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Abstract—Fast and accurate simulation of multicore systems requires a parallelized simulator. This paper describes a novel method
to build parallelizable and cycle-accurate-capable functional-first simulators of multicore targets.
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1 INTRODUCTION

A CCURATE simulators used at Intel [8] and AMD [2] sim-
ulate single core targets1 on single core hosts at 1KIPS to

10KIPS, requiring somewhere between one year to ten years to
simulate a 3GHz target for 2 minutes. To make matters worse,
simulators are getting slower as the number of target cores and
their complexity increase. Parallelization is needed to improve
simulator performance.

Our FPGA-Accelerated Simulation Technologies (FAST)
project [6] is researching techniques to parallelize simulators.
FAST simulators are factored into a functional model (FM), that
models the target functionality (ISA and peripherals), and a
timing model (TM), that models the target micro-architecture.
The FM executes instructions independently of the TM and
passes a FM-execution order instruction trace to the TM that
uses the trace to simulate those instructions in the micro-
architecture.

Target timing affects which instructions are fetched and
the order they are executed, potentially resulting in the FM
fetch/execute path2 diverging from the target. In a FAST
simulator, when the TM detects divergences, it guides the FM
back to the target path. For example, a branch misprediction
causes the target to fetch wrong path instructions while the
FM may not, causing fetch path divergence. Upon detection,
the TM guides the FM to roll back to the mispredicted branch
and take the wrong path. When the branch is resolved by the
target, the TM guides the FM to roll back and return to the
right path.

FAST is a simulator-level speculative functional-first simulator
since the FM speculatively executes instructions and allows
the TM to correct it when necessary. Some functional-first
simulators like FastSim [15] execute in target order by frequent
querying of the TM. For example, its FM queries the TM branch
predictor at every branch. Doing so eliminates simulator mis-
speculation but virtually eliminates the possibility of running
the FM and TM in parallel.

Our previous work [4], [5], [6], [7], [16] introduced simulator-
level speculation and its ability to drastically reduce FM/TM
coupling, making parallelization at the FM/TM boundary effi-
cient and thus enabling the FM and TM to be implemented in
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1. We use the term target to mean the machine being simulated and
the term host to mean the platform on which the simulator runs.

2. We call the target fetched/executed instruction order, including
both right path and wrong path instructions, the target fetch/execute
path and the FM fetched/executed instruction order, the functional
fetch/execute path.

different technologies. Our initial FAST prototype implements
the FM in a modified software virtual machine (QEMU [16])
running on commercial microprocessors and the TM in an
FPGA.3 It is capable of cycle-level accuracy while simulat-
ing single core x86 targets running Windows and Linux at
1MIPS-10MIPS, but does not yet support multicore targets.
Methodologies to simplify TM development while maintaining
accuracy, flexibility, and performance have been developed [7].

The main contribution of this paper is the target memory
oracle (TMO) that enables functional-first simulators and their
derivatives to efficiently and accurately detect and correct
execution path divergences, especially for memory operations,
a critical problem for multicore targets. Our solution maintains
the advantages of functional-first simulators, including high
simulation speeds and simple, reusable FMs. It also gracefully
supports the use of a parallelized FM, providing scalable,
accurate simulation of parallel computer systems.

2 THE PROBLEM

Execution path divergence is common for out-of-order targets
since there is more than one legal execution order. However,
as long as the target obeys dependencies, its functionality will
be equivalent to any other implementation that also obeys
dependencies. Thus, given a functionally-correct FM, most
execution path divergence can be safely ignored since it does
not affect functional target-correctness.

Unfortunately, some dependencies depend on timing and
thus cannot be determined statically. Two operations on shared
state (memory4) executed by separate entities generally do not
have a well defined execution order even though the two
operations may be dependent for certain execution orders.
Though memory consistency models restrict what orders of
reads and writes are legal, there are often multiple legal orders.
Thus, it is likely that the FM sometimes executes reads/writes
in a different order than the target. We call such divergence
in the functional/target state-access order the reordering prob-
lem, a long-standing issue that has caused some to abandon
functional-first simulation for multicore5 targets [3].

Though reorderings occur in primarily single core targets
due to entities like I/O devices that access shared memory, they

3. Of course, the TM can also be implemented in software or in a
software simulation of a TM implemented in an FPGA.

4. In the context of reordering we use the term memory to mean any
state that could be reordered, including shared memory, machine state
registers, cycle registers, and I/O device registers.

5. We use the term multicore to mean multiple entities (cores, I/O
devices, etc.) that can read/write to the same state. Thus, even single
core systems with I/O devices have multicore issues.
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Fig. 1. FAST Simulator of a Parallel Computer System

are infrequent and rarely affect functionality. In a multicore
target, however, reorderings can have a significant effect on
functionality and performance. In well-labeled shared memory
programs, reorderings only occur at lock variables but reorder-
ing locks results in a very different computation. Not-well-
labeled programs exist for a variety of reasons — intention-
ally introduced non-determinism, transactional memory, an
unintended error — making any access to a memory location
potentially reordered. If allowed to propagate, reorderings will
likely result in functional and/or timing errors. A common
solution is a timing-directed simulator where the TM tells the
FM when and what to fetch, execute, etc. In such schemes
parallelism between the FM and TM is limited meaning the
FM and TM must be tightly integrated for performance and
complicates the FM since it must support micro-architectural
structures like rename, reservation stations, etc.

3 PARALLELIZED MULTICORE SIMULATORS

A simplified FAST simulator of a multicore target is shown in
Figure 1. The FM consists of multiple Fcores, each simulating
a target component such as a core, an I/O device, etc. The
FM is assumed to be parallelized across multiple host cores,
with a potentially different memory model than the target, for
higher simulation performance. Conceptually, each Fcore has a
corresponding Tcore in the TM. Each Fcore generates its own
trace that is passed to its partner Tcore. If the Tcore determines
that the trace does not match the target core, it guides the Fcore
to correct the trace.

Reorderings would be conceptually trivial to detect (but
not correct) if a combined trace, containing the global order
of all of the memory operations from all of the target cores,
were available6. There is, however, no support to determine
memory operation execution order on a conventional paral-
lel host, making it difficult use such hosts. Researchers are
studying hardware support to address this omission [1], [10],
[13], [17], but no such solution is commercially available.
Lamport clocks [11] can generate a global order of events on
conventional hardware but they require correct timestamps.
Because memory accesses can be reordered, generating the
correct timestamp value would likely require an expensive
memory barrier between each memory operation to be ordered.
Also, even though reordering detection is straightforward with
a combined trace, correction is not, requiring extracting the
target execution order from the TM and rolling back and re-
executing in that order on the FM.

6. A global order is impossible for some target architectures. For
example, the accesses in a memory model that permits reading a non-
local value before it is globally visible may not be expressible in a
single global order.

4 OUR SOLUTION

Our solution is based on indistinguishability — as long as
all data values returned to functional loads are the same as
those returned to the corresponding target loads, the functional
model is target-correct. We also assume that it is trivial for the
functional model to know what values it loads and stores.

Loads7 are the only way for a reordering to be observed and
its effects felt by the FM. All other instructions are assumed
to obey program dependencies when accessing state and thus
cannot result in a reordering. To ensure functional load values
are consistent with target load values, the TM models the target
memory system including the data values in the target memory
oracle (TMO). When the TM “executes” a load8, the target
load value at that precise target time is read from the TMO
and compared to the functional load value that was passed to
the TM as part of the trace. If the values are the same, either
there was not a reordering or the functional value was the
same as the target value, resulting in target-correct functional
behavior. If the values are different, the TM immediately
freezes, ensuring that it does not get corrupted by using
incorrect data from the FM, and provides the target value and
the corresponding dynamic instruction number of the load
to the FM. The FM regenerates the trace to reflect the corrected
functional load value (Section 5.) This technique naturally
eliminates any reordering that does not affect functionality,
minimizing rollbacks.

How is the TMO updated and with what data? The TM
will not execute a store until all instructions it depends on,
including reordered loads, have been executed target-correctly
by the FM. If it executes before, it may have an incorrect
address and/or data due to loads that it depends on not yet
having been corrected. Thus, the functional store value itself
is target-correct at the time the TM executes that store and
can be used to update the TMO.

By maintaining target data in the appropriate TM component
models (store buffers, caches, etc.) and passing the functional
load values to the TM, the functional/target value compar-
ison can be done at the right target time. The state of the
TM component models itself can be cached at the simulator-
level, reducing the modeling cost of large target structures.
Because each simulator-level cache (Scachep) caches a private
namespace (target cache model, store buffer model, etc.), it is a
private cache not requiring simulator-level coherence. As TM
components simulate target coherence, however, the simulator-
level caches will automatically be kept coherent. For example, if
the target cache (Tcache) snoops an invalidation of address X, it
first accesses its simulator cache (Scachep). If its Scache misses,
the Tcache freezes while the Scache fetches the required data
that is used to determine whether the Tcache hit or missed.
Since the TM is using the same basic structures as the target,
its performance scales as the target’s performance scales.

It may be desirable, however, to not have to include data
in every target structure model. When memory accesses can
be represented by a global order (not necessarily program
order) of memory operations, TMO data can mostly reside in
a single, shared memory that is accessed at the correct target
time. Memory consistency models such as the IBM 370, Sun

7. We use the terms load/store to refer to accesses to memory,
including accesses originating from instructions that may not be a load,
such as a register-memory ADD instruction.

8. Though similar to value prediction, this approach does not break
consistency models [12] because checks are done at execute rather than
commit.



TSO and PSO, Weak Ordering, and Alpha do not permit a
write from another core to be read until that write is globally
visible and thus have a global order. Implementing a single
shared memory is straightforward for small targets, due to
the relative speed of the simulator compared to host memory
(10MIPS simulation speed is 100ns per instruction.) Simulator-
level caches (Scaches) could be introduced in front of the single
TMO to reduce effective latency, but require simulator-level
coherence if there is more than one.

Functional memory does not need to be kept consistent with
the target memory since any discrepancies will be detected
as a reordering and corrected. Therefore, the FM can run
independently of the TM, thereby increasing parallelism. Every
handled reordering, however, degrades performance, making
it useful to keep functional memory as close as possible to
target memory.

It may appear that the TMO requires separate memory
from the functional memory, effectively doubling the memory
requirements. However, the functional memory can be imple-
mented as a cache of the TMO or vice-versa. An efficient way
to implement the former is to copy the corresponding TMO
page to a functional page, overwriting the original contents, on
every functional TLB miss and fill. One can use as many or as
few functional pages as desired. However, statically allocating
one functional page to each functional TLB entry eliminates
the need for functional page management. If the page is read-
only, a copy is not necessary; the functional TLB could simply
be made to point at the corresponding TMO page.

Reorderings only occur when the values loaded from shared
state actually differ between a likely-in-order FM and the
target, which is rare in high performance targets (e.g., locks are
taken infrequently.) Thus, we expect TMO-based simulators to
perform well in most cases.

Note that the oracle technique is general and allows the
TM to correct anything that the FM speculated incorrectly. For
example, we have been using the same technique for branch
prediction and interrupts even in our unicore simulators.

Limited space only allows comparison to a subset of related
work. The described technique is similar to parallel replay that
provides architectural support to record and deterministically
replay parallel execution [10], [13], [14], [17]. These techniques,
however, generally record addresses, rather than values, ham-
pering correction. Our work is also similar to work on check-
pointed processors, especially silent deterministic replay that
uses previously loaded values to avoid read-after-write issues
[9]. The TMO was, however, invented independently to accel-
erate simulation. Though replaying with logged values is the
same, the TMO both checks for divergence and provides the
data to correct.

5 FUNCTIONAL MODEL SUPPORT

The functional model must support (i) rollback to a past,
target uncommitted instruction, (ii) correction of either the
reordered load value or a different branch direction and (iii)
continuing from that correction reusing all previous corrections
to uncommitted instructions. To do so, the FM operates in two
modes: execute and replay. During an execute phase, the FM
executes as it would naturally, loading from and storing to
functional memory while generating each Fcore’s trace and
sending it to the TM. Each dynamic branch target is logged
in a branch target log and each dynamic load value is logged
in a load log.

During a replay phase, (i) instructions are processed in
the same order as the previous execute/replay by using the
previous branch target log rather than re-executing branches,
(ii) loads are provided with a logged load value, rather than re-
executing the load, (iii) stores are re-executed, including writ-
ing to functional memory, to reduce functional/target memory
divergence, (iv) all other instructions are re-executed, and (v)
trace entries are updated with new addresses for loads and
new store values. Replay is distinct from execute because every
load uses the load log value and every branch uses the branch
target log, enabling multiple corrections.

There are precise transition points between phases. Nor-
mally, the FM is in execute mode. If the FM fetch path di-
verges, such as in the case of a branch misprediction, a branch
resolution of a misprediction, or an interrupt or exception, the
TM notifies the FM of the instruction that diverges and how
it diverges. In response, the FM rolls back to the last common
instruction, modifies the branch target log to reflect the new
destination, and then executes from that point.

When the TM detects a reordered load, it rolls back the FM to
that load and corrects it. It may appear that the FM must then
re-execute, rather then replay, instructions dependent on the
reordered load. Though re-executing dependent instructions
works, determining which instructions are dependent is cum-
bersome. Instead, one can simply correct the load log entry for
the reordered instruction and then replay from that instruction.
Instructions already executed by the TM should replay iden-
tically to the previous execution, meaning the updated trace
entries should be identical to the overwritten values, providing
either an opportunity for additional verification (compare the
original with the updated value) or an opportunity to avoid
work (do not update the trace entry.) For instructions that
have not yet been executed by the TM, however, addresses
and data may change. Recall that the TM freezes immediately
after it detects the reordering and restarts only after the trace
entries for un-executed instructions have been updated (the
TM can check instruction-by-instruction, allowing it to restart
before all of the trace entries have been updated.) By the time
the TM actually executes an instruction, it has target-correct
information, including the correct address for a load and the
correct address and data for a store. Even if a functional load
whose address changed is replayed with the original data value
read from the incorrect address, the TM can detect it as a
reordering and handle it accordingly.

6 EXAMPLE

We demonstrate an example of multiple rollbacks over the
same code to correct multiple divergences from the target.
Figure 2 shows pointer-chasing code using three memory
locations and their initial values. Consider the case where
the functional order is A,B,C,D,J while the target order is
D,A,B,C,E. When the TM executes A, it discovers that A is
reordered by comparing the functional and target load values.
The TM freezes and requests that the FM rolls back P2 to
the instruction immediately prior to A, injects the correct load
value for A into the log, then replays the instructions starting
from A while regenerating the trace. B is replayed with the
wrong load value, but the right load address through R0,
allowing B to be correctly checked for reordering by the TM.
As subsequent functional loads are checked and found to be
reordered, they are corrected and replayed in the same way,
preserving all previous corrections.
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Fig. 2. Handling Multiple Reorders. (i) depicts a simple pointer-chasing code snippet with the initial memory contents as shown. (ii) to (iv) depict
the functional log (with associated load values (MemVal) and next PC (PC’)) and dynamic trace (address (a), load values (v), branch targets) during
incremental TMO reordering handling on processor P2. (v) depicts the final resteer necessary to follow the target branch mispredict at C. Fields
that change between iterations are underlined and in bold.

The TM can compare the predicted instruction addresses
with the functional instruction addresses to determine if the
functional fetch path needs to be corrected. Such corrections
are independent of any reordering of loads since they are
only a function of the branch predictor. In our example, the
target predicts instruction C as taken, the initial functional and
target fetch paths are identical so no correction is necessary.
Sometime after correcting the reorder at B and changing the
value of R1 to 1, the TM executes branch C and discovers target
misspeculation. Thus, complete target accuracy is preserved in
the presence of both multiple dependent memory reorders as
well as overlapping control path speculation.

It is important to note that while multiple reorderings are
supported we expect this to be infrequent for scalable target
applications and architectures. As a result, we optimize for
the common-case where functional execution order is indis-
tinguishable from target order.

7 CONCLUSIONS AND FUTURE WORK

The TMO enables a functional-first simulator to dynamically
detect and correct functionality when required to accurately
model a target. Thus, the TMO allows an FM to speculatively
execute ahead of the TM, even for a parallel target running on
a parallel host, making the common case very fast. The TMO
enables an in-order FM to model any arbitrary target at the
cost of corrections.

We are currently in the process of implementing the de-
scribed methodology and expect to have a working prototype
soon. It appears that logging values and branches has very little
impact on the performance of our FM. We are also parallelizing
our FM to run on a parallel host. We expect roughly 10MIPS
of scalable cycle-accurate-capable performance per host core,
roughly three to four orders of magnitude faster than industry
simulators per host core.
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