-

tional move into a single Rrmov instruction. These instructions have

an additional test argument that specifies the kind of conditional test

to perform. (This also reduces the number of entries in the microcode

table.) In general, the user can define the instruction in any way that

is convenient. It is possible to think of the entire ISA as a single

instruction with a giant case statement over the opcode; however our

compiler does not perform case-splitting of instructions, hence it is

recommended that the user split the case where convenient.

The Y86 ISA specifies a variable-length encoding from 1 to 6

bytes per instruction. To decode an instruction, one must first extract

these fields out of the byte-stream into a more convenient record.

Figure 4 shows the type definition of the instruction record Inst with

fields ra, rb, imm and tst. The translation from the byte-stream to

the instruction record can be specified in Bluespec itself, since it is

directly translated to hardware and does not affect the microcode.

Our compiler expects the architectural state to be specified as a

record as well (fig. 4). The Y86 ISA specifies eight 32-bit registers

organized as an array (rf) indexed by the 3-bit enum type RegID, a

flat byte-addressible virtual memory (mem), a 32-bit program counter

(pc), a condition code register (cc) and a bit indicating the processor

state (hlt). We ignore interrupts and exceptions in this paper, but

section VII-E suggests ways to implement them.

Each instruction is specified as a void function with one argument,

the instruction record (fig. 5). The function is allowed to read and

write to the architectural state, but nothing else.

TheNop (no-operation) instruction simply increments the program

counter (pc) by 1 byte (note that inc pc is a helper function). The

Sub instruction is longer: it increments pc by 2 bytes, reads registers

at inst .ra and inst .rb, subtracts the two values, and writes the

rule Rstg3; Ź Memory Stage

let u3 “ stg2 .first()

if (#ld p(u3) | | #st p(u3))

let m Ð dcache.req(#st p(u3), Ź request type

phyAddr(#addr(u3)), Ź address

#st x (u3)) Ź store-data

case (m) matches

tagged miss: noAction

tagged hit .data:

let u4 “ rAdd (u3, ld, data)

stg2 .deq()

stg3 .enq(u4)

if (#jmp2 p(u4))

jmp2w .wset(#jmp2 x (u4))

else

let u4 “ rAdd (u3, ld, ?)

stg2 .deq()

stg3 .enq(u4)

if (#jmp2 p(u4))

jmp2w .wset(#jmp2 x (u4))

Fig. 6. Bluespec code to implement the memory stage, using placeholders
and extensible records. Compare lines 20–24 of fig. 7.

result to the register at inst .rb. Finally, it calculates condition codes

and updates the condition code register (cc). Condition codes are

generated and tested by the uninterpreted functions mkcc and test

respectively. Our compiler does not need to know anything about

these functions (other than their type).

The Jxx (conditional jump) instruction adds 5 bytes to pc, tests

the condition codes using the test specified in inst .tst and if it

succeeds, sets pc again to inst .imm. An equivalent way to specify

this instruction is to perform the test first, and then depending on the

result update the pc with either pc ` 5 or inst .imm.

The Pop instruction reads register esp and then calls read4 to

load four adjacent bytes from the (byte-addressible) memory mem.

Next, esp is incremented by 4, and the loaded value is written to

inst .ra. This instruction is interesting because, although it specifies

two writes to the register file, the actual number of writes may be

either one or two, depending on whether inst .ra is equal to esp.

C. Microarchitecture Template

The microarchitecture template is a Bluespec implementation of

the microarchitecture with arbitrary combinational logic abstracted

away behind placeholder functions. A placeholder is a pure function:

it has no side-effects, and the returned value is determined entirely

by its argument. The Bluespec compiler synthesizes pure functions to

combinational logic. In this paper, placeholder functions are indicated

using a leading # symbol.

We have implemented a six-stage in-order pipeline with direct-

mapped instruction- and data-caches and an always-not-taken branch

predictor. Since a lot of these microarchitectural structures are inde-

pendent of the instruction set, the ability to describe them is entirely

that of Bluespec. Since the user can write arbitrary Bluespec, there are

practically no constraints on what microarchitectures can be specified.

The fetch stage of the processor pipeline fetches bytes from the

cache, and puts them into an instruction buffer. The instruction

decoder deciphers the instruction encoding, and translates each in-

struction into a sequence of one or more micro-instructions (µops),

each of which makes a single pass over the hardware. A µop starts

off as an extensible record containing a bundle of control-bits from

the microcode and all fields of the instruction record. As the µop

record travels, it meets resources like register-file ports, multipliers,

memory ports etc. What exactly happens at each resource depends

on the µop, but is completely specified by the microcode control-bits.

The microcode is like the DNA of the µop: it controls how the µop

will travel over the hardware, what resources it will activate, how it

will be transformed, and how the architectural state will change.

Figure 6 shows the Bluespec code for the memory stage of the

pipeline. Note the use of the placeholder functions (#ld p, #st p,

#addr, #st x, #jmp2 p, #jmp2 x) in the Bluespec code. These func-

tions will be automatically defined by our compiler. The argument

to the placeholder functions is the µop record. Since the placeholder

is a pure function, its output is constrained to be determined by the

(dynamic) information contained in the µop.

Of course, whether our approach works critically depends on the

where these placeholders are inserted. Our compiler assumes that

(just like instructions), µops are well-behaved: the microarchitecture

preserves all inter-µop dependencies and retires them in the order

in which they were created. It is up to the designer to ensure this.

Consequently, placeholders cannot appear in code used for handling

inter-µop dependencies.

To generate each control bit, our compiler needs to know what

resource it will control, but not the timing of the controlled

resource. Certainly, this information is present in the microarchi-

tecture template, however, extracting it requires the compiler to

(at least informally) reason about potentially buggy Bluespec code.

This includes understanding microarchitectural structures like caches,

branch predictors, data-forwarding buses, floating-point dividers etc.

Moreover, inferring how architectural state is physically implemented

in hardware is very hard (although user-specified annotations could

make this easier). In our memory stage, the compiler would need to

infer that the rule of fig. 6 accesses both the memory mem (via the

dcache.req method call) and the program counter pc (via the wire

#jmp2w) at most once per µop.

Since the compiler doesn’t need any timing information, we require

the user to manually specify the functionality of the template. This

specification turns out to be quite short in practice. This approach has

an additional advantage: the Bluespec code need not even exist when

we run our compiler. This allows the user to study the microcode

before actually implementing any hardware.

D. Flow

Since our compiler assumes that µops are well-behaved and that

inter-µop interactions are taken care of correctly, the functionality of

a template can be specified by the functionality of an individual µop

flowing through the pipeline. We call this specification, the flow. Like

the instruction set, the flow definition is a contract: the designer must

ensure that the microarchitecture template implements the specified

flow precisely (otherwise the microcode may not work). Note that this

contract is much easier to deliver upon than the contract specified by

the instruction set.

The flow is defined in a manner similar to the instruction. The

main difference is that, in addition to the architectural state, it may

have access to so-called temporary state—virtual state that is not

programmer-visible, but only used for communication between µops

of the same instruction (section VII-C).

Figure 7 shows the flow of the µop through our Y86 pipeline.

Although it has no timing information in it, to organize the code

better, we have shown the names of pipeline stages in comments and

by using horizontal markers in the left margin.

The µop starts with all fields of the instruction record (inst). The

decode stage increments the program counter2 to whatever value is

returned by the #ilen(inst) placeholder, and appends the incremented

1:defflow Flow(inst) “ do ▽ Decode Stage

2: pc Ð select (pc)

3: npc Ð compute (pc ` zeroExtend(#ilen(inst) @: Bit 3))

4: update (pc, npc) Ź increment program counter

5: u0 Ð compute (inst :̀ (nextpc, npc))

▽ Register Read Stage

6: x1 Ð pread (rf, #rd1 p(u0), #rd1 r (u0)) Ź read registers

7: x2 Ð pread (rf, #rd2 p(u0), #rd2 r (u0))

8: cc Ð pselect (cc, #rdcc p(u0))

9: p0 Ð compute (test(cc, #tst(u0)))

10: u1 Ð compute (u0 :̀ (rd1, x1) :̀ (rd2, x2)) :̀ (test, p0)

11: pupdate (pc, #jmp1 p(u1), #jmp1 x (u1)) Ź branch

▽ Execute Stage

12: x Ð compute (#alu x (u1) @: Bit 32) Ź arithmetic & logic

13: y Ð compute (#alu y(u1) @: Bit 32)

14: z Ð compute (if (#alu k0 (u1),

15: if (#alu k1 (u1), x ` y, x ´ y),

16: if (#alu k1 (u1), x & y, x ^ y)))

17: u2 Ð compute (u1 :̀ (alu, z))

18: cc Ð compute (mkcc(#cc n(u2), x, y, z))

19: u3 Ð compute (u2 :̀ (mkcc, cc)) Ź condition codes

▽ Memory Stage

20: v Ð pread4 (mem, #ld p(u3), #addr (u3)) Ź load...

21: pwrite4 (mem, #st p(u3), #addr (u3), #st x (u3)) Ź store...

22: constrain (not(#ld p(u3) && #st p(u3))) Ź ...but not both

23: u4 Ð compute (u3 :̀ (ld, v))

24: pupdate (pc, #jmp2 p(u4), #jmp2 x (u4)) Ź branch

25: constrain (not(#jmp1 p(u1) && #jmp2 p(u4)))

▽ Writeback Stage

26: pwrite (rf, #wresp p(u1), esp, #wresp x (u4))

27: pwrite (rf, #wr p(u1), #wr r (u1), #wr x (u4))

28: pupdate (cc, #wrcc p(u1), #cc(u4))

29: pupdate (hlt, #halt(u4), true) Ź halt

Fig. 7. Flow Definition (complete)

pc to the µop at a new field nextpc (lines 2–5). In the register-

read stage, we perform two reads from the register file, and perform

a test on the condition code register, appending values to the µop as

before (lines 6–10). It is possible to branch (update pc) from here

(line 11). The execute stage performs one of four arithmetic/logic

operations and calculates the condition codes (lines 12–19). The

memory stage potentially accesses memory (mem) via a load/store

port and performs another branch (lines 20–25). Finally, the write-

back stage writes back to the architectural state.

There are a few points worth mentioning:

1) The state reads on lines 6–8, 20 are predicated: if the predicate

is false, it doesn’t matter what value is returned by the read.

2) The flow defines two reads to the register file on lines 6–

7. However, the microarchitecture template need not have two

physical read ports; instead it may provide the illusion of two

read ports by taking two cycles over a single physical read port.

3) Like the instruction definitions, the flow definition also has

sequential semantics. Thus, the two writes to the register file

on lines 26–27 must occur in that sequential order: if both the

writes happen to the same register (i.e., if #wr r (u1) “ esp),

the second write will take priority (it appears to clobber the

2It may shock some readers to notice that pc is incremented in the decode
stage, and not the fetch stage. In fact, this is a common pattern in variable-
length ISAs because the instruction length is only known after the instruction
is decoded. The fetch stage has no idea where an instruction begins and ends.

Nop(inst, Σ) “Σ ă: (pc, Σ.pc + 32
1h1)

Jxx(inst, Σ) “Σ ă: (pc, if (test(Σ.cc, inst .tst),

inst .imm,

Σ.pc + 32
1h5))

Flw(inst, Σ) “Σ ă: (pc, Σ.pc + zeroExtend3�32(#ilen(inst)))

Fig. 8. Some internal terms in canonical form

first). The Bluespec template must ensure that this semantics is

implemented correctly.

4) The same placeholder can be used in multiple places (provided

it has the same argument type). On lines 20–21, #addr is used

for the address of both the load and the store to memory.

5) The user can specify boolean constraints in the flow. The

constraint of line 22 prohibits a µop from specifying both a

load and a store. Effectively, the flow is specifying a single port

to memory that can do either a load or a store. The constraint

of line 25 prohibits a µop from using both “branch ports”.

6) Lines 22–24 describe the functionality of fig. 6.

V. COMPILATION

The compiler normalizes each instruction definition to a canonical

form. First, the function defining the instruction is translated into a

purely functional representation (term) that makes the state record

explicit. This functional term takes two arguments: the instruction

record and a state record, and returns the updated state record. Then,

the compiler uses a set of predefined rules to repeatedly rewrite

the term. The canonical form is reached when the term cannot

be rewritten any more. Canonical forms for the Nop and Jxx

instructions are shown in fig. 8.

Similarly, the compiler also normalizes the flow definition. Since

the canonical form for the flow of fig. 7 would be too long to show

here, we assume that its description was truncated after line 4 (right

after the updating the pc), and show its canonical form in fig. 8.

Though it is very short, this truncated flow specification can imple-

ment the Nop instruction. To see this, substitute #ilen by a function

that always returns 321h1, and then rewrite zeroExtend3�32(3
1h1) to

32
1h1. This yields exactly the canonical form of the Nop instruction.

Thus, #ilen(inst) “ 32
1h1 is a solution for the Nop instruction.

Verifying a solution is easy: substitute the solution into the term,

normalize the term, and do a syntactic comparison on the terms.

To generate a solution, the compiler must do this in reverse: it must

work backwards reconstructing the sequence of rewrite rules applied

during the verifying normalization [12]. This is a computationally

hard problem (and undecidable in general).

Put another way, the compiler is really a simple backtrack-

ing higher-order theorem prover. As such, it depends heavily on

heuristics, and occasionally needs human intervention. Our current

heuristics for guiding this theorem prover work well for single µop

solutions: more often than not, the prover makes the right choice at

the first attempt.

In particular, our compiler covers all Y86 instructions within 10

seconds (fig. 9). On the other hand, when heuristics fail (as they

sometimes do while generating multi-µop solutions), the compiler

works past the timeout (10 minutes). In this case, the user needs to

provide hints to the compiler. Currently our mechanism of providing

hints is quite ad hoc, and requires that the user have some under-

standing of how the compiler works. This is certainly disagreeable,

and we are working on a way to provide hints in a more general

manner, perhaps as partial solutions to the placeholders.

The output of our compiler is very human-readable (after all

placeholders are high-level Bluespec functions). In addition, we have

an verbose mode that unpacks the microcode, so that the fields

of the microcode table are labeled by name, making it easier to

identify which placeholder they control. This makes code output by

the compiler fairly easy to read while debugging.

However, in the presence of bugs in the ISA or flow descriptions,

a correct solution may not even exist. In such a case, the compiler

often reaches the timeout, and exits without finding a solution. In

such a case it is hard to tell exactly why a solution could not be

found. This can make even minor errors in the input quite hard to

debug. However, the user does know which instructions caused the

failure, and this is often (but not always) sufficient to point out the

bug. In our experience, building a processor by adding instructions

one by one is often the most productive way to use our toolflow.

VI. IMPLEMENTATION

The main claim of this work is that this untangling achieved

by separating the concern of functionality (architecture) from the

concerns of implementing simplifies the description of hardware,

without affecting the ability to specify inherently complex hardware

like out-of-order execution, trace caches, branch predictors etc. This

ability to specify complex hardware comes by design with the

programming model exposed by placeholder functions. We are only

limited by the capabilities of the underlying hardware description

language—in our case, Bluespec SystemVerilog.

We implemented another Y86 processor with the same microar-

chitecture by hand to compare against the one generated from the

described toolflow. The two sets of descriptions are expected to gen-

erate exactly the same hardware, assuming Bluespec or downstream

synthesis does not do something very unexpected. In fact, the two

processor descriptions are exactly the same, except that one of them

uses placeholder functions, and the other has pieces of combinational

logic “manually inlined” in that place. In particular, the micro-op

structure and encoding are the same between the two processors.

A. Design complexity reduction

Unfortunately, simplicity is hard to measure objectively. We have

used lines of code as a proxy metric for simplicity. Obviously, this

metric is far from perfect, and should be taken with a pinch of salt.

The Y86 processor written without using our tool takes about 3300

lines of Bluespec SystemVerilog code. (All lines-of-code measure-

ments presented here are correct to 2 significant digits.) However,

this includes several reusable library components like multi-ported

memories, caches, instruction buffers etc., that are not affected by

our programming model and compiler at all. It takes 450 lines of

Bluespec code to describe the processor pipeline itself.

When we split the description, the ISA spans 180 lines, the flow

specification spans 63 lines, and the Bluespec template reduces to

400 lines, bringing the total to 640 lines. Thus, perhaps surprisingly,

the absolute number of lines of code significantly increase because

of the split: from 450 to 640.

How can we then claim that our toolflow reduces complexity? First

of all, in the original description, the user had to split her attention

between both the instruction set and the pipeline itself. Second, the

ISA is easily re-usable from one generation of microarchitecture to

the next, and the cost of specifying it is amortized over time. In

addition, the complexity of writing some of these lines of code is

significantly lower. 20 of the 450 original lines of code include a

microcode table. This microcode table has 17 entries, 30 bits each,

or a total of 510 bits, all of which must be manually specified. Here

each bit depends on information from both the instruction set and

the functionality of the pipeline. The complexity of writing down

Typecheck 0.2 s

Normalize 1.5 s

Solver 4.9 s Ñ

Microcode 0.1 s

Total 6.7 s

(a) Compile times by phase

CALL 0.24 s LEAVE 0.35 s

FADD 0.32 s MRMOV 0.31 s

FAND 0.31 s NOP 0.11 s

FSUB 0.28 s POP 0.39 s

FXOR 0.29 s PUSH 0.29 s

HALT 0.11 s RET 0.43 s

IADD 0.25 s RMMOV 0.33 s

IRMOV 0.14 s RRMOV 0.42 s

JXX 0.16 s

Total 4.73 s

(b) Solver times by instruction

Fig. 9. Measurements

microcode is almost certainly more than just one line of code per

30-bit entry. If we treat the 510 bits as placed on different lines, then

the original specification has a total of 940 lines of code compared

to our split specification which has 640.

To give an analogy, consider the comparison of Verilog bit-vectors

with SystemVerilog structs. In Verilog, the user must figure out

exactly the bit-range at which a particular value is packed in a bit-

vector. SystemVerilog structs allow the user to specify the structure

separately from the description, which can now access fields in

the struct using the ‘.’ operator instead of using bit-ranges. Using

SystemVerilog structs clearly increases the lines of code, and yet

makes the description much easier to write, read and modify.

B. Compile times

We have improved the instruction solver in our compiler signif-

icantly over the work of [2]. Our compiler is now able to compile

the Y86 description within 7 seconds, as measured on a 3.33 GHz

Intel i7 processor, running on a single thread. Figure 9(a) shows a

break-up of the compile times for each phase of the compiler. The

equation solver is the most computation-intensive part taking just

under 5 seconds. The break-up of the time taken by the solver per

instruction is shown in fig. 9(b). It is possible to trivially parallelize

this phase by spawning a thread for each instruction.

The older version of the compiler was not able to find a solution for

even a single instruction within 30 mins of searching (per instruction).

This is counter-intuitive because the NOP instruction should be

implementable by even a dumb compiler. The problem here is the

complexity of the flow description, in particular, the fact that it

specifies two write ports. Writes to distinct elements of an array are

commutative; this axiom causes the algorithm implemented in the

older compiler to diverge.

VII. DISCUSSION

A. RAW hazard handling

As mentioned before, it is up to the user to ensure that inter-µop

handling is correct. Our implementation determines inter-µop register

dependencies (so-called read-after-write hazards) in the register-read

stage, and stalls the pipeline whenever a µop needs to read a register

that will be written to by a prior in-flight µop. Thus, the stalling logic

must compare the read-register of the µop in the register-read stage

with the write-register of every µop after the register-read stage. This

strategy only works if the write-register (returned by the placeholder

#wr r) is known by the time the µop leaves the register-read stage.

Thus, #wr r must be constrained to only use data available at the

end of register-read stage.

The argument to the placeholder function is generally the latest

µop available at that point in the hardware. This gives the compiler

the most freedom in assigning values to the placeholders. However, in

this case, we must use #wr r (u1) instead of #wr r (u4). (The same

argument applies to other placeholders on lines 26–28.)

def Pop(inst) “ do

inc pc(2)

sp Ð read (rf, esp)

write (rf, esp, sp`4)

update (tmp, sp)

sp Ð select (tmp)

x Ð read4 (mem, sp)

write (rf, inst .ra, x)

(a) Using a temporary

def Pop(inst) “ do

inc pc(2)

sp Ð read (rf, esp)

write (rf, esp, sp ` 4)

sp Ð read (rf, esp)

x Ð read4 (mem, sp ´ 4)

write (rf, inst .ra, x)

(b) Without using a temporary

Fig. 10. Partitioning Pop instruction, when only one write is available

def Pop esp(inst) “ do

inc pc(2)

sp Ð read (rf, esp)

x Ð read4 (mem, sp)

write (rf, esp, x)

Fig. 11. Specialization of the Pop instruction when inst .ra “ esp

We had missed this aspect in the initial flow description. However,

the Bluespec type-checker complained, saying that we had attempted

to call #wr r (u1) in the Bluespec dependency handling logic, but

the input argument was missing fields alu, mkcc and ld (as would

be defined in u4). By comparing the arguments of #wr r in the

implementation and the flow, we immediately saw the problem.

B. Microarchitectural costs

Our compiler does not understand microarchitectural costs. For

example, the compiler may map the Jxx instruction to use either

jmp1 (line 11) or jmp2 (line 24) to update pc with inst .imm.

However, since jmp1 is earlier in the pipeline, it has a lower

branch mis-speculation penalty, and should be preferred over jmp2.

Similarly, the compiler may introduce spurious loads (doing so is

always legal, but bad for performance), however we haven’t seen

this occur in practice.

In general, every read/write access to architectural state has a cost

that needs to be indicated to the compiler, perhaps through the flow

definition. However, this is not enough. For example, when compiling

to multiple µops, it is beneficial to lift loads in the earlier µops.

C. Multiple µops

In the presented example, the compiler is able to map each

instruction to a single µop. This is only possible because the flow

defines sufficient resources for every instruction. For example, it does

two writes to the register file (lines 26–27), as needed by the Pop

instruction.

Instead, the compiler can break Pop to multiple µops. For this,

following changes to the flow are necessary: (a) the write to esp

(line 26) needs to be removed; (b) the pc increment (lines 2–5)

cannot happen once per µop, but only once per instruction; and

(c) (optionally) some temporary state needs to be added to enable

data transfer between two µops of the same instruction.

The temporary state is specified alongside the architectural state.

Instructions are not permitted to access temporary state, but the

flow definition is. The temporary state can be specified as a single

register or a register file. (Of course, the Bluespec template must also

implement temporary registers as specified by the flow.)

Two possible partitionings of the Pop instruction are shown in

fig. 10. If the compiler makes a poor choice, the user can manually

specify a partitioning into sub-instructions.

Microarchitectures that allow multiple µops per instruction, often

have additional restrictions on µops. For example: (a) only the last

µop may be allowed to do a branch, since it simplifies flushing µops

after a branch mis-speculation; (b) an exception may not occur after

a µop that does a store to memory; etc. The user needs to make such

restrictions explicit in the flow definition.

D. Variable number of µops

Currently, our compiler cannot automatically break an instruction

into a variable number of µops (where the number of µops is de-

termined by a condition). However, the user can manually specialize

the instruction. For example, the Pop instruction can be specialized

to take only one µop for the case when inst .ra “ esp. (fig. 11).

Currently, our compiler cannot do such case-splitting automatically.

E. Exceptions

Our language does not have any special support for exceptions

(although we are considering adding this feature). Instructions that

generate exceptions must explicitly set an exception field in the

architectural state (while making sure that the architectural state is not

modified in any way). The microarchitecture template must ensure

that the exception is duely processed. To process an exception, the

microarchitecture can introduce a fake Excp instruction defined to

save the program counter on the stack and to jump to the exception

handler. Our compiler can generate µops for Excp in the usual way.

VIII. CONCLUSION

We have implemented a Y86 processor with a six-stage in-order

pipeline to qualitatively illustrate the complexity reduction from

disentangling the description into a functional description and a

microarchitectural template. The design is substantially simplified by

replacing the contract of implementing the instruction set with the

contract of implementing the flow definition.

ACKNOWLEDGMENTS

We would like to thank Prof. Zhiru Zhang for shepherding this pa-

per, several anonymous reviewers for providing valuable comments,

and Hari Angepat, Khubaib and Ankit Bansal for helpful discussions.

This material is based upon work supported in part by the National

Science Foundation under grants 0615352, 0747438, and 0917158.

REFERENCES

[1] R. S. Nikhil and K. Czeck, “BSV by Example,” 2010.
[2] N. A. Patil, A. Bansal, and D. Chiou, “Enforcing Architectural

Contracts in High-level Synthesis,” in DAC, 2011.
[3] R. E. Bryant and D. R. O’Hallaron, Computer Systems: A

Programmer’s Perspective, 2nd ed. Addison Wesley, 2010.
[4] A. Bansal, “Generating RTL for microprocessors from archi-

tectural and microarchitectural description,” Master’s thesis,
University of Texas at Austin, 2011.

[5] A. Solar-Lezama, “Program Synthesis by Sketching,” Ph.D.
dissertation, University of California, Berkeley, 2008.

[6] A. Raabe and R. Bodik, “Synthesizing hardware from sketches,”
in Wild and crazy ideas, DAC, 2009.

[7] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan, “Synthesis
of loop-free programs,” in PLDI, 2011.

[8] P. Mishra and N. Dutt, Processor description languages. Mor-
gan Kaufmann, 2008.

[9] R. Gonzalez, “Xtensa: a configurable and extensible processor,”
IEEE Micro, 2000.

[10] I. Augé and F. Pétrot, “User-Guided High Level Synthesis,” in
High-Level Synthesis, 2008.

[11] D. Gajski, M. Reshadi, and J. Trajkovic, “No instruction set
computer.” [Online]. Available: http://www.ics.uci.edu/„nisc

[12] C. Prehofer, Solving Higher-Order Equations : From Logic To
Programming. Birkhäuser, 1997.

http://www.ics.uci.edu/~nisc

	Introduction
	Microcode Compiler
	Related Work
	Y86
	Guide to µL syntax
	Type system
	Extensible records
	Implicit State

	Y86 ISA
	Microarchitecture Template
	Flow

	Compilation
	Implementation
	Design complexity reduction
	Compile times

	Discussion
	RAW hazard handling
	Microarchitectural costs
	Multiple µops
	Variable number of µops
	Exceptions

	Conclusion
	References

