
On the Asymptotic Costs of Multiplexer-based
Reconfigurability

Johnathan York
The University of Texas at Austin

PO Box 8029 - F0252
Austin, TX 78713

jayork@mail.utexas.edu

Derek Chiou
The University of Texas at Austin

1 University Station C0803
Austin, TX 78712

derek@ece.utexas.edu

ABSTRACT
Existing literature documents a number of techniques for
combining a set of independent datapath designs into a sin-
gle datapath that is run-time configurable to the function-
ality of any datapath in the set. This paper explores how
delay, energy and area overhead attributable to reconfigura-
bility scales with the number of configurable functionalities,
independent of the design of specific datapaths. Distinct
design space regions are identified based upon common scal-
ing properties, with implications on the design and feasible
efficiency bounds of reconfigurable devices.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques

General Terms
Design,Theory

Keywords
Reconfigurable Logic, Datapath Merging

1. INTRODUCTION
Reconfigurable devices, such as Field Programmable Gate

Arrays (FPGAs) and Digital Signal Processors (DSPs), are
known to have substantial overhead compared to devices
that cannot be reconfigured. Contemporary literature esti-
mates that commercially-available FPGAs are 8-88X worse
in area, 2-14X in delay, and 12-500X in power relative to
even a standard-cell ASIC design[18]. Often worse are fetch-
execute processors, which can be orders of magnitude less ef-
ficient in energy and delay than FPGA implementations[19,
24].

A middle ground that introduces flexibility into ASICs
without incurring the full overhead of FPGA or processors
would offer the ability to implement a limited set of appli-
cations at much higher efficiencies. Techniques to approach

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’12, Jun 03-07 2012 San Francisco, CA, USA
Copyright 2012 ACM 978-1-4503-1199-1/12/06 ...$10.00.

this middle ground have been developed for a number of
application areas, under a variety of labels, including: the
Datapath merging (DPM) problem, multi-mode synthesis,
application-specific accelerator synthesis, Virtual Reconfig-
urable Architectures (VRAs), and configurable ASICs.

While extensive prior work exists on a middle ground be-
tween ASICs and general-purpose logic, most work is focused
on specific applications, design problems, and/or optimiza-
tion strategies. There is a literature gap at the highest levels
of abstraction most useful for system-level architects. That
is, there is little documented guidance on what exactly the
overall design space might look like. High-level questions re-
main unaddressed, including: how do delay, energy, and area
costs scale as the number of functionalies merged by DPM
increase? How dependent are results on the specific topolo-
gies and similarities of circuits being merged? Which opti-
mization strategies are most appropriate for a given DPM
problem? This paper examines the general characteristics
of the design space resulting from solving the DPM problem
at a high level of abstraction, with particular attention to
how overhead scales with the number of required datapath
configurations.

2. BACKGROUND
As noted previously, techniques to approach a middle ground

between inflexible ASICS and general-purpose programmable
devices have been developed for a number of application
areas, under a variety of labels. The Datapath Merging
(DPM) subproblem of high-level synthesis accepts as input
any number of DFGs, and produces as output a “single re-
configurable datapath”, with the goal being to “design a re-
configurable datapath which incorporates all the [...] data-
paths and has [the fewest] functional units and interconnec-
tions as possible” [22]. Experimental work on this subject
has primarily focused on using unscheduled DFGs obtained
from intermediate compiler representations of software im-
plementations, although manual examples of the technique
exist in the context of FPGA run-time reconfiguration [27].
The DPM problem has a substantial body of literature ad-
dressing algorithmic complexity [28], heuristics [2, 17], and
optimization algorithms [23]. A simple example of DPM
is illustrated graphically in Figure 1. Some DPM solutions
may yield cyclic “false” timing paths, and these may be han-
dled with techniques documented by Malik [21].

More recent work has applied a classic high-level synthe-
sis argument that scheduling and binding are best jointly-
optimized to the DPM problem [4, 3]. Specifically Chavet
et al. [4] argue that among prior work, “four distinct ap-

790

Figure 1: An simple example of the Datapath Merg-
ing problem. Here two datapaths on the left are
combined into a single datapath that is configurable
with the functionality of either datapath. Note the
introduction of additional wires and multiplexers to
support configurability.

proaches can be identified” based upon which of the steps in
a conceptual high-level synthesis design are modified to be
merge-aware. Chavet et al. further argue the need for a dis-
tinct “multi-mode” synthesis design flow that co-optimizes
scheduling and binding, and suggest that new “scheduling,
binding and register merging algorithms have to be pro-
posed” [4]. Chiou, Bhunia and Roy [5] presented a multi-
mode synthesis flow based upon a SPA-tially Chained Trans-
formation (SPACT) in which the input DFGs are scheduled
individually with estimated resource constraints, concate-
nated, bound, and then synthesized into HDL code.

The related application-specific accelerator synthesis prob-
lem [15, 1] has been studied to implement Application-Specific
instruction set extensions for otherwise conventional micro-
processors. For instance, Zuluaga and Topham [30] propose
a technique that considers latency constraints during the
merging process between multiple instruction set extensions.
At a system level, Huang and Malik [17] discuss the DPM
problem as a component of a methodology to minimize run-
time reconfiguration overhead in Systems-on-a-Chip(SoC).

Addressing the problem from an angle applicable to exist-
ing FPGAs, Rullmann and Merker have developed a tech-
nique for development of virtual architectures on top of FP-
GAs using datapath merging [26]. In another paper, the
datapath merging technique (including a novel Ant Colony
Optimization algorithm) is used to generate placement con-
straints to force the FPGA synthesis tool to place similar
logic in similar placement between multiple designs, thereby
maximizing redundant configuration bits between DFGs[25].

The Totem Project at The University of Washington has
the stated goal of providing an “automatic path for the cre-
ation of custom reconfigurable hardware, targeted for use
in Systems-on-a-Chip (SoCs)” [16]. This ambitious project
is intended to span from high-level architecture generation,
through layout of the programmable chip, ultimately includ-
ing CAD suites customized for each generated architecture.

Building upon the RaPiD framework [10], Compton and
Hauck [8] developed a two stage algorithm for combining
multiple RaPiD netlists into an application-specific RaPiD-
like structure. This paper considered area optimization as
a sole metric and demonstrated that custom architectures
can achieve area efficiencies of only 1.5 times a lower bound
based on the minimum number of functional units able to
implement each of the input netlists. These concepts were
further elaborated upon in Compton’s Ph.D [7], which in-
troduced the term “configurable ASIC” for the generated
architectures. Among the contributions of the dissertation
is a comparison of sample configurable ASIC designs against

a traditional FPGA implementation. The comparisons with
traditional FPGAs were limited to area-efficiency, but were
quite favorable, with improvements ranging from 4-12X.

3. APPROACH
When examined relative to any of the input (i.e. fixed-

function) datapaths, solutions of the DPM commonly rely
upon the addition of multiplexers and connectivity (e.g. wires)
within the datapath to introduce the required configurabil-
ity. These added multiplexers and wires introduce overhead
relative to the fixed-function datapath. While some of this
overhead is incurred each time the device is reconfigured, the
focus of this exercise is solely on overhead that is incurred
post-configuration, during the operation of the datapath.
That is, the focus is on overhead incurred while datapath
remains a single configuration in exchange for the capability
to reconfigure the datapath for other computations at a later
time. To constrain the scope, we make several simplifying
assumptions:

• that the configurable datapaths resulting from solving
the DPM problem consist of opaque computing com-
ponents present in the input datapath set, multiplexers
inserted to allow configurability, and additional wires
inserted to support the additional required connectiv-
ity,

• that the opaque computing components are homoge-
nous (e.g. FPGA LUTs)1,

• that the overhead of interest can be attributed to either
multiplexer costs or the costs of the added wires,

• that no rescheduling is permissible (i.e. DPM is re-
stricted to choosing a binding, with scheduling fixed
by the datapath designs, as is common in RTL synthe-
sis),

• that each of the input designs requires the same num-
ber of computing components,

• that the input designs have connectivity described by
Rent’s rule and have the same intrinsic Rent exponent,
and

• that no subgraph isomorphisms are exploited in the
DPM (i.e. a worst-case solution for typical DPM algo-
rithms).

To provide insight on wiring costs independent of the pe-
culiarities of any specific datapath, we adopt a parametrized
model for wiring. The specific approach, based upon Rent’s
rule [20], is well known in the EDA community [6] and has
proved useful in quantifying circuit characteristics in order
to estimate features including wirelength distributions[14,
11] and average wirelengths [13, 29]. These results have in
turn been used to estimate critical-path lengths, dynamic-
power dissipation, and die areas [12]. Among the parameters
used are:

• C - the number of components in a circuit (or subset
thereof),

1Preliminary work suggests that a similar analysis applies to
datapaths with balanced ratios of heterogenous components.

791

• p - the Rent exponent,

• k - the average number of terminals per component,

• α - the fraction of terminals that are inputs

• ncp - the number of components in the critical path.

From these parameters, we assume wiring of the datapath
designs to be merged are well-characterized by the analysis
of Donath [13] and Davis et al [11]. That is, the expected
total number of wires for a circuit W is given by

W = αkC(1− Cp−1). (1)

Moreover, the average wire length R is related to the Rent
exponent p and the number of circuit components C, and
scales as follows

R ∼

⎧⎪⎨
⎪⎩
Cp−0.5 for p > 0.5

logC for p = 0.5

f(p) for p < 0.5,

(2)

where f(p) is an unspecified function of only p. Addition-
ally, several parameters are defined specific to this effort:

• N - the number of datapaths (i.e. functionalities) be-
ing merged.

• β - the fraction of component input ports that need
multiplexers inserted to maintain functional correct-
ness. In the case of topological similarities, multiplex-
ers may not be required in certain resource sharing
manipulations. For a worst case bound, β = 1.

• γ - the instance-dependent fraction of dynamic en-
ergy dissipated as a result of efficiencies gained from
operand isolation [9] techniques. For a worst-case bound,
γ = 1.

The assumptions above suggest a bookkeeping structure
with three separate sources of costs in programmable de-
signs: the computing components themselves, multiplexers
inserted to allow reconfigurability, and the wires added to
connecting those multiplexers for reconfigurability. To pro-
vide insight in a manner independent of any fabrication tech-
nology, we choose to normalize the multiplexer and wiring
costs relative to cost of the computing components. There-
fore, with regard to any particular cost metric (e.g. area,
delay, energy), one can speak of a solution to a DPM prob-
lem instance falling somewhere on the 2D plane shown in
Figure 2. Towards the top and right of the space, the cost
from the multiplexers and wires added for configurability
dominates the cost of the opaque computing components,
respectively. Similarly, towards the bottom left, the cost of
computing components is dominant over the costs incurred
for reconfigurability.

Based upon this accounting, we decompose the design-
space into three asymptotic regions based upon the domi-
nant source of costs. The regions are referred to as asymp-
totic in that their properties hold true only so far as the
associated source of costs dominates the others. This de-
composition offers the advantage that within an asymptotic
region, costs scale distinctly with N , the number of explicit
reconfiguration options. Within this framework, the remain-
der of this paper addresses two key questions:

Figure 2: Depiction of the solution space implied by
multiplexer-based solutions to the datapath merging
(DPM) problem. A single function datapath has no
configurability overhead, and would be represented
by a point on the extreme bottom left. As the num-
ber of desired functionalities increase (N), the con-
figurability overhead grows and the point traverses
towards the upper right. This is illustrated graphi-
cally by the arbitrarily drawn path.

1. how do the delay, energy, and area overheads due to
reconfigurability scale as the number of configurable
functionalities (N) increase?

2. where do the boundaries between regions exist in terms
of the number of functionalities(N) (i.e. when does the
overhead due to reconfigurability become dominant)?

4. SCALING COSTS
We now address the question of how costs scale with the

number of functionalities within each of the asymptotic re-
gions. We consider the cost metrics of critical path delay,
energy per operation, and area independently, using “big-O”
Bachmann-Landau asymptotic notation for conciseness.

By definition, within the component-dominated asymp-
totic region the cost of the opaque computing components
dominate the costs of multiplexers and wires added to in-
troduce configurability. As a result, within the component
dominated-region, delay, energy, and area costs are indepen-
dent of the number of functionalities, and therefore scale as
O(1).

Within the multiplexer-dominated region, the cost of the
multiplexers inserted to support configurability dominates
by definition, and thus overall costs scale as do the costs of
the added multiplexers. In the worst-case, it is sufficient to
solve the DPM problem by inserting a N -input multiplexer
at the input of every opaque computing component. That
is, the N inputs of each added multiplexer are connected
so as to provide the connectivity required for each of the N
functionalities. Assuming a worst-case recursive implemen-
tation of 2-input multiplexers, for each component this re-

792

Asymptotic Region Delay Energy Area
Component O(1) O(1) O(1)
Multiplexer O(log(N)) O(N) O(N)

Wire O(N) O(N
3
2) Omitted

Table 1: Cost scaling with number of functionalities
(N)

sults in the addition of O(N) multiplexers in a configuration
O(log(N)) deep. Therefore the critical path delay added by
these multiplexers scales as O(log(N)). Again assuming a
worst-case implementation with no operand isolation or data
gating, the energy dissipated by the multiplexers switching
scales with the number of multiplexers, or O(N). The area
required also scales with O(N)

Within the wire-dominated region, the cost of wires added
to support configurability dominate by definition and thus
overall costs scale asymptotically as do the costs of the added
wires. As noted above, in the worst-case adding N -input
multiplexers for each input of each computing component
is sufficient to solve the DPM problem. Each of these N
inputs requires a corresponding wire in a circuit to provide
the needed connectivity. In the worst case, the overall data
path area scales as O(N) due to the added O(N) multi-
plexers, such that wirelength distributions would tend to
scale as O(

√
N). If one assumes these wires are unbuffered

within the datapath, critical path delay will scale then as the
square of the wirelength or as O(N). As the number of wires
(W) scales as O(N), and the wirelength distribution scales

as O(
√
N), the dynamic energy required to charge/discharge

this wire network therefore scales as O(N
3
2). A similar anal-

ysis for area is omitted as a straight-forward analysis is com-
plicated by the existence of distinct resources (e.g. metal
layers) for wiring that are scalable somewhat independently
of the area of active resources.

These scaling derivations are summarized in Table 1. A
casual inspection suggests a number of important features
of the design-space implied by the DPM problem:

1. Within the component dominated region, the marginal
cost of adding new functionalities to a given design is
asymptotically zero. The extent of this region is of key
importance and is discussed in the following section.

2. In the multiplexer and wire dominated regions, delay
scales much better than energy with added functional-
ities. This provides a simple explanation for reports of
much higher energy overheads relative to delay over-
heads in general purpose programmable devices (e.g.
FPGAs [18]).

3. Wire-dominated reconfigurable datapaths scale more
poorly than do multiplexer dominated designs. This
suggests that as wiring costs become more costly rel-
ative to switching (i.e. multiplexer) costs in process
technologies, rich configurability will tend to become
an even more expensive design option.

5. REGION BOUNDARIES
While the prior section outlined the scaling properties

within each asymptotic region, it does not necessarily fol-
low that any particular region has a non-trivial extent. We

now address the existence and extent of these asymptotic re-
gions. The component-dominated region contains the single-
functionality limit case, and therefore contains at least one
trivial design point. We now attempt to predict the extent
of the component dominated region in terms of the number
of desired functionalities (N) by identifying when the cost
of multiplexers and wires dominate the cost of the opaque
computing components.

We begin by defining the delay of the configurable DPM
solution as:

delay(programmable) =delay(fixedcomponents)

+ ncpceil(log2(N))delay(MUX2)

+ delay(fixedwires)
Rprogrammable

Rfixed

,

(3)

where delay(programmable), delay(fixedcomponents), and
delay(MUX2) are the critical path delays of the programmable
circuit, the fixed function components, and a 2 element mul-
tiplexer, respectively. The latter two terms of the sum cor-
respond to the delay introduced by the multiplexers and the
delay introduced by the wires added to support configurabil-
ity.Similarly, define the dynamic energy of the configurable
DPM solution as:

energy(programmable) =

energy(fixedcomponents) +Wprogrammableenergy(MUX2)γ

+energy(fixedwires)γ
Wprogrammable

Wfixed

Rprogrammable

Rfixed

,

(4)

where energy(programmable), energy(fixedcomponents),
energy(MUX2) are the total dynamic energy dissipated per
operation in the programmable circuit, the fixed function
components, and a 2 element multiplexer, respectively.

By definition, the boundary between the component-dominated
asymptotic region and the multiplexer-dominated region ex-
ists when the cost of the opaque computing component cost
equals the cost of the added multiplexers. We can compute
the extent of the component dominated region for delay by
solving the equation

delay(fixedcomponents) > ncpceil(log2(N))delay(MUX2)
(5)

for N . Using the assumptions of equations 1 and 2, it
can be shown that the DPM design solution lies in the
component-dominated asymptotic region when

ceil(log2(N)) <
delay(fixedcomponents)

ncpdelay(MUX2)
. (6)

Restated in prose, the total delay of the computing com-
ponents is greater than the costs of the added multiplexors,
provided the number of functionalities is less than two raised
to the power of the delay of the average computing compo-
nent expressed in units of the delay of a 2-input multiplexer.
Similar derivations can be computed for energy and for the
boundary with the wire dominated region. The end results
of these derivations are summarized in Table 2.

Inspection of Table 2 reveals a number of interesting ob-
servations:

793

Boundary Comp/Mux Comp/Wire

Delay 2
delay(comp)

ncpdelay(MUX2)

(
delay(comp)
delay(wires)

)2

Energy energy(comp)
C·energy(MUX2)

(
energy(comp)
energy(wires)

) 2
3

Area area(comp)
C·area(MUX2)

Omitted

Table 2: Each table entry is the number of func-
tionalities (N) at the region boundary specificied in
the first row. Thus the second column shows where
component and multiplexer costs are equal and the
lower row shows (N) where the component and wire
costs are equal. Here ncp is number of components
on critical path, C is number of components in the
circuit, and MUX2 is a 2-input multiplexer.

Boundary Comp/Mux Comp/Wire

Delay 267 10
Energy 3 6
Area 5 -

Table 3: Each table entry is the number of func-
tionalities (N) at the region boundary specificied in
the first row for an example 90nm technology node
with 100 components in each functionality, and each
component having the costs of a single 32-bit adder.
This represents the worst-case bounds. For typical
bounds, see Table 4.

1. As the cost of the computing components increase (rel-
ative to a 2-input multiplexer), the component-dominated
asymptotic region grows larger. That is, the coarser-
grained the reconfigurability, the more functionalities
can be introduced without configurability dominating
costs.

2. Considering only multiplexer delays, the number of
functionalities (N) within component dominated re-
gion grows exponentially large with the delay of the
computing components.

For better intuition, if one assumes typical values from
90nm standard cell technology, a computing element is a
single 32-bit adder, C = 100 components in each merged
functionality, and that average wirelength on the critical
path scales as

√
area(adder) · C, we can compute numeric

values for the entries in Table 2. The resulting worst-case
(β = γ = 1) values are shown in Table 3.

To estimate more typical values rather than worst case, we
have conducted DPM experiments on a set of Digital Signal
Processing cores taken from a software defined radio (SDR)
platform, including 1) coordinate rotation digital computer
(CORDIC) sine/cosine generator, 2) complex-value hetero-
dyne stage (hetero), 3) Cascaded Integrating Comb (CIC)
decimating filter, 4) Finite Impulse Response (FIR) filter,
and 5) a Fast Fourier Transform (FFT) butterfly. To avoid
overly optimal effects from topological similarities, we used
a random (i.e. unoptimized) binding in the DPM process,
and estimated values for α, β, γ, k, C. We found that

• only 51 of 202 possible (bus) multiplexers were inserted
(β = 0.25),

• there was a 39% energy reduction via naive operand
isolation (γ = 0.61),

Boundary Comp/Mux Comp/Wire

Delay 280 208
Energy 40 20
Area 38 -

Table 4: Each table entry is the number of function-
alities (N) at the region boundary specified in the
row header for an example 90nm technology node
based on a case study conducted with Software De-
fined Radio datapaths.

• designs were dominated by 2-input, 3-terminal compo-
nents (k = 3,α = 0.67),

• there were an average of 27 components per function-
ality (C = 27), and

• computing component costs are dominated by 16-bit

multipliers, driving the
delay(fixedcomponents)

ncp
term.

Using these parameter values, we find that the expected
values for the extent of the component dominated region as
are shown in Table 4. Note that even in the worst case,
20 functionalities can be merged before the costs of config-
urability begin to dominate the costs of the computing el-
ements. Therefore the component-dominated region is per-
haps usefully large, even without exploiting topological simi-
larities between merged datapaths, as is commonly assumed
for DPM.

6. CONCLUSIONS
We have shown that by careful construction of the prob-

lem, it is possible to predict characteristics of the design
space implied by the DPM problem independent of the spe-
cific datapath topologies being merged. Moreover, we have
established three asymptotic regions based upon the domi-
nant cost component that form a framework convenient for
performing analysis early in the design process. This decom-
position has impacts on the further study of DPM optimiza-
tion algorithms. Notably, any optimization strategy should
focus on the dominant cost. Current DPM optimization
has primarily focused on minimizing multiplexer insertion,
which is reasonable for designs in the multiplexer-dominated
region. However, such optimization may be misguided for
designs known to reside in the other asymptotic regions. For
instance, DPM binding algorithms reminiscent of recursive
partitioning placement algorithms may be more suitable in
the wire dominated region. This paper lays the ground work
for system-level prediction such that a designer might pre-
dict a target region early in the design process.

We have further shown both bounds and typical values
for the extent of these asymptotic regions. Notably, in a
conservative analysis with datapath designs from an SDR
application, we predict that tens of functionalities can be
merged before wiring or multiplexer costs begin to dominate
the cost of the computing components. This would suggest
that, with suitable design tools, a useful degree of reconfig-
urability can be introduced into fixed-function designs with-
out the cost of the reconfigurability becoming substantial.

7. REFERENCES
[1] K. Atasu, C. Ozturan, G. Dundar, O. Mencer, and

W. Luk. CHIPS: Custom hardware instruction

794

processor synthesis. IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems,
27(3):528, 2008.

[2] R. Battiti and M. Protasi. Reactive local search for
the maximum clique problem. Technical report,
Algorithmica, 2001.

[3] L. Bertrand and E. Casseau. Automated multimode
system design for high performance DSP applications.
In Proceedings of the 17th European Signal Processing
Conference (EUSIPCO 2009), pages 1289–1293, 2009.

[4] C. Chavet, C. Andriamisaina, P. Coussy, E. Casseau,
E. Juin, P. Urard, and E. Martin. A design flow
dedicated to multi-mode architectures for DSP
applications. In Proceedings of the 2007 IEEE/ACM
international conference on Computer-aided design,
pages 604–611. IEEE Press, 2007.

[5] L.-y. Chiou, S. Bhunia, and K. Roy. Synthesis of
application-specific highly efficient multi-mode cores
for embedded systems. ACM Trans. Embed. Comput.
Syst., 4(1):168–188, 2005.

[6] P. Christie and D. Stroobandt. The interpretation and
application of Rent’s rule. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on,
8(6):639 –648, Dec 2000.

[7] K. Compton. Architecture Generation of Customized
Reconfigurable Hardware. PhD thesis, Northwestern
University, 2003.

[8] K. Compton and S. Hauck. Totem: Custom
reconfigurable array generation. IEEE Symposium on
FPGAs for Custom Computing Machines, 2001.

[9] A. Correale, Jr. Overview of the power minimization
techniques employed in the ibm powerpc 4xx
embedded controllers. ISLPED ’95, pages 75–80, 1995.

[10] D. Cronquist, C. Fisher, M. Figueroa, P. Franklin, and
C. Ebeling. Architecture design of reconfigurable
pipelined datapaths. 20th Anniversary Conference on
Advanced Research in VLSI, 1999., pages 23–40, 1999.

[11] J. Davis, V. De, and J. Meindl. A stochastic
wire-length distribution for gigascale integration
(GSI)-Part I: Derivation and validation. IEEE
Transactions on Electron Devices, 45(3), 1998.

[12] J. Davis, V. De, and J. Meindl. A stochastic
wire-length distribution for gigascale integration
(GSI)-Part II: Applications to clock frequency, power
dissipation, and chip size estimation. IEEE
Transactions on Electron Devices, 45(3), 1998.

[13] W. Donath. Placement and average interconnection
lengths of computer logic. Circuits and Systems, IEEE
Transactions on, 26(4):272–277, Apr 1979.

[14] W. Donath. Wire length distribution for placements of
computer logic. IBM Journal of Research and
Development, 25(2-3):152–155, 1981.

[15] W. Geurts, F. Catthoor, S. Vernalde, and H. De Man.
Accelerator Data-Path Synthesis for High-Throughput
Signal Processing Applications. Kluwer Academic Pub,
1997.

[16] S. Hauck, K. Compton, K. Eguro, M. Holland,
S. Phillips, and A. Sharma. Totem: Domain-Specific
Reconfigurable Logic. submitted to IEEE Transactions
on VLSI, 2008.

[17] Z. Huang and S. Malik. Managing dynamic
reconfiguration overhead in systems-on-a-chip design
using reconfigurable datapaths and optimized
interconnection networks. Design, Automation and
Test in Europe Conference, 0:0735, 2001.

[18] I. Kuon and J. Rose. Measuring the gap between
FPGAs and ASICs. In FPGA ’06: Proceedings of the
2006 ACM/SIGDA 14th international symposium on
Field programmable gate arrays, pages 21–30, New
York, NY, USA, 2006. ACM Press.

[19] P. Kwan and C. T. Clarke. FPGAs for improved
energy efficiency in processor based systems. Advances
in Computer Systems Architecture: 10th Asia-Pacific
Conference, ACSAC 2005, Singapore, October 24-26,
2005: Proceedings, 2005.

[20] B. Landman and R. Russo. On a pin versus block
relationship for partitions of logic graphs. IEEE
Transactions on Computers, C-20:1469–1479,
December 1971.

[21] S. Malik. Analysis of cyclic combinational circuits. In
IEEE/ACM International Conference on
Computer-Aided Design, pages 618 –625, Nov 1993.

[22] N. Moreano, G. Araujo, Z. Huang, and S. Malik.
Datapath merging and interconnection sharing for
reconfigurable architectures. In ISSS ’02: Proceedings
of the 15th international symposium on System
Synthesis, pages 38–43, 2002.

[23] N. Moreano, E. Borin, C. D. Souza, and G. Araujo.
Efficient datapath merging for partially reconfigurable
architectures. In IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems,
pages 969–980, 2005.

[24] K. Parnell and R. Bryner. Comparing and contrasting
FPGA and microprocessor system design and
development. Technical report, Xilinx, 2004.

[25] M. Rullmann and R. Merker. Maximum edge matching
for reconfigurable computing. In Reconfigurable
Architectures Workshop at 13th IEEE International
Parallel & Distributed Processing Symposium (IPDPS
2006), Rhodes, Greece. Citeseer, 2006.

[26] M. Rullmann, R. Merker, H. Hinkelmann, P. Zipf, and
M. Glesner. An Integrated Tool Flow to Realize
Runtime-Reconfigurable Applications on a New Class
of Partial Multi-Context FPGAs. In Proc. 19th Intl.
Conf. on Field Programmable Logic and Appls., 2009.

[27] N. Shirazi, W. Luk, and P. Cheung. Automating
production of run-time reconfigurable designs. Annual
IEEE Symposium on Field-Programmable Custom
Computing Machines, 0:147, 1998.

[28] C. C. d. Souza, A. M. Lima, G. Araujo, and N. B.
Moreano. The datapath merging problem in
reconfigurable systems: Complexity, dual bounds and
heuristic evaluation. J. Exp. Algorithmics, 2005.

[29] D. Stroobandt. Improving Donath’s technique for
estimating the average interconnection length in
computer logic. ELIS Technical Report, 1996.

[30] M. Zuluaga and N. Topham. Resource sharing in
custom instruction set extensions. In Proceedings of
the 6th IEEE Symposium on Application Specific
Processors.(Jun. 2008), 2008.

795

