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Abstract—Graphics Processing Units (GPUs) have numer-
ous configuration and design options, including core frequency,
number of parallel compute units (CUs), and available memory
bandwidth. At many stages of the design process, it is important
to estimate how application performance and power are impacted
by these options.

This paper describes a GPU performance and power esti-
mation model that uses machine learning techniques on mea-
surements from real GPU hardware. The model is trained on
a collection of applications that are run at numerous different
hardware configurations. From the measured performance and
power data, the model learns how applications scale as the GPU’s
configuration is changed. Hardware performance counter values
are then gathered when running a new application on a single
GPU configuration. These dynamic counter values are fed into
a neural network that predicts which scaling curve from the
training data best represents this kernel. This scaling curve is
then used to estimate the performance and power of the new
application at different GPU configurations.

Over an 8× range of the number of CUs, a 3.3× range of
core frequencies, and a 2.9× range of memory bandwidth, our
model’s performance and power estimates are accurate to within
15% and 10% of real hardware, respectively. This is comparable
to the accuracy of cycle-level simulators. However, after an initial
training phase, our model runs as fast as, or faster than the
program running natively on real hardware.

I. INTRODUCTION

Graphics processing units (GPUs) have become standard
devices in systems ranging from cellular phones to supercom-
puters. Their designs span a wide range of configurations and
capabilities, from small, power-efficient designs in embedded
systems on chip (SoCs) to large, fast devices meant to prioritize
performance. Adding to the complexity, modern processors
reconfigure themselves at runtime in order to maximize per-
formance under tight power constraints. These designs will
rapidly change core frequency and voltage [1], [43], modify
available bandwidth [14], and quickly power gate unused
hardware to reduce static power usage [31], [37].

With this wide range of possible configurations, it is critical
to rapidly analyze application performance and power. Early
in the design process, architects must verify that their plan will
meet performance and power goals on important applications.
Software designers, similarly, would like to verify performance
targets on a wide range of devices. These estimates can even
result in better dynamic reconfiguration decisions [46], [49].

Design-time estimates are traditionally performed using
low-level simulators such as GPGPU-Sim [8], which can be
carefully configured to yield accurate estimates, often within

10-20% of real hardware. The performance of such simulators,
however, precludes their use for online analysis or large design
space explorations. GPGPU-Sim, for instance, runs millions
of times slower than native execution [35]. Such overheads
often result in the use of reduced input sets, which can further
decrease accuracy, or sampling techniques which can still run
many times slower than real hardware if they model each
sample in a slow simulator [52].

To alleviate this problem, researchers have built a variety
of analytic performance and power models [6], [23], [28], [30],
[32], [38], [40], [45], [54], [55]. These range from estimates
that use static code analyses [6] to linear regressions based
on hardware performance counters [28]. These models are
primarily built for, and trained on, single GPU configurations.
This can yield accurate estimates but limits their ability to
model large design spaces or runtime hardware changes.

This paper focuses on rapidly estimating the performance
and power of GPUs across a range of hardware configurations.
We begin by measuring a collection of OpenCLTM kernels on
a real GPU at various core frequencies, memory bandwidths,
and compute unit (CU) counts. This allows us to build a set of
scaling surfaces that describe how the power and performance
of these applications change across hardware configurations.
We also gather performance counters, which give a fingerprint
that describes each kernel’s use of the underlying hardware.

Later, when analyzing previously unseen kernels, we gather
the execution time, power, and performance counters at a
single hardware configuration. Using machine learning (ML)
methods, we use these performance counter values to predict
which training kernel is most like this new kernel. We then
estimate that the scaling surface for that training kernel also
represents the kernel under test. This allows us to quickly
estimate the power and performance of the new kernel at
numerous other hardware configurations.

For the variables we can explore during the training phase,
we find our ML-based estimation model to be as accurate as
values commonly reported for microarchitectural simulations.
We are able to estimate the performance of our test kernels
across a 3.3× change in core frequency, a 2.9× change
in memory bandwidth, and an 8× change in CUs with an
average error of 15%. We are able to estimate dynamic power
usage across the same range with an average error of 10%.
In addition, this is faster than low-level simulators; after an
offline training phase, online predictions across the range of
supported settings takes only a single run on the real hardware.
Subsequent predictions only require running the ML predictor,
which can be much faster than running the kernel itself.



This work makes the following contributions:

• We demonstrate on real hardware that the performance
and power of General-purpose GPU (GPGPU) kernels
scale in a limited number of ways as hardware con-
figuration parameters are changed. Many kernels scale
similarly to others, and the number of unique scaling
patterns is limited.

• We show that, by taking advantage of the first insight,
we can perform clustering and use machine learn-
ing techniques to match new kernels to previously
observed kernels whose performance and power will
scale in similar ways.

• We then describe a power and performance estimation
model that uses performance counters gathered during
one run of a kernel at a single configuration to predict
performance and power across other configurations
with an average error of only 15% and 10%, respec-
tively, at near-native-execution speed.

The remainder of this paper is arranged as follows. Section
II motivates this work and demonstrates how GPGPU kernels
scale across hardware configurations. Section III details our
ML model and how it is used to make predictions. Section
IV describes the experimental setup we used to validate our
model and Section V details the results of these experiments.
Section VI lists related work, and we conclude in Section VII.

II. MOTIVATION

This section describes a series of examples that motivate
the use high-level performance and power models before
introducing our own model based on ML techniques.

A. Design Space Exploration

Contemporary GPUs occupy a wide range of design points
in order to meet market demands. They may use similar
underlying components (such as the CUs), but the SoCs may
have dissimilar configurations. As an example, Table I lists
a selection of devices that use graphics hardware based on
AMD’s Graphics Core Next microarchitecture. As the data
shows, the configurations vary wildly. At the extremes, the
AMD RadeonTM R9 290X GPU, which is optimized for
maximum performance, has 22× more CUs running at 2.9×
the frequency and with 29× more memory bandwidth than the
tablet-optimized AMD E1-6010 processor.

Tremendous effort goes into finding the right configuration
for a chip before expending the cost to design it. The perfor-
mance of a product must be carefully weighed against factors
such as area, power, design cost, and target price. Applications
of interest are studied on numerous designs to ensure that a
product will meet business goals.

Low-level simulators, such as GPGPU-Sim [8] allow ac-
curate estimates, but they are not ideal for early design space
explorations. These simulators run 4-6 orders of magnitude
slower than native execution, which limits the applications
(and inputs) that can be studied. In addition, configuring
such simulators to accurately represent real hardware is time-
consuming and error-prone [21], which limits the number of
design points that can be easily explored.

TABLE I: Products built from similar underlying AMD logic
blocks that contain GPUs with very different configurations.

Max. Max.
Name CUs Freq. DRAM BW

(MHz) (GB/s)
AMD E1-6010 APU [22] 2 350 11

AMD A10-7850K APU [2] 8 720 35
Microsoft Xbox OneTM processor [5] 12 853 68

Sony PlayStationr 4 processor [5] 18 800 176
AMD RadeonTM R9-280X GPU [3] 32 1000 288
AMD RadeonTM R9-290X GPU [3] 44 1000 352

One common way of mitigating simulation overheads is
to use reduced input sets [4]. The loss of accuracy caused by
this method led to the development of more rigorous sampling
methods such as SimPoints [44] and SMARTS [51]. These
can reduce simulation time by two orders of magnitude while
adding errors of only 10-20% [52]. Nonetheless, this still runs
hundreds to thousands of times slower than real hardware.

High-level models are a better method of pruning the
design space during early explorations. These models may
be less accurate than low-level simulators, but they allow
rapid analysis of many full-sized applications on numerous
configurations. We do not advocate for eliminating low-level
simulation, as it offers valuable insight that high-level models
cannot produce. However, high-level models allow designers to
prune the search space and only spend time building low-level
models for potentially interesting configurations.

B. Software Analysis

GPGPU software is often carefully optimized for the
hardware on which it will run. With dozens of models on
the market at any point in time (as partially demonstrated
in Table I), it is difficult to test software in every hardware
configuration that consumers will use. This can complicate the
task of setting minimum requirements, validating performance
goals, and finding performance and power regressions.

Low-level simulators are inadequate for this task, as they
are slow and require great expertise to configure and use. In
addition, GPU vendors are loath to reveal accurate low-level
simulators, as they can reveal proprietary design information.

High-level models are better for this task. Many existing
high-level models focus on finding hardware-related bottle-
necks, but they are limited to studying a single device configu-
ration [23], [28], [32], [38], [55]. There are others that estimate
how an application would perform as parameters such as
frequency change [39]. We will later detail why these relatively
simple models have difficulty accurately modeling complex
modern GPUs. Nonetheless, their general goal matches our
own: provide fast feedback about application scaling.

C. Online Reconfiguration

Modern processors must optimize performance under tight
power budgets. Towards this end, dynamic voltage and fre-
quency scaling (DVFS) varies core and memory frequency in
response to demand [14], [31]. Recent publications also advo-
cate for disabling GPU CUs when parallelism is least helpful
[41]. We refer to these methods as online reconfiguration.
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(a) A compute-bound kernel.
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(b) A bandwidth-bound kernel.
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(c) A balanced kernel.
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(d) An irregular kernel.

Fig. 1: Four different GPGPU performance scaling surfaces. Frequency is held at 1 GHz while CUs and bandwidth are varied.

Advanced reconfiguration systems try to predict the effect
of their changes on the total performance of the system. For
instance, boosting a CPU’s frequency may prevent a nearby
GPU from reaching its optimal operating point, requiring on-
line thermal models to maximize chip-wide performance [42].
Similarly, using power and performance estimates to proac-
tively choose the best voltage and frequency state (rather than
reacting only to the results of previous decisions) can enable
power capping solutions, optimize energy usage, and yield
higher performance in “dark silicon” situations [46], [49].

Estimating how applications scale across hardware config-
urations is a crucial aspect of these systems. These estimates
must be made rapidly, precluding low-level simulators, and
must react to dynamic program changes, which limits the use
of analytic models based on static analyses. We therefore study
models that quickly estimate power and performance using
easy-to-obtain dynamic hardware event counters.

D. High-Level GPGPU Model

The recurring theme in these examples is a desire for a
fast, relatively accurate estimation of performance and power
at different hardware configurations. Previous studies have
described high-level models that can predict performance at
different frequencies, which can be used for online optimiza-
tions [24], [39], [45]. Unfortunately, these systems are limited
by their models designed after abstractions of real hardware.

Fig. 1 shows the performance of four OpenCLTM kernels on
a real GPU. The performance (Y-axis) changes as the number
of active CUs (X-axis) and the available memory bandwidth
(Z-axis) are varied. Frequency is fixed at 1 GHz.

Existing models that compare compute and memory work
can easily predict the applications shown in Fig. 1(a) and 1(b)
because they are compute and bandwidth-bound, respectively.
Fig. 1(c) is more complex; its limiting factor depends on ratio
of CUs to bandwidth. This requires a model that handles
hardware component interactions [23], [54].

Fig. 1(d) shows a performance effect that can be difficult
to predict with simple models. Adding more CUs helps per-
formance until a point, whereupon performance drops as more
are added. This is difficult to model using linear regression or
simple compute-versus-bandwidth formulae.

As more CUs are added, more pressure is put on the shared
L2 cache. Eventually, the threads’ working sets overflow the
L2 cache, degrading performance. This effect has been shown

in simulation, but simple analytic models do not take it into
account [29], [34]. Numerous other non-obvious scaling results
exist, but we do not detail them due to space constraints.
Suffice to say, simple models have difficulty with kernels that
are constrained by complex microarchitectural limitations.

Nevertheless, our goal is to create a high-level model
that we can use to estimate performance and power across
a wide range of hardware configurations. As such, we build
an ML model that can perform these predictions quickly and
accurately.

We begin by training on a large number of OpenCL kernels.
We run each kernel at numerous hardware configurations while
monitoring power, performance, and hardware performance
counters. This allows us to collect data such as that shown
in Fig. 1. We find that the performance and power of many
GPU kernels scale similarly. We therefore cluster similar
kernels together and use the performance counter information
to fingerprint that scaling surface.

To make predictions for new kernels, we measure the
performance counters obtained from running that kernel at one
hardware configuration. We then use them to predict which
scaling surface best describes this kernel. With this, we can
quickly estimate the performance or power of a kernel at many
configurations. The following section details this process.

III. METHODOLOGY

We describe our modeling methodology in two passes.
First, Section III-A describes the methodology at a high level,
providing a conceptual view of how each part fits together.
Then Section III-B, Section III-C, and Section III-D go into
the implementation details of the different parts of the model.
For simplicity, these sections describe a performance model,
but this approach can be applied to generate power models as
well.

A. Overview

While our methodology is amenable to modeling any
parameter that can be varied, for the purposes of this study, we
define a GPU’s hardware configuration as its number of CUs,
engine frequency, and memory frequency. We take as an input
to our predictor measurements gathered on one specific GPU
hardware configuration called the base hardware configura-
tion. Once a kernel has been executed on the base hardware
configuration, the model can be used to predict the kernel’s
performance on a range of target hardware configurations.
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Fig. 2: The model construction and usage flow. Training
is done on many configurations, while predictions require
measurements from only one.
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Fig. 3: The model’s training set, which contains the perfor-
mance or power of each training kernel for a range of hardware
configurations.

The model construction and usage flow are depicted in
Fig. 2. The construction algorithm uses a training data set
containing execution times and performance counter values
collected from executing training kernels on real hardware. The
values in the training set are shown in Fig. 3. For each training
kernel, execution times and performance counter values across
a range of hardware configurations are stored in the training
set. The performance counter values collected while executing
each training kernel on the base hardware configuration are
also stored.

Once the model is constructed, it can be used to predict
the performance of new kernels, from outside the training set,
at any target hardware configuration within the range of the
training data. To make a prediction, the kernel’s performance
counter values and base execution time must first be gathered
by executing it on the base hardware configuration. These are
then passed to the model, along with the desired target hard-
ware configuration, which will output a predicted execution
time at that target configuration. The model is constructed once
offline but used many times. It is not necessary to gather a
training set or rebuild the model for every prediction.

Model construction consists of two major phases. In the
first phase, the training kernels are clustered to form groups
of kernels with similar performance scaling behaviors across
hardware configurations. Each resulting cluster represents one
scaling behavior found in the training set.

In the simple example shown in Fig. 4, there are six training
kernels being mapped to three clusters. Training kernels 1
and 5 are both bandwidth bound and are therefore mapped

Cluster 1 Cluster 3 Cluster 2 

Kernel 1 Kernel 2 Kernel 3 

Kernel 4 Kernel 5 Kernel 6 

Fig. 4: Forming clusters of kernel scaling behaviors. Kernels
that scale in similar ways are clustered together.
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Fig. 5: Building a classifier to map from performance counter
values to clusters.

to the same cluster. Kernel 3 is the only one of the six that
is purely compute bound, and it is mapped to its own cluster.
The remaining kernels scale with both compute and memory
bandwidth, and they are all mapped to the remaining cluster.
While this simple example demonstrates the general approach,
the actual model identifies larger numbers of clusters with
more complex scaling behaviors in a 4D space.

In the second phase, a classifier is constructed to predict
which cluster’s scaling behavior best describes a new kernel
based on its performance counter values. The classifier, shown
Fig. 5, would be used to select between the clusters in
Fig. 4. The classifier and clusters together allow the model
to predict the scaling behavior of a new kernel across a wide
range of hardware configurations using information taken from
executing it on the base hardware configuration. When the
model is asked to predict the performance of a new kernel at
a target hardware configuration, the classifier is accessed first.
The classifier chooses one cluster, and that cluster’s scaling
behavior is used to scale the baseline execution time to the
target configuration in order to make the desired prediction.

Fig. 6 gives a detailed view of the model architecture.
Notice that the model contains multiple sets of clusters and
classifiers. Each cluster set and classifier pair is responsible
for providing scaling behaviors for a subset of the CU,
engine frequency, and memory frequency parameter space. For
example, the top cluster set in Fig. 6 provides information
about the scaling behavior when CU count is 8. This set pro-
vides performance scaling behavior when engine and memory
frequencies are varied and CU count is fixed at 8. The exact
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Fig. 6: Detailed architecture of our performance and power predictor. Performance counters from one execution of the application
are used to find which cluster best represents how this kernel will scale as the hardware configuration is changed. Each cluster
contains a scaling surface that describes how this kernel will scale when some hardware parameters are varied.

number of sets and classifier pairs in a model depends on the
hardware configurations that appear in the training set.

The scaling information from these cluster sets allows scal-
ing from the base to any other target configuration. By dividing
the parameter space into multiple regions and clustering the
kernels once for each region, the model is given additional
flexibility. Two kernels may have similar scaling behaviors in
one region of the hardware configuration space, but different
scaling in another region. For example, two kernels may scale
identically with respect to engine frequency, but one may not
scale at all with CU count while the other scales linearly.
For cases like this, the kernels may be clustered together in
one cluster set but not necessarily in others. Breaking the
parameter space into multiple regions and clustering each
region independently allows kernels to be grouped into clusters
without requiring that they scale similarly across the entire
parameter space. In addition, by building a classifier for each
region of the hardware configuration space, each classifier only
needs to learn performance counter trends relevant to its region,
which reduces their complexity.

The remainder of this section provides descriptions of
the steps required to construct this model. The calculation
of scaling values, which are used to describe a kernel’s
scaling behavior, is described in Section III-B. Section III-C
describes how these are used to form sets of clusters. Finally,
Section III-D describes the construction of the neural network
classifiers.

B. Scaling Surfaces

Our first step is to convert the training kernel execution
times into performance scaling values, which capture how
the kernels’ performance changes as the number of CUs,
engine frequency, and memory frequency are varied. Scaling
values are calculated for each training kernel and then put
into the clustering algorithm. Because we want to form groups
of kernels with similar scaling behaviors, even if they have
vastly different execution times, the kernels are clustered using
scaling values rather than raw execution times.

To calculate scaling values, the training set execution
times are grouped by kernel. Then, for each training kernel,
a 3D matrix of execution times is formed. Each dimension
corresponds to one of the hardware configuration parameters.
In other words, the position of each execution time in the
matrix is defined by the number of CUs, engine frequency,
and memory frequency combination it corresponds to.

The matrix is then split into sub-matrices, each of which
represents one region of the parameter space. Splitting the
matrix in this way will form the multiple cluster sets seen
in Fig. 6. An execution time sub-matrix is formed for each
possible CU count found in the training data. For example, if
training set data have been gathered for CU counts of 8, 16,
24, and 32, four sub-matrices will be formed per kernel.

The process to convert an execution time sub-matrix into
performance scaling values is illustrated using the example in
Fig. 7. An execution time sub-matrix with a fixed CU count
is shown in Fig. 7(a). Because the specific CU count does not
change any of the calculations, it has not been specified. In
this example, it is assumed that the training set engine and
memory frequency both range from 400 MHz to 1000 MHz
with a step size of 200 MHz. However, the equations given
apply to any range of frequency values, and the reshaping of
the example matrices to match the new range of frequency
values is straightforward.

Two types of scaling values are calculated from the ex-
ecution times shown in Fig. 7. Memory frequency scaling
values, shown in Fig. 7(b), capture how execution times
change as memory frequency increases and engine frequency
remains the same. Engine frequency scaling values, shown
in Fig. 7(c), capture how execution times change as engine
frequency increases and memory frequency remains the same.
In the memory scaling matrix, each entry’s column position
corresponds to a change in memory frequency and its row
position corresponds to a fixed engine frequency. In the engine
scaling matrix, each entry’s column position corresponds to a
change in engine frequency and its row position corresponds
to a fixed memory frequency.
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(b) Memory frequency scaling values.
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(c) Engine frequency scaling values.

Fig. 7: Calculation of frequency scaling values.

As long as the CU counts of the base and target configura-
tions remain the same, one or more of the shown scaling values
can be multiplied with a base configuration execution time to
predict a target configuration execution time. We will show
how to calculate the scaling factors to account for variable
CU counts shortly. The example in Equation 1 shows how
these scaling values are applied. The base configuration has
a 400 MHz engine clock and a 400 MHz memory clock.
The base execution time is t0,0. We can predict the target
execution time, t3,3, of a target configuration with a 1000
MHz engine clock and a 1000 MHz memory clock using
Equation 1. Scaling values can also be used to scale from
higher frequencies to lower frequencies by multiplying the
base execution time with the reciprocals of the scaling values.
For example, because m0,0 can be used to scale from a 400
MHz to 600 MHz memory frequency, 1

m0,0
can be used to

scale from a 600 MHz to 400 MHz memory frequency. Scaling
execution times in this way may not seem useful when only
training data is considered, as the entire execution time matrix
is known. However, after the model has been constructed, the
same approach can be used to predict execution times for
new kernels at configurations that have not been run on real
hardware.

t3,3 = t0,0

2∏
j=0

e0,j

2∏
i=0

mi,2 (1)

In addition to the engine and memory frequency scaling
values, a set of scaling values is calculated to account for
varying CU count. A sub-matrix, from which CU scaling
values can be extracted, is constructed. All entries of this
new sub-matrix correspond to the base configuration engine
and memory frequency. However, each entry corresponds to
one of the CU counts found in the training data. An example
execution time sub-matrix with variable CU count is shown in
Fig. 8(a). A set of CU scaling behavior values are calculated
using the template shown in Fig. 8(b).

To predict a target configuration execution time, the CU
scaling values are always applied before applying any engine
or memory frequency scaling values. The difference between
the base and target configuration CU counts determines which,
if any, CU scaling values are multiplied with the base execution
time. After applying CU scaling values to the base execution
time, the resulting scaled value is further scaled using the

t3 t2 t1 t0 

32 24 16 8 

Compute Units 

(a) Execution times.

𝑐𝑖 =
𝑡𝑖+1
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c2 c1 c0 

Compute Units 

(b) Compute unit scaling values.

Fig. 8: Calculation of CU scaling values.

memory and engine frequency sets corresponding to the target
CU count. This yields a target execution time that corresponds
to the CU count, engine frequency, and memory frequency of
the target configuration.

C. Clustering

K-means clustering is used to create sets of scaling behav-
iors representative of the training kernels. The training kernels
are clustered multiple times to form multiple sets of clusters.
Each time, the kernels are clustered based on a different set
of the scaling values discussed in Section III-B. Each set of
clusters is representative of the scaling behavior of one region
of the hardware configuration parameter space. The training
kernels are clustered once for each CU count available in
the training set hardware configurations and once based on
their scaling behavior as CU count is varied. For example, if
training data is available for CU counts of 8, 16, 24, and 32,
the training kernels will be clustered five times and produce
five independent cluster sets. Four sets of clusters account for
scaling behavior with varying engine and memory frequency,
and one set accounts for varying CU count.

Before each clustering attempt, a feature vector is formed
for each training kernel. When forming clusters for a specific
CU count, the appropriate engine and memory frequency scal-
ing values (see Fig. 7) are chosen and concatenated together
to form the feature vector. When forming the variable CU
count clusters, the training kernel CU scaling values (see
Fig. 8) are chosen. After each training kernel has a feature
vector, the training kernels are clustered based on the values
in these feature vectors using K-means clustering. The K-
means algorithm will cluster the kernels with similar scaling
behaviors together. For example, purely memory bound kernels
will be clustered together and purely compute bound kernels



TABLE II: Classifier feature list.

VALUInsts % instructions that are vector ALU instructions
SALUInsts % instructions that are scalar ALU instructions
VFetchInsts % instructions that are vector fetch instructions
SFetchInsts % instructions that are scalar fetch instructions
VWriteInsts % instructions that are vector write instructions
LDSInsts % instructions that are local data store insts.
VALUUtilization % active vector ALU threads in the average wave
VALUBusy % of time vector instructions are being processed
SALUBusy % of time scalar instructions are being processed
CacheHit % L2 cache access that hit
MemUnitBusy % time the average CU’s memory unit is active
MemUnitStalled % time the memory unit is waiting for data
WriteUnitStalled % time the average write unit is stalled
LDSBankConflict % time stalled on LDS bank conflicts
Occupancy % of maximum number of wavefronts that

can be scheduled in any CU (Static per kernel)
V IPC Vector instruction throughput
MemTime Ratio of estimated time processing memory

requests to total time
FetchPerLoadByte Average number of load instructions per

byte loaded from memory
WritePerStoreByte Average number of store instructions per

byte stored from memory
NumWorkGroups Number of work groups (Saturates at 320)
ReadBandwidth Average read bandwidth used
WriteBandwidth Average write bandwidth used

will be clustered together. It is possible for some kernels to be
grouped into the same cluster in one set of clusters, but not
in another set of clusters. This can happen for many reasons.
For example, kernels may scale similar with engine frequency,
but differently with CU count. Kernels scaling similarly with
engine or memory frequency at low CU counts, but differently
at high CU counts can also cause this behavior. Clustering
multiple times with different sets of scaling values, rather than
using one set of clusters using all scaling values at once, allows
these kinds of behaviors to be taken into account.

Each cluster’s centroid (i.e., the vector of mean scaling
values calculated from kernels belonging to the cluster) is used
as its representative set of scaling values. Centroids take the
same form as the scaling value matrices shown in either Fig. 7
or Fig. 8, depending on which type of scaling values they were
formed from. When a cluster is chosen by a classifier in the
final model, its centroid scaling values are applied to scale a
base configuration execution time as described in Section III-B.

The number of clusters is a parameter of the K-means
clustering algorithm. Using too few clusters runs the risk of
unnecessarily forcing kernels with different scaling behaviors
into the same cluster. The resulting centroid will not be
representative of any particular kernel. On the other hand,
using too many clusters runs the risk of overfitting the training
set. In addition, the complexity of the classifier increases as the
number of clusters increases. Training the classifier becomes
more difficult when too many clusters are used.

D. Classifier

After forming representative clusters, the next step is to
build classifiers, which are implemented using neural networks,
that can map kernels to clusters using performance counter
values. One neural network is built and trained per cluster set.
The features used as inputs to the neural networks are listed
in Table II. We use AMD CodeXL to gather a collection of

performance counters for each kernel, and all of our features
are either taken directly from these or derived from them. Be-
fore training the neural networks, the minimum and maximum
values of each feature in Table II are extracted from the training
set. Using its corresponding minimum and maximum values,
each training set feature value is normalized to fall between 0
and 1. The normalized feature values are then used to train the
neural network. This avoids the complications of training the
neural network using features with vastly different orders of
magnitude. All training set minimum and maximum features
are stored away so that the same normalization process can be
applied each time the model is used.

The neural network topology is shown in Fig. 9. The neural
network outputs one value, between 0 and 1, per cluster in
its cluster set. The cluster with the highest output value is
selected as the chosen cluster for the kernel. We build a three
layer, fully connected neural network. The input layer is linear
and the hidden and output layers use sigmoid functions. The
topology of the network can be seen in Fig. 9. The number
of input nodes is determined by the number of performance
counters and the number of output nodes is determined by the
number of clusters. We set the number of hidden layer nodes
to be equal to the number of output nodes.

After construction, the neural network is used to select
which clusters best describe the scaling behavior of the kernel
that the user wishes to study. The neural networks use the
kernel’s normalized feature values, measured on the base hard-
ware configuration, to choose one cluster from each cluster set.
The centroids of the selected clusters are used as the kernel’s
scaling values. The predicted target configuration execution
time is then calculated by multiplying the base hardware
configuration execution time by the appropriate scaling values,
as described in Section III-B.
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Fig. 9: Neural network topology.

IV. EXPERIMENTAL SETUP

In order to validate the accuracy of our performance
and power prediction models, we execute a collection of
OpenCLTM applications on a real GPU while varying its hard-
ware configuration. This allows us to measure the power and
performance changes between these different configurations.

We used an AMD RadeonTM HD 7970 GPU as our test
platform. By default, this GPU has 32 compute units (2048 ex-
ecution units), which can run at up to 1 GHz, and 12 channels
of GDDR5 memory running at 1375 MHz (yielding 264 GB/s
of DRAM bandwidth). All of our experiments were performed
on a CentOS 6.5 machine running the AMD CatalystTM graph-
ics drivers version 14.2 beta 1.3. We used the AMD APP SDK



v2.9 as our OpenCL implementation and AMD CodeXL v1.3
to gather the GPU performance counters for each kernel.

As this work is about predicting performance and power
at various hardware configurations, we modified the firmware
on our GPU to support changes to the number of active
CUs and both the core and memory frequencies. All of our
benchmarks are run at 448 different hardware configurations:
a range of eight CU settings (4, 8, . . . , 32), eight core
frequencies (300, 400, . . . , 1000 MHz), and seven memory
frequencies (475, 625, . . . , 1375 MHz). For each kernel in
every benchmark at all of these configurations, we gather the
OpenCL kernel execution time, performance counters from
AMD CodeXL, and the average estimated power of that kernel
over its execution.

The AMD Radeon HD 7970 GPU estimates the chip-
wide dynamic power usage by monitoring switching events
throughout the core. It accumulates these events and updates
the power estimates every millisecond [19]. We read these
values using the system’s CPU. We use these dynamic power
values as the basis for our power model because static power
does not directly depend on the kernel’s execution.

We run GPGPU benchmarks from a number of suites: 13
from Rodinia v2.41 [9], eight from SHOC2 [13], three from
OpenDwarfs3 [18], seven from Parboil4 [47], four from the
Phoronix Test Suite5, eight from the AMD APP SDK samples6,
and six custom applications modeled after HPC workloads7.
Because the power readings from our GPU’s firmware are
only updated every millisecond, we only gather data from
kernels that either last longer than 1 ms on our fastest GPU
configuration or which are idempotent and can be repeatedly
run back-to-back. This yields 108 kernels across these 49
applications, which we do not list due to space constraints.

The data from a random 80% of the 108 kernels were used
to train and construct our ML model, while the data from the
remaining 20% were used for validation.

V. EXPERIMENTAL RESULTS

First, we evaluate the accuracy of our model for perfor-
mance prediction. Section V-A provides a detailed analysis of
performance model accuracy across different base hardware
configurations. Section V-B explores the model’s sensitivity to
the number of representative clusters used. Then, Section V-C
evaluates our approach for modeling power consumption.

A. Performance Model Accuracy

The base hardware configuration used is a key parameter of
the model and can influence its accuracy. To study the relation-
ship between model accuracy and base hardware configuration,
a model was constructed for every one of the 448 possible base

1Rodinia: backprop, b+tree, cfd, gaussian, heartwall, hotspot, kmeans,
lavaMD, leukocyte, lud, particlefilter, srad, streamcluster

2SHOC: DeviceMemory, MaxFlops, BFS, FFT, GEMM, Sort, Spmv w/
additional CSR-Adaptive algorithm [20], Triad

3OpenDwarfs: crc, swat, gem
4Parboil: stencil, mri-gridding, lbm, sad, histo, mri-q, cutcp
5Phoronix: juliaGPU, mandelbulbGPU, smallptGPU, MandelGPU
6AMD APP SDK: NBody, BlackScholes, BinomialOption, DCT, Eigen-

Value, FastWalshTransform, MersenneTwister, MonteCarloAsian
7Custom: CoMD, LULESH, miniFE, XSBench, BPT [11], graph500 [12]

4 8 12 16 20 24 28 32 Legend

475 20.4  18.2  20.5  20.7  23.5  25.9  26.5  31.6  10.0     

625 20.3  15.5  14.4  13.5  16.7  21.1  20.2  21.2  15.0     

775 24.7  15.6  11.9  13.1  13.3  17.0  17.3  19.4  20.0     

925 14.5  13.7  11.3  13.5  14.2  12.9  13.4  17.2  25.0     

1075 13.5  13.7  13.0  12.6  13.5  13.6  13.2  18.3  30.0     

1225 15.8  16.3  12.2  10.6  9.0     13.5  11.8  14.2 

1375 15.5  11.1  12.8  10.8  11.1  11.6  12.7  11.5 

CU Count

M
e
m
o
ry
 F
re
q
u
e
n
cy
 (
M
H
z)

Fig. 10: Validation set error heat map at 1000 MHz core fre-
quency. Each point represents the average error of estimating
from that point’s base configuration to all other configurations
(including all other frequencies).

hardware configurations. All models were constructed using 12
clusters per cluster set. Each model was then used to predict
the execution time of each of the 22 validation kernels on each
of the model’s 447 possible target hardware configurations; we
exclude a model’s base hardware configuration from its list of
possible target hardware configurations.

A heat-map of validation set error values from 56 models
is shown in Fig. 10. All 56 models have a base configuration
engine frequency of 1000 MHz. Their base CU counts and
memory frequencies take on all combinations of the eight
possible CU counts (4, 8, . . . , 32) and the seven possible
memory frequencies (475, 625, . . . , 1375). We omit varying
engine frequency here to make it easier to visualize the data
and gain insights into how base configuration impacts model
accuracy.

Each entry in Fig. 10 is the average error of one model
across all validation kernel and target configuration combi-
nations. High error values show up in the lowest memory
frequency base configurations (i.e., configurations with lit-
tle available memory bandwidth), getting worse at high CU
counts (i.e., high compute capabilities). At these extremely
low memory bandwidth configurations, the number of kernels
that become memory bottlenecked increase. As the percentage
of memory bottlenecked kernels becomes greater, the per-
formance counters values, which are gathered on the base
hardware configuration, become less diverse between kernels
making it difficult for the classifier to assign kernels to different
cluster scaling behaviors. This is particularly true for the 32
CU count, 1000 MHz engine frequency, and 475 MHz memory
frequency base configuration case where the relatively low
memory bandwidth is an extreme mismatch for large number
of CUs, which can each generate separate memory requests
in parallel. As the compute-to-memory bandwidth resources
in the base hardware configuration becomes more balanced,
the diversity among the kernel performance counter values
increases. As a result, the neural network classifier can more
easily distinguish between kernel scaling behaviors and the
overall accuracy improves.

The heat-map shown in Fig. 11 shows the average error of
the 56 models with base engine frequency of 300 MHz. Due
to the reduced engine frequency, the rate of memory requests
is much lower than the 1000 MHz base engine frequency
configurations. As a result, the models at the top right corner
are less imbalanced, causing their errors to be lower than
they were in Fig. 10. However, the entry in the bottom left
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Fig. 11: Validation set error heat map at 300 MHz frequency.

corner of Fig. 11 is higher. This entry represents a model built
with a base configuration of four CUs, a 300 MHz engine
frequency, and a 1375 MHz memory frequency, the highest
memory bandwidth to compute power configuration. In this
base hardware configuration, only the most memory bound
kernels will stress the memory system. This again results in
less diversity in performance counter signatures similarly to
the previously discussed high error base configuration, but
with a large fraction of kernels limited entirely by compute
throughput. This again means that the classifier will have a
harder time distinguishing between kernel scaling behaviors
using the base configuration’s performance counter values.

We generated heat-maps similar to Fig. 10 and Fig. 11
using each of the remaining possible base hardware configu-
ration engine frequencies. The results of these heat-maps are
summarized in Fig. 12. Each box and whisker set shows the
distribution of the average error of models with a common base
engine frequency. The lines through the middle of the boxes
represent the distribution averages. The ends of the boxes
represent the standard deviation of the distributions and the
ends of the whiskers represent the maximum and minimum of
the errors. The best distribution is seen with a 500 MHz base
engine frequency, which supports the idea that configurations
in the middle of the design space make better base hardware
configurations. However, the distributions also show that even
for more extreme base engine frequencies, it is still possible
to find a good base hardware configuration by choosing the
appropriate base CU count and memory frequency to balance
out the configuration.

B. Sensitivity to the Number of Clusters

In this section, we discuss model accuracy as we vary the
number of clusters per set. We built models using 2, 4, . . . , 20
clusters per set and five different base hardware configurations
for a total of 50 models. We then analyzed each model’s
error for the 447 possible target hardware configurations (we
exclude the base configuration from the targets). Section V-B1
discusses model accuracy as cluster count is varied and Sec-
tion V-B2 discusses how the major sources of modeling errors
shift with cluster count.

1) Overall Error: Fig. 13 shows the average error across
the validation kernel set as the number of clusters per cluster
set varies for five base hardware configurations. The x-axis
is labeled with the model base hardware configuration. The
labels list the base CU count first, engine frequency second,
and memory frequency third. The average error across the five
base configurations is shown on the far right. Because the
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Fig. 13: Validation set error variation across cluster count.

cluster centroids and neural network weights are randomly
initialized, the error values include some random variance.
As shown earlier, the error is higher for models generated
from base hardware configurations with imbalanced compute
to memory bandwidth ratios. In particular, using a 32 CU,
1000 MHz engine frequency and 475 MHz memory frequency
configuration yields error values consistently higher across
all cluster settings explored. However, the overall error trend
across the sampled base hardware configurations is similar.
Model error trends downward until around 12 clusters. For
cluster counts greater than 12, error remains relatively constant.

Fig. 14 provides a more detailed breakdown of validation
set error distribution as the number of clusters is varied. The
distributions of two, six, and twelve cluster count models are
shown as histograms. For each cluster count, we aggregated
the error values across the five base configurations shown
in Fig. 13. Because these models were evaluated using 22
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validation kernels and 447 target configurations, a total of
49,170 (5×22×447) error values are represented for each of
the three cluster counts. The first 10 bins of the histogram
represent 10 percent error ranges (e.g., the first bin contains
all data points with less than 10% error, the second bin contains
all data points with greater than or equal to 10% error and less
than 20% error, etc.). The final bin contains all data points
with greater than or equal to 100% error. Going from low to
high error bins, the number of model predictions falling in
each bin exhibits exponential decay (until the last bin, which
corresponds to a greater range of values than the other bins).
The number of data points in low error bins is higher and the
rate of decay is faster for models with more clusters.

2) Sources of Errors: There are two major sources of error
in the model. The first is poorly formed clusters. This can be
caused by a poor training set, a typical concern encountered
when applying machine learning techniques that require a
training set. The number of clusters created by the clustering
algorithm will also have a large impact on model accuracy.
Using too few clusters will fail to capture the diverse range
of scaling behaviors. Using too many clusters introduces the
possibility of over-fitting the model to the training set. The
second source of modeling error comes from the classification
step. Even with a set of well-formed clusters, there will be
times the neural network classifier has difficulty classifying a
kernel to its appropriate cluster. Misclassifying a kernel will
often result in large performance prediction error.

To gain insight into how these two sources of error behave,
we construct some models with an oracle classifier in place
of the neural network and compare them to our original
model described in Section III. The oracle models can only
be applied to the training data set it was constructed with.
For any kernel in the training data set, an oracle classifier
chooses the exact cluster that the k-means cluster algorithm
assigned it to, while the original, unmodified model uses the
neural network classifier to pick an appropriate cluster based
off performance counter values. When applying a model with
an oracle classifier to its own training set, all error can be
attributed to clustering. Comparing the oracle and unmodified
models allows us to gain insight into the interaction between
the clustering and classification errors. Because the models are
only being applied to the training data set in this test, we can
ignore the possibilities of a non-representative training set and
of over-fitting.

Both types are constructed using 2, 4, . . . , 20 clusters
for the five base hardware configurations shown in Fig. 13.
We use the models to predict the execution times of each
kernel in the training data set for 447 different target hard-
ware configurations and compare the oracle and unmodified
model errors. The results are shown Fig. 15. We averaged
error across base configurations, kernels, and target hardware
configurations to more clearly display accuracy vs. number
of clusters for unmodified, neural network models and oracle
models. The oracle model error monotonically decreases as
the number of clusters increases and will decrease to zero
as the number of clusters approaches the number of training
kernels. If each kernel has its own cluster, there will be
no averaging of scaling surfaces within the clusters. This
means that any kernels scaling behavior in the training set
can be perfectly reproduced. The oracle classifier will never
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misclassify. However, the neural network classifier’s task be-
comes more difficult as the number of clusters grows. This
is demonstrated empirically in Fig. 15. Notice that the neural
network classifier model error remains relatively unchanged at
eight or more clusters despite the fact that the oracle model
error continues to decrease. These results demonstrate that
while a greater number of clusters leads to more precise
clusters, it also complicates kernel classification. Eventually
the potential accuracy gains offered by additional clusters is
offset by increased classification errors.

C. Power Model

In addition to performance modeling, we applied our
methodology to create power models. We studied the power
model accuracy versus the number of clusters using the same
experimental set up used for the performance modeling exper-
iments. We gathered the power values from hardware power
monitors in our GPU, which are deterministic estimates of
dynamic power based on switching activity in the cores. As
such, we are training on and validating against a digital model,
rather than analog measurements. This may make it easier to
predict, as the values used will be less noisy.

Just like with the performance models, power models were
constructed using 2, 4, . . . , 20 clusters for five base hardware
configurations. The power models’ errors on the validation set
is presented in Fig. 16. As before, there is some randomness
in the results due to the randomized initial values of the
cluster centroids and neural network weights. The errors of
the models are fairly similar when more than two clusters are
used. This suggests that the power behaviors are less diverse
than the performance behaviors. The power model validation
set errors, which are under 10% for most cluster configurations,
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are also lower than the performance model validation errors.
In addition, the variability of the error across base hardware
configurations is much smaller for power than it was for
performance modeling.

The power model validation error distribution is shown as
a histogram in Fig. 17. Compared to the distribution of errors
in the performance model, the number of tests in the low error
bins is much higher. There is a large improvement from two
to six clusters and very little change from six to 12 clusters,
which suggests that relatively few clusters are need to capture
the power scaling behaviors.

VI. RELATED WORK

Performance and power prediction are important topics,
and Eeckhout gives an excellent overview of the literature
in this area [16]. The bulk of these works focus on CPUs,
which were traditionally a system’s primary computation de-
vice. Unfortunately, CPU-focused techniques are inadequate
for modeling GPUs. Mechanistic models are necessarily tied
to the CPU’s microarchitecture [17], [48], while more abstract
models often rely on low-level data from the hardware or
simulator [15], [25], [33].

GPU performance and power estimation often uses low-
level tools like GPGPU-Sim [8], Multi2Sim [50], and
Barra [10] for performance and GPUWattch [36] for power.
As described earlier, these tools run many orders of magnitude
slower than native hardware. This prevents their use for online
prediction and often requires some kind of sampling mecha-
nism in order to complete large benchmarks in a reasonable
amount of time.

Low-level simulations offer excellent visibility into mi-
croarchitectural details, but our work instead focuses on faster,
higher-level analyses. Besides online estimation, higher-level
models can also help with design space exploration and
pruning in order to reduce the number of low-level simulations
that must be configured and executed. As an example, an
early version of the technique detailed in this paper was used
to explore processing-in-memory designs over multiple future
silicon generations [53]. The usefulness of high-level models
has led to many different developments which attempt to
answer slightly different questions.

One common use for such models is to pinpoint software
inefficiencies for programmers. Our model can estimate what
the application’s performance would be at other hardware

configurations, but it does not directly point out bottlenecks.
As an example of this type of tool, Lai and Seznec describe
TEG, which uses simulation traces to pinpoint bottlenecks in
GPGPU kernels [32]. Karami et al. describe a linear regression
model with the same goal that uses performance counters as its
input [28]. Neither is designed to predict performance across
machine configurations, and as such, our model is somewhat
complementary with these.

Luo and Suda describe a GPU performance and energy
estimation model based on static analyses [38]. While they
show good accuracy on older GPUs, their technique would not
deal well with advances like multi-level caches. Baghsorkhi
et al. describe a more advanced static predictor which uses
symbolic analyses to estimate how regions of code would
exercise the underlying hardware [6]. Both of these techniques
are useful for quickly analyzing how an application would
perform on specific hardware configurations, but their reliance
on static analyses limits their abilities to estimate the effect
of different inputs. This would further make it difficult to use
these methods for online estimates.

Ma and Chamberlain describe an analytic model that
focuses on memory-bound applications that are primarily
dominated by hash-table accesses [40]. Their model shows
good results and can be used to predict performance across
microarchitectural parameters. Unfortunately, their technique
is not applicable for general programs.

Hong et al. built a mechanistic performance model that
views the kernel execution as a mix of memory- and compute-
parallel regions [23]. This was later integrated with parameter-
ized power models [24]. Their original model required static
program analyses, limiting its ability to deal with dynamic
effects like branch divergence. Sim et al. extended these
models to account for such things, including cache effects [45].
They use average memory access time to account for caches,
which would be unable to model the changes in cache hit
rate demonstrated in Fig. 1(d). In a similar manner, the model
presented by Zhang et al. [54] predicts execution times using
a linear combination of time spent on different instruction
types. We initially attempted to use models such as these, but
we repeatedly ran into kernels that could not be accurately
predicted due to irregular scaling that could not easily be taken
into account with performance counters or static analyses.

In contrast, CuMAPz describes an analytic performance
model that takes, as one of its inputs, a memory trace [30].
This allows it to accurately simulate cache behavior and some
of the other issues that cause irregular scaling patterns (such
as PCIer bus limitations due to poor memory placement).
However, memory traces are difficult and time-consuming to
create, negating some of the benefit of high-level modeling.
Our model tries to avoid this overhead while still taking into
account non-obvious scaling patterns.

Ma et al. use linear regression models to estimate the
performance and power of GPU applications in order to decide
where (and how) to run GPGPU programs [39]. Bailey et
al. use clustering and multivariate linear regression towards
a similar goal [7]. These works are an excellent demonstration
of the benefits of online performance and power prediction.
Ma et al. show that their tool allows them to save a significant
amount of energy over blindly assigning work to the CPU



or GPU and continuously running at maximum frequency,
while Bailey et al. demonstrate power capping with limited
performance losses. However, the model of Ma et al., however,
was only validated on a first-generation GPGPU (which is
significantly simpler than modern GPGPUs), and neither model
studies changing the number of active CUs.

The approaches in Stargazer [27] and Starchart [26] reduce
the number of simulation points needed to explore a GPU’s
design space by building power and performance models
from a small number of training points. This is a slightly
different way of approaching design space explorations than
what we present. Rather than requiring a full design space
exploration (whether using a low-level or high-level model),
these techniques help guide the designer towards more optimal
design points. This is beneficial when performing design space
explorations and could be used in conjunction with our model
to further reduce the amount of time required for broad
explorations. Among the other questions our model attempts to
solve, however, these methods are not directly applicable for
online analyses, as they still require multiple runs to gather
training points for a particular run of the application.

VII. CONCLUSION AND FUTURE WORK

In this work, we presented a high-level GPGPU perfor-
mance and power predictor. Our predictor uses performance
counter readings gathered at one hardware configuration to
estimate the performance and power of the GPGPU kernel at
multiple other hardware configurations. The approach uses K-
means clustering to form a collection of representative scaling
behaviors from a training set. Neural network classifiers then
map performance counter values to scaling behaviors. This
requires no source code or binary analysis, but it still accurately
predicts application scaling trends on complex modern GPUs.

We demonstrated that this technique could estimate perfor-
mance with an average error of 15% across a frequency range
of 3.3×, a bandwidth range of 2.9×, and an 8× difference in
number of CUs. Our dynamic power estimation model has an
average error of only 10% over the same range.

There are a number of future directions for this work.
While Section II gives example uses for high-level models, we
focused on the accuracy of our predictions. Building an online
control mechanism using our predictor is a potentially fruitful
follow-on project. We would also like to add and validate more
dimensions to our existing model. For instance, we could study
the effects of cache size or PCIer bus speed. In addition, our
current model focuses on predicting within the configuration
space of current hardware. Extrapolating outside this space is
not well studied but would be useful.
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