
A Methodology for Leveraging Reconfigurability
in Domain Specific Languages

Maysam Lavasani†, Larry Dennison‡, and Derek Chiou†

†Electrical and Computer Engineering ‡Lightwolf Technologies
University of Texas at Austin Walpole, MA
{maysam,derek}@mail.utexas.edu larry@lightwolftech.com

Abstract—Special-purpose hardware can dramatically accelerate an application. However, designing special-purpose hardware is
often prohibitively expensive in terms of manpower and time. This paper describes a methodology that uses reconfigurability to enable
the efficient compilation of a class of domain specific languages. We present the methodology, a prototype compiler, and a 40Gb/sec
network processor designed to be implemented on an FPGA using that compiler.

F

1 INTRODUCTION

All other things being equal, hardware specialized for a
specific application will outperform hardware that has
not been specialized for that specific application. The
higher the level of specialization, the bigger the benefits.
However, the cost of designing specialized hardware is
often prohibitively expensive in terms of both manpower
and time, making it practical only for components with
sufficiently high volume to amortize those costs. In ad-
dition, the inflexibility of hardware means any changes
to the application could make the specialized hardware
obsolete.

In this paper, we describe a methodology that gener-
ates highly efficient hardware from applications written
in a slightly restricted form of C calling a fixed set of
accelerators (functional units). The code does not require
any hardware-specific tuning or annotations making it
essentially identical to writing software. The hardware is
generated specifically for the application, making it un-
likely that another application could run on it. However
the hardware is implemented in reconfigurable logic,
specifically FPGAs, to enable application flexibility. The
methodology is applicable to a wide range of applica-
tions but is especially good at addressing problems with
significant data parallelism where the processing of each
element of data can vary in execution path, computation
time, and resources.

Our prototype application, a network processor, has a
throughput of 40Gbps (100M packets per second at 40B
packets) implemented in a single Xilinx Virtex 5 TX240T
FPGA, which is a medium sized previous generation
FPGA. Such performance is slower than the fastest ASIC-
based network processors announced by EZChip [1]
and Xelerated [15] this year which run at 100Gbps,
but is comparable to last years state-of-the-art ASIC-
based network processors [13]. Using a large, modern

FPGA, our network processor should be at least as
fast as the fastest ASIC network processors. The fastest
parallelized software router that we are aware of runs
at 12Gbps (23.4M packets per second) on 32 Nehalem
cores consisting of four systems, each containing eight
cores [6]. Our solution supports a single 40Gbps flow
with 40B packets, while the software version supports
only four flows of 3Gbps, a significantly easier problem.
Our system’s programmability makes accommodating
new protocols/algorithms reasonably easy. Our network
processor has other advantages including deterministic
performance and resiliency against adversarial traffic.

There are three contributions in this paper:
• A novel methodology that enables domain-specific

languages (slightly restricted C plus accelerator
functions) to generate efficient hardware.

• A compiler that transforms applications written in
such a language to hardware.

• A case study of a 40Gbps network processor that
handles IPv4, IPv6, and MPLS packets implemented
using this methodology.

2 THE METHODOLOGY
Our methodology is based on applications written using
standard C with calls to a fixed set of functional units
defined by the user. This methodology is similar to that
of domain-specific languages which have specialized li-
braries for a specific domain. The programmer views the
machine that executes her code as a sequential machine
with parallel functional units that are called explicitly
and codes accordingly. The code is automatically com-
piled into synthesizable Verilog that efficiently imple-
ments that code. In turn, the Verilog can be compiled
for an FPGA or ASIC using standard commercial tools.

Functional units encapsulate common and expensive
tasks frequently performed by the application. For exam-
ple, a content-addressable-memory (CAM), a Trie lookup

(a specialized pointer chaser for networking applica-
tions), a large set of shared counters, or a vector mul-
tiply engine could be encapsulated in a functional unit.
Hardware-implemented functional units are expected
to be provided by the user. They can be optimized
independently of the application code to improve per-
formance. Any state sharing between data elements is
done through the functional units. Our methodology
tolerates wildly varying functional unit latency without
programmer effort.

2.1 Code

Code is structured as a sequence of instructions, where
each sequence, including branches, is written to process
a single data element. Multiple data elements are pro-
cessed simultaneously. Support is provided to ensure
processing of data elements completes in arrival order
when necessary. Each instruction contains up to one call
to each of the functional units, random combinational
processing, and a computation to determine the next
instruction. An instruction cannot be dependent on any
computation or functional unit calls performed in the
same instruction, but has access to all of the data gen-
erated in all previous instructions, as well as the data
being processed, through variables that persist between
instructions. The next instruction is enabled only after
the previous instruction completes, including the return
of all responses from all functional units accessed in the
previous instruction. Thus, from a software perspective,
this system is similar to a lock-step VLIW architecture.
However, from a hardware perspective, different func-
tional unit calls from a single instruction complete at
different times. Hardware is provided to ensure that all
of the functional unit calls from a particular instruction
have completed before continuing to the next instruction.

The code is automatically compiled by our compiler
into Verilog that specifies specialized hardware “en-
gines” that implement the application specified by the
code (Figure 1.) The compiler was written using the
ANTLR [2] tool. Each engine executes an instruction,
then waits in the functional unit state until all replies
from all functional units have returned. The engine then
decides the next instruction based on the explicit jump
statement in each instruction.

The engines contain specialized hardware that con-
structs requests to functional units, processes functional
unit replies, and computes the next instruction. Engines
are tied together though pre-written, configurable in-
frastructure that distributes requests to functional units,
and collects results from functional units that are written
back to state accessible by the engines. The infrastructure
is not specific to an application domain. The functional
units are assumed to be available. A particular applica-
tion domain will have its own set of functional units.

Our approach is similar to C-to-gates work, such as
CatapultC [5] and AutoESL [3] but differs in a few ways.
C-to-gates compilers are generally designed to support

High level Magillac program

Magilla packet processor verilog
description

Functional unit
verilog controllers

Protocol library

Functional units
resource plan

FPGA bit file

Magilla high level
compiler

Synthesis tool

Fig. 1. Magilla translation process

arbitrary C code. However, high quality results gener-
ally require stylized code that sometimes includes tool-
specific and hardware-specific annotations. Our code,
though not full C code, follows the natural flow of the
application and requires no hardware specific annota-
tions.

2.2 Compiler Output
The compiler generates the following code for each
instruction:

1) Request Builder logic
2) Context Edit logic
3) Jump logic
Request Builder logic computes functional unit request

arguments. Context Edit logic updates global variables,
using the functional unit replies and state updated by
previous instructions. Jump logic determines the next
instruction based on the results of the computations
in the current instruction. The logic is activated in the
appropriate states in the engine state machine.

2.3 Scaling Throughput
Multiple engines allow us to increase the packet process-
ing throughput. Each engine has access to arbitration
logic which dispatches the requests to functional units
and also returns back the replies to engines.

Although using multiple engines can increase paral-
lelism and help hide the delay of long latency functional
units, there are scaling issues. Multiple engines consume
multiple sets of hardware resources. In addition, arbitrat-
ing between high number of engines is non-trivial.

Functional
unit

Cluster

F
ra

m
e

r/Lo
a

d
 b

a
la

n
c
e

r

Cluster

R
e

o
rd

e
r/S

in
k

 m
e

c
h

a
n

ism

Payload storage

Multi‐thread engines

engine● ● ● ● ● ●

Functional
unit

Functional
unit

Functional
unit

Multi‐thread engines

● ● ● ● ● ●

Functional
unit

Functional
unit

Accelerator

Global
arbiter

Global
arbiter

Accelerator

Input
traffic

Output
traffic

To/From off-chip
resources

To/From off-chip
resources

engineengine

engineengineengine

Fig. 2. Multi-cluster Magilla

To make better use of the hardware resources, we
multi-thread the engines. Each engine supports multi-
ple hardware contexts and switches threads to tolerate
functional unit latency. All threads in the same engine
use the same request/reply interface to functional units.

In addition to multiple multi-threaded engines, we
also group a number of engines into a cluster and
provide multiple clusters. A single cluster shares packet
scratch memories to improve utilization of those valu-
able resources. Figure 2 shows a Magilla system with
two clusters.

2.4 Performance Prediction

The performance of such a system is easy to predict,
making performance tuning easy as well. Performance is
defined by both the functional unit throughput and the
demands on the functional units from the application.
For a particular application, if the dynamic throughput
requirement of each functional unit is less than or equal
to the functional unit throughput, full performance will
be achieved as long as there is a sufficient number of data
elements that can be processed in parallel and sufficient
internal state to hold those data elements and the inter-
mediate computations. If the functional unit throughput
is not sufficient, performance will be limited by the
bottleneck functional unit. Functional units will tend to
be implemented with throughput of one to eliminate
confusion. Thus, a programmer simply needs to ensure

that the available functional units are sufficient for the
demands of the application and the desired performance.

2.5 High throughput functional units

FPGA-implemented functional units can be easily
added, removed, or modified. It is likely that functional
units throughput will be the limiting factor for the
whole system. This is due to the fact that the functional
units are shared by multiple processing engines. There
are several common techniques that can help improve
functional unit throughput.

• Higher memory frequencies: In many cases func-
tional units do not do much computation but do
access on-chip or off-chip memory. Since it is often
possible to operate memory (both on-chip and off-
chip) at a higher frequency than the FPGA logic,
increasing memory speeds increases memory band-
width, often resulting in faster functional units.

• Banking: In some cases, banking is possible. For
example, using multiple banks for scratch memory
can increase overall throughput. This technique was
used in the sample IPv4 code described below to
increase packet storage throughput.

• Replication: It is possible to replicate the whole
functional unit when there are available resources.
For example we might use two identical but sep-
arate lookup units to double the overall lookup
throughput. Of course we need to have enough
I/O pins and functional unit bandwidth for such
replications if the lookup unit is using off the chip
memory.

• Deep pipelining: Pipelining is widely used in
lookup units [9] which are based on Trie based
data structures. Since most of the off-chip memory
technologies are pipelined, this technique allows us
to use high capacity memory systems while deliv-
ering a high throughput. Deep pipelining increases
functional unit delays, but also enables functional
units to run at higher frequencies.

3 EXAMPLE: ROUTING

Routing is the process of accepting packets, determining
what sort of packet they are, determining where the
packet should go, and forwarding the packet to that
destination. Router programmability has been always
considered an important goal since it enables developers
to implement their new applications much more easily.
New applications include new protocols, deep packet
inspection, encryption, measurement and statistics col-
lection, and application acceleration. Network processors
are an important part of that programmability.

Routing generally consumes several hundreds of stan-
dard RISC instructions per packet. For example, the
Intel IXP2800 [7] that is intended to support 10Gb/sec,
has 16 cores running at 1.4GHz, for a total instruction
budget of 22.4 BIPS or roughly 900 instructions per 40B

packet. The Cisco 40Gbps network processor [13] con-
tains 192 network-customized 500MHz Tensilica cores
for a total instruction budget of 96BIPS or roughly 960
instructions per 40B packet. Such high instruction counts
result from the many bit manipulation operations, packet
data movements, and off-chip accesses data required for
every packet. However, even with such high instruction
budgets, it is often difficult to achieve the rated per-
formance. Current high-end routers process packets at
40Gbps per interface which translates into more than
100M packets per second assuming 40B packets.

There are several recent projects to add flexibility to
packet processing systems. One such project is Openflow
[11] that decouples the forwarding decisions (control
plane) from the forwarding itself (data plane). This
split gives developers some flexibility but provides little
support for full programmability of the data plane of a
router.

Routebricks [6] uses commodity servers and software-
based routers, achieving routing throughput of 12Gbps
using 4 Nehalem servers, each with 8 cores. They use
several techniques to improve the forwarding capacity
of single server including use of the multiple-queue
features of NIC cards and batch processing of packets.
Both these techniques reduce the per packet processing
overhead associated to operating system and general
purpose hardware/software package in a commodity
server.

PacketShader [12] achieves 40Gbps on a system with
two quad-core Nehalem processors, 12GB of memory,
two I/O hubs and two NVIDIA GTX480 cards. Pack-
etshader performance is dependent on intelligent NICs
that balance load between cores and is currently limited
by PCIe performance. Such a system consumes a consid-
erable amount of power where routers are very power
sensitive.

Using FPGAs in routers and other communication
platforms is widespread because of the short develop-
ment time compared to ASICs and the available re-
sources in modern FPGAs including logic, memory, and
high performance I/O resources [14]. The NetFPGA
[10] project provides the FPGA hardware and software
infrastructure for packet processing systems, mostly for
educational reasons. The fact that NetFPGA has been
successfully used as a infrastructure for various net-
working applications demonstrates the merit of using
FPGA as programmable substrate for packet processing
systems.

4 MAGILLA: A 40GBPS NETWORK PROCES-
SOR

We applied our methodology to generate a network
processor called Magilla. Our methodology’s ability to
generate specialized data paths for the particular ap-
plication, coupled with the ability to support high per-
formance functional units with highly variable latencies
make it ideal for network processors.

Input Traffic trace

Magilla verilog
model-VCS
simulator

Output traffic
Integrity check

Click software
router

Output
traffic

Output
traffic

Timing closure

Xilinx ISE 12
toolset(Synthesis,
Place and route)

Performance
results

Integrity
results

Fig. 3. Magilla Verification Process

4.1 A sample Magilla program
In this section we will present a simplified sample Mag-
illa program for IPv4 forwarding. The program consists
of five Magilla instructions: DISPATCH, ETHERNET, IP,
IP CLASSIFY, and EMIT. Each Magilla instruction is
written in a high level C-style function. Every Magilla
program has a DISPATCH instruction as the first in-
struction. DISPATCH assumes that a packet header is
already copied and accessible in scratch memory. The
programmer manipulates the packet data by accessing
the scratch memory which in this case is organized as
two distinct functional units MEMX and MEMY. The
process of translating this C-style program to equivalent
Verilog is fully automated by our compiler.

The functional units are specified at the beginning of
the program using Pragma directives. Each instruction
in the program consists of a number of C-style function
calls to functional units. At the end of each instruction
we have a explicit jump switch which specifies the next
instruction.

In order to validate the functionality of our router we
compared its output, packet-by-packet, with the output
of Click software router [8]. We used several equinix-
chicago CAIDA [4] traffic dumps as the input traffic to
both the Magilla and Click routers. In order to mea-
sure the performance, we extracted only minimum-sized
packets from the CAIDA traffic traces and used them as
the input to our verification process.

The figure 3 shows the verification process of Magilla.
#include "Packet.mag"
#include "ETHERNET.mag"
#include "IP.mag"

#pragma NP_functional_unit(MEMX)
#pragma NP_functional_unit(MEMY)
#pragma NP_functional_unit(LOOKUPX)
#pragma NP_functional_unit(LOOKUPY)

bit_vector PP[20];
bit_vector Da[32], Sa[32];

bit_vector Daport[8], Saport[8];
bit_vector Chksum[16];
bit_vector Packet_status[32];
bit_vector Rpd_status[8];
bit_vector Packet_size[16];

instr_addr_t NP_INSTR_DISPATCH ()
{

l2protocol_t l2protocol;
//Rbb and Rbi are base and index
//to packet receive buffer

PP = MEMX.read(Rbb+Rbi);
Packet_status = MEMY.read(Rbb+Rbi);

//Extract layer 2 protocol, packet status,
//and packet size
l2protocol = Packet_status.L2PROTOCOL;
Rpd_status = Packet_status.RPD_STATUS;
Packet_size = Packet_status.PACKET_SIZE;

//Jump to appropriate instruction based
//on the packet layer 2 protocol
NP_switch (l2protocol) {

case PPP:
NP_INSTR_PPP;

case ETHERNET:
NP_INSTR_ETHERNET;

default:
NP_INSTR_EXCEPTION;

}
}

instr_addr_t NP_INSTR_ETHERNET ()
{

l3protocol_t l3protocol;
protocol_t wordy;

//Extract layer 3 protocol
wordy = MEMY.read(PP, ETHERNET_L3PROTOCOL_WORD);

l3protocol = wordy.L3protocol;

//Jump to appropriate instruction based
//on the packet layer 3 protocol
NP_switch (l3protocol) {

case IP:
NP_INSTR_IP_ADDR;

default:
NP_INSTR_EXCEPTION;

}
}

instr_addr_t NP_INSTR_IP ()
{

protocol_t wordx;
protocol_t wordy;

//Extract destination and source IP
//address
wordx = MEMX.read(PP, ETHERNET_IP_DA_WORD);
wordy = MEMY.read(PP, ETHERNET_IP_SA_WORD);
Da = wordx.D_address;
Sa = wordy.S_address;

NP_switch () {
default:

NP_INSTR_IP_CLASSIFY;
}

}

instr_addr_t NP_INSTR_IP_CLASSIFY()
{

protocol_t wordx;
packet_metadata_t wordy;

router_port_t Da,Sa;

Daport = LOOKUPX.search(Da);
Saport = LOOKUPY.search(Sa);

wordx = MEMX.read(PP, ETHERNET_IP_TTL_WORD);

MEMY.write(Rbb+Rbi, STATUS_WORD) =
Packet_status & RPB_AVAILABLE_MASK;

//Extract the time to live and
//checksum of the packet
Ttl = wordx.TTL;
Chksum = wordx.CHKSUM;

Status = OK;
if (NOT_VALID_ADDRESS(Daport))

Status = INVALID_D_ADDRESS;

if (NOT_VALID_ADDRESS(Saport))
Status = INVALID_S_ADDRESS;

NP_switch (Status) {
case OK:

NP_INSTR_EMIT;
default:

NP_INSTR_EXCEPTION_ADDR;
}

}

instr_addr_t NP_INSTR_EMIT()
{

protocol_t Ttlword;

//Update the TTL and checksum
Ttl = Ttl -1;
Chksum = Chksum + 0x0100;
Chksum = Chksum + 100;

Ttlword =
{Ttl, Ttlword[23:16], Chksum[7:0],
Chksum[15:8]};

//Fbb and Fbi are base and index
//to packet forward buffer

MEMX.write(PP, ETHERNET_IP_TTL_WORD) = Ttlword;
MEMY.write(Fbb+Fbi) =

{FPB_TAKEN, Dport, Packet_status[23:0]};

NP_switch (Status) {
default:

NP_INSTR_DISPATCH_ADDR;
}

}

5 CONCLUSIONS AND FUTURE WORK

In this paper, we describe our methodology for generat-
ing specialized hardware from an application written in
a domain-specific language. We believe the methodology
can be using in a wide range of application areas. We
have a working compiler that accepts high-level appli-
cations as an input and produces synthesizable Verilog.
We have written a network processing application and
compiled it using that compiler. We are still in the
process of generating experimental results. We have been
able to generate a version of the network processor that
achieves 100M packets/sec in simulation using roughly
85% of a Virtex 5 TX240T FPGA including the functional
units. We selected that FPGA since it is the one used

on the latest NetFPGA board and is a knee-of-the-curve
FPGA, rather than the biggest one available.

The packet I/O interface of that implementation does
not comply with the pin budgets available in the selected
FPGA, but only because we have not yet incorporated
the Xilinx multi-gigabit transceiver (GTX) modules [14]
that will provide the capability to move packets in from
the framer and out to the traffic manager. Our results
were generated by compiling the Magilla source code to
Verilog using our compiler and then passing that Verilog
through Xilinx synthesis and place-and-route (ISE 10.3)
and using the place-and-route information to determine
performance. We expect to run a subset of Magilla (we
do yet not have access to an FPGA board with the
appropriate interfaces) on a real FPGA platform. We
then plan to use the same methodology to implement
applications in other domains.

REFERENCES
[1] EZCHIP NP-4 network processor. http://www.ezchip.com/.
[2] ANTLR compiler compiler tool. http://www.antlr.org/.
[3] AutoESL. http://www.autoesl.com/.
[4] The Cooperative Association for Internet Data Analysis.

http://www.caida.org/.
[5] CatapultC. http://www.mentor.com/.

[6] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon
Chun, Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar
Manesh, and Sylvia Ratnasamy. RouteBricks: exploiting paral-
lelism to scale software routers. In SOSP ’09: Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles,
pages 15–28, New York, NY, USA, 2009. ACM.

[7] Intel R©IXP2800 Network Processor Hardware Reference Manual.
ftp://download.intel.com/design/network/manuals/27888201.
pdf, August 2004.

[8] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek. The click modular router. ACM Trans. Comput.
Syst., 18(3):263–297, 2000.

[9] Hoang Le, Weirong Jiang, and Viktor K. Prasanna. A SRAM-
based Architecture for Trie-based IP Lookup Using FPGA. In
FCCM ’08: Proceedings of the 2008 16th International Symposium
on Field-Programmable Custom Computing Machines, pages 33–42,
Washington, DC, USA, 2008. IEEE Computer Society.

[10] John W. Lockwood, Nick McKeown, Greg Watson, Glen Gibb,
Paul Hartke, Jad Naous, Ramanan Raghuraman, and Jianying
Luo. NetFPGA - An Open Platform for Gigabit-rate Network
Switching and Routing. In IEEE International Conference on Micro-
electronic Systems Education (MSE’2007), June 2007.

[11] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and
Jonathan Turner. OpenFlow: enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, 2008.

[12] KyoungSoo Park Sangjin Han, Keon Jang and Sue Moon. Pack-
etShader: a GPU-accelerated Software Router. In in Proc. of ACM
SIGCOMM 2010, Delhi, India, 2010.

[13] Cisco Toaster-4 network processor.
http://newsroom.cisco.com/dlls/partners/news/2004/pr prod 06-
09.html.

[14] Xilinx Virtex-5 TXT series FPGA.
http://www.xilinx.com/publications/prod mktg/pn2094.pdf.

[15] Xelerated HX network processor. http://www.xelerated.com/.

