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Abstract

In this paper, we introduce the concept of full-system

Complete-and-Rollback functional simulators that make ef-

ficient functional models in functional/timing partitioned

simulators. Complete-and-Rollback functional simulators

can efficiently drive simulators of resolutions ranging from

functional-only to cycle-accurate for a wide range of simu-

lated machines. Complete-and-Rollback functional models

achieve their capabilities by executing instructions to com-

pletion, enabling their execution to be highly optimized, but

providing rollback capabilities to enable on-the-fly modifi-

cations to the functional execution.

We also introduce QUICK, an implementation of a full-

system Complete-and-Rollback functional model that sup-

ports the x86 and PowerPC ISAs, boots unmodified Win-

dows XP and Linux, and runs unmodified applications such

as YouTube on Internet Explorer while fully supporting roll-

backs, including across I/O operations. We present various

case studies using QUICK and conduct performance anal-

yses to demonstrate its simulation performance.

1. Introduction

Due to the high cost and time consuming nature of de-

signing, testing, and manufacturing computer systems, sim-

ulation is extensively used to model and predict various at-

tributes, such as performance or power, throughout the de-

sign cycles. Developing such simulators often requires a

great amount of effort to achieve high accuracy and effi-

ciency. The already high cost of development kept many

simulators from supporting full-system and complex ISAs

such as x86 at the cycle-accurate level, even when such

features will allow the simulators to run a wider variety of

benchmarks.

Simulators are often partitioned into functional and tim-

ing models[6, 12, 11, 15, 2, 3]. The functional model(FM)

simulates the ISA and the functionality of peripherals,

whereas the timing model(TM) models the detailed timing

of the microarchitectural components. The two partitions

cooperate to implement the entire simulator functionality.

By partitioning what tends to change very little, the tar-

get functionality, from what tends to change a lot, the mi-

croarchitecture, implementation effort can be dramatically

reduced compared to a simulator that does not partition on

this boundary. Once the FM is developed, it can be reused

virtually indefinitely, making it worthwhile to spend a sig-

nificant effort on its development.

There are several variants of functional/timing parti-

tioned simulators. One important difference is how the two

partitions collaborate to implement the full simulator. At

one end of the spectrum is an execution-generated trace-

driven simulator, where the FM executes instructions and

generates a trace that is fed to the TM. In this case, the

FM does not change its execution in response to the TM.

A variety of high-performance techniques can be applied to

generate such a trace, for example, using dynamic binary

instrumentation or modifying just-in-time compiled func-

tional simulators, such as Simics[7] or QEMU[1]. Such a

simulator is simple, but cannot always be accurate since the

TM may not get all the information it needs from the FM.

For example, if the target1 machine mispredicts a branch,

the TM will not have the correct wrong-path instructions.

On the other end of the spectrum, the FM can be seen

as a set of subroutines that the TM calls to perform various

functional tasks at precisely the correct simulated time. For

example, the Asim[6] FM is split into Fetch, Decode, Exe-

cute, Memory, Commit, and WriteMemory stages, each of

which is called by the timing model to perform its specific

task on a specific set of arguments at the specific simulated

time it would have been processed. Each FM subroutine

executes independently and thus must save sufficient state

when it finishes so that the next logical subroutine may be

executed at any time in the future. Also, the FM must log-

ically support the same sort of structures that the target mi-

croarchitecture supports. For example, if the target has a

reorder buffer (ROB) that permits it to cancel the execution

of certain instructions, such a structure must also be avail-

able in the FM. We call such an FM a timing-driven FM.

1We use the term target to mean the machine that is being simulated

and the term host to mean the machine that runs the simulator.



A middle ground strategy is an FM that fully executes

instructions and generates a trace of those instructions, but

also provides the ability to roll back to a past instruction and

restart execution with potentially different state, such as a

different branch outcome. We call such functional models

Complete-and-Rollback. Such an FM provides a trace of the

instructions it executes in the order it chooses to the TM that

determines whether that stream of instructions is the stream

of instructions it would have fetched and executed in that

order. The TM can instruct the FM to change its instruction

path using the rollback/change state ability. Complete-and-

Rollback FMs enable simulator-level speculation, where the

FM can run ahead of the TM and be steered by the TM only

when it has gone off-path. Therefore, the TM only needs to

give feedback to the FM when necessary instead of direct-

ing it at every cycle or every instruction, thus dramatically

improving performance and lowering the design complexity

of the overall simulator.

Rolling back and correcting is a general way to model

an arbitrary target with a generic FM, but does incur the

overhead of enabling and performing the rollbacks. How-

ever, since target microarchitectures are generally designed

to provide the illusion that they execute instructions in the

same way as an FM of that target, rollbacks should be in-

frequent. In fact, the closer the target is to the functionality

it is intended to support, the fewer the rollbacks.

In this paper, we introduce QUICK(QemU with Instru-

mentation and ChecKpointing), a Complete-and-Rollback

full-system simulator that supports both the x86 and Pow-

erPC ISAs, a full set of peripherals, and boots and runs

unmodified operating systems such as Windows XP and

Linux. Because QUICK is derived from an existing open-

source full-system functional simulator, QEMU[1], it in-

herits QEMU’s extensive current and future ISA/peripheral

support. QUICK produces a trace suitable for on-line ex-

port to a TM and supports rollback and re-execution, even

across I/O operations.

Our contributions in this paper are as follows:

• We introduce the notion of a Complete-and-Rollback

functional model that is useful for both (i) modeling

a wide range of target architectures at various resolu-

tions and (ii) to implement simulator speculation.

• We discuss and analyze mechanisms that enable the

FM to arbitrarily roll back and steer the instruction

stream, even across I/O operations.

• We present QUICK, a real implementation of such an

FM.

• We demonstrate the usefulness and performance of

such an FM with several case studies and performance

analyses.

The rest of the paper is structured as follows. The next

section describes how an FM that supports speculation and

correction can simulate a wide range of target systems. Sec-

tion 3 describes the implementation of QUICK. Section 4

presents some experiments and performance measurements.

Section 5 lists related work. Section 6 discusses future di-

rections and concludes.

2. Complete-and-Rollback Functional Models

It is desirable for a single FM to be able to model as many

different targets as possible. A Complete-and-Rollback FM

can be used to model a wide range of target machines, even

though those machines may have very different characteris-

tics than the FM itself.

A Complete-and-Rollback FM executes each instruction

to completion but provides the ability to roll back to any

instruction within a rollback window, change state, and re-

execute. Supporting target speculation is straightforward

with a Complete-and-Rollback FM. Figure 1 shows how

branch misprediction is handled. In Figure 1(a), the FM

executes down the right-path, sending traces to the TM.

The TM discovers that instruction B, that happened to be

a branch instruction, was mispredicted and should have

branched to X. The TM discards the trace entries of instruc-

tions C and D since they are not expected by the TM. In

Figure 1(b), the FM rolls back to instruction B, and forces

a branch to X. The TM now starts accepting traces for the

wrong-path. The mispredicted branch, B, is resolved in the

TM at some point and the FM rolls back, leading to Fig-

ure 1(c). The FM re-executes the right-path again and the

traces are accepted by the TM. The final instruction se-

quence seen by the TM (A→B→X→Y→C→D) represents

the instructions that have entered the pipeline of the target

processor.

Data speculation can be handled in a similar fashion. The

FM executes as it would normally. When the TM detects

that the FM executed an instruction with incorrect data, it

requests the FM roll back to that instruction and re-execute

it with the correct2 misspeculated data. Likewise, when the

TM detects that the data was misspeculated, it requests the

FM roll back and re-execute with the right data.

Although an ideal FM requires the capability to arbitrar-

ily roll back, implementing such capability is a non-trivial

task as the FM may need to roll back across host I/O opera-

tions (if the simulator I/O is tied to host I/O devices as is the

case with many current full-system simulators.) When the

FM encounters a target I/O operation, it cannot wait until

the TM determines the fate of the operation as the TM will

2We use the term correct to indicate all of the instructions that the tar-

get would fetch and execute, including right and wrong path instructions.

Incorrect instructions are those executed by the FM that the target would

not have fetched/executed (at least not in the incorrect order.)
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Figure 1. Example of handling branch mispredictions

require subsequent instructions to make forward progress.

This issue will be discussed in detail in Section 3.1.2.

In a split functional/timing simulator, the FM both exe-

cutes the workload and provides functional information to

the TM. For example, the TM requires instruction infor-

mation to accurately model Decode functionality and the

opcode type to accurately determine which functional unit.

However, many targets perform different components of the

functionality of instructions in different orders, depending

on the dynamic conditions of the processor. For example,

two instructions may be executed in a different order than

they are fetched. Even a simple in-order pipeline often has

a non-blocking cache that effectively executes memory op-

erations out-of-order. Thus, a general FM must be able to

support arbitrary orderings of functional components across

instructions.

Almost all reorderings of functional components, how-

ever, do not affect functionality. For example, a standard

out-of-order target can execute instructions in any order, as

long as their data dependencies are obeyed. However, any

instruction order that maintains data dependencies will have

the same functional result as any other. Consequently, the

instruction order, that most FMs will follow, will produce

the correct result and will, given appropriate rollbacks to

model misspeculation, provide the correct instructions so

that the TM can accurately predict performance.

To summarize, a Complete-and-Rollback FM needs the

following capabilities: functional simulation, trace gener-

ation and the capability to roll back and steer instruction

stream arbitrarily, even across host I/O events. Such an FM

can support both trace-driven and execute-driven simula-

tion ranging from a functional-only simulation to a cycle-

accurate simulation of a complex target system.

3. QUICK

QUICK is a full-system Complete-and-Rollback FM that

uses aggressive just-in-time compilation to generate na-

tive code to very quickly simulate target instructions. To

creak QUICK, we extensively modified QEMU to incor-

porate trace generation and rollback capability, features

not normally desired in a high speed functional simulator.

In this section we describe those modifications to QEMU

while maintaining full-system support and reasonable per-

formance.

3.1. Rollback Support

QUICK has the capability to roll back to an instruction

that was already executed, removing all effects of the in-

structions as it rolls back. In this section, we describe

how rollback is implemented (i) when running normally,

(ii) when accessing I/O and (iii) in the presence of inter-

rupts and exceptions.

3.1.1 Basic Implementation

Since QUICK is intended to support cycle-accurate simula-

tion, it must be able to roll back very quickly within a roll-

back window of up to a few thousand instructions. Standard

checkpointing, that saves the entire state of the simulator to

disk, is far too slow. Saving a full checkpoint to memory

would both require too much memory and would also take

too long since the target physical memory could be many

gigabytes.

Rather than full checkpoints, rollback can be supported

by logging old values from each state update in a journal.

On rollback, the old values are restored in reverse order.

Journaling works well for the memory where the fraction

of locations that changes within a rollback window is very

small compared to the total memory size. Since registers



tend to change much more rapidly and the fraction of the

registers that change within a rollback window is very high,

checkpoints work better for the CPU and register state. For

this reason, QUICK employs a hybrid scheme of journaling

and full-state checkpoints. Only the CPU architectural state

(general and special purpose registers) are included in the

checkpoint, making its size only a few kilobytes for the x86

ISA.

It is clear how to rollback to a specific instruction given a

journal back to that instruction. With a checkpoint, one can

roll back to the instruction immediately before the check-

point was taken by restoring the checkpoint. In order to get

to an arbitrary instruction using checkpoints, one has to roll

back to the checkpoint before the desired instruction and

then re-execute instructions up to the desired instruction.

QUICK supports rollback to any instruction within the in-

struction window transparently.

As instructions fall out of the rollback window, such as

when instructions are retired by the TM, journal/checkpoint

state can be deallocated. It is clear when journaled data

can be deallocated. Checkpoints can only be deallocated

when there is at least one checkpoint that occurred before

an instruction that is either beyond the rollback window or

the oldest instruction in the rollback window. Therefore, at

least two checkpoints are necessary, one to enable rollback

and the other to be deallocated. QUICK implements at least

two checkpoints that are taken in a leapfrog fashion, one

after the other.

3.1.2 I/O Rollbacks

Full-system functional simulators include functional I/O de-

vice models, implemented in software, that provide pre-

cisely the same interfaces that the real devices would. The

target device drivers interface with those models as they

would with real hardware devices. The device models call

the real devices, through the host operating system, to im-

plement their functionality. Since a functional-only simula-

tor does not roll back, the I/O device models immediately

perform I/O operations to the host I/O in response to com-

mands it receives.

A Complete-and-Rollback simulator, however, cannot

eagerly perform host I/O operation since one cannot nor-

mally roll back host I/O operations. One possible way to

handle such a case is to defer a host I/O operation when it

is first encountered, execute the subsequent operations, and

roll back and execute the I/O operation when it commits.

This solution, however, not only requires a rollback for ev-

ery single I/O operation, even on the correct path, but may

also require the FM to patch traces already sent to the TM

as the traces may have contained information dependent on

the I/O operation.

A more efficient solution is to let the target I/O operation

execute and roll back when necessary. If the I/O operation

was on the correct path, which is true most of the time given

accurate branch predictors, no further action is required.

However, if the target I/O operation interacts with a host

I/O operation, it may be impossible to roll back the effects.

For example, there is no way to retrieve an Ethernet packet

once it is actually sent from the host Ethernet device. When

a target event triggered by a host-level keystroke is rolled

back due to a branch misprediction, the same keystroke will

not occur on the re-execution and the input would be lost if

not handled properly.

To address this issue, QUICK executes that operation

against the host when the target requests an input I/O oper-

ation for the first time. Thus, in the case of keyboard input,

the next keystroke will be dequeued and provided to the tar-

get. However, to support arbitrary rollback, the input opera-

tions need to be logged so that they can be replayed exactly

at the same target time to provide deterministic behavior in

the case of rollback. To ensure determinism in the case of

an I/O input operation that occurs while re-executing or on

the wrong-path, the input operation is deferred until QUICK

reaches an undiscovered path that was never re-executed.

QUICK handles host output I/O operations by buffering

outputs to host devices, such as Ethernet outputs or serial

console outputs, since host devices cannot be rolled back.

The buffered entry is released when the operation is com-

mitted by the TM and discarded on rollbacks. Buffering

the host I/O operations can affect the short-term state of

the target. For example, an input operation may immedi-

ately follow an output operation the input may depend on

in a hypothetical infinitely-fast device. In such a case, one

could employ special simulator structures similar to a Load-

Store-Queue to forward the uncommitted state changes. Re-

alistically, however, the latency of I/O operations is usually

longer than the time instructions take to commit. Subse-

quent I/O operations would happen after the previous oper-

ation has completed in most cases.

QUICK provides these input replay/output buffering ca-

pabilities for all major I/O devices, including keyboard,

mouse, serial ports, video, disk and network. Providing

such capabilities enables a much wider range of interesting

applications to be run.

The host-level input operations from devices can be

saved along with the target timestamp. This allows the user

to record the I/O events of one simulation session and play

them back during another for determinism across simula-

tion runs. This mechanism is especially useful if the user

records an interactive session in a fast-forward mode with-

out timing simulation, and then uses the recorded session in

a detailed cycle-accurate timing simulation.
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Figure 2. Example of handling nested branch mispredictions

3.1.3 Nested Rollbacks

As the depth of the pipeline becomes deeper in modern pro-

cessors, multiple branch mispredictions can be outstanding

before any of them gets resolved. Branches can also be re-

solved out-of-order. When simulating such cases, QUICK

needs to be rolled back several times and is expected to steer

itself down the target-selected wrong-path.

Figure 2 shows an example of nested branch mispredic-

tions. QUICK has already executed to instruction D. Af-

ter the TM notifies QUICK that the target mispredicted the

branch at instruction B, QUICK rolls back to the closest

checkpoint (right before A) and provides the correct wrong-

path instruction, a branch at I. Then, the TM mispredicts

I as well. In response, QUICK rolls back once more to

the same point, but must remember to go down the same

wrong-path when re-executing B again.

A simple solution to ensure that B is misspeculated on

the re-execution to get back to instruction I is to do an asso-

ciative search across for all currently misspeculated branch

instructions to decide which path to take. This is very inef-

ficient, especially in a software functional model. To han-

dle branch misprediction, re-execution, and resolution effi-

ciently, QUICK incorporates a Nested Misprediction Table

(NMT) to store the outstanding mispredicted inst num
3

and desired target address pairs.

The NMT has a write pointer that points to the next

empty entry. On every branch misprediction, the mispre-

dicted inst num and target address pair is written into

the entry pointed to by the write pointer. QUICK then en-

ters a speculative mode that disables taking checkpoints

and also sets the read pointer to the first misspeculated

branch stored in the NMT. As QUICK re-executes while

in speculative mode, it compares every branch inst num

with the inst num pointed to by the read pointer. If a

match is found, QUICK forces the PC down the corre-

3QUICK dynamically numbers every executed instruction with an

inst num that is rolled back during a rollback.
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sponding target and advances the NMT read pointer. If

the current inst num is greater than the inst num at

the read pointer, QUICK knows that a non-branch was mis-

speculated and recompiles to break the basic block at that

inst num to permit that instruction to be correctly re-

executed/resolved. When a previously mispredicted branch

is resolved, the entries in the NMT for the correspond-

ing branch and onward are invalidated by setting the write

pointer appropriately. QUICK does not exit speculative

mode until the first branch in the NMT is resolved.

In Figure 2, when branch instructions B and I are mis-

predicted one after the other, the NMT is updated accord-

ingly. When instruction B is resolved, the NMT is cleared.

If instruction I is resolved sooner than B, causing an out-

of-order resolution, only the second entry in the NMT is

invalidated. The NMT reduces an associative search to cor-

rectly perform re-execution and out-of-order branch resolu-

tion down to a single comparison.



3.1.4 Handling Interrupts and Exceptions

Interrupts and exceptions[14] need special attention in

QUICK for the following reasons:

1. Interrupts are, by definition, external events, whose oc-

currence is timing dependent. The TM is responsible

for calculating the exact timing of the interrupts. Thus,

for TM-initiated interrupts, like the timer interrupt, the

TM simply requests the FM to roll back to the exact in-

struction where the interrupt occurred and handle the

interrupt there. However, since the FM models some

of the interrupts, mostly peripherals, there needs to be

a mechanism for the FM to notify the TM of a pend-

ing interrupt and the TM to indicate to the FM exactly

when that interrupt occurs.

2. Many targets detect exceptions when the excepting

instruction retires. The TM generally needs addi-

tional target path instructions to fill up the front of the

pipeline. A standard functional simulator, however,

immediately detects the exception and jumps to the ex-

ception handler routine. The FM needs to be able to

provide the target path instructions to the TM, effec-

tively ignoring the exception until the TM indicates it

should be noticed.

Figure 3 shows the proposed mechanism to handle inter-

rupts correctly. When QUICK detects a pending interrupt

in one of its peripheral device models, it masks the inter-

rupt and notifies the TM. QUICK proceeds on its original

path until the TM asserts the interrupt back to QUICK. The

TM provides the inst num at which the interrupt should

be serviced. On receiving such a command, QUICK rolls

back to the closest checkpoint and re-executes. In this ex-

ample, the TM requests QUICK to service the interrupt after

instruction C. After rolling back, QUICK re-executes up to

instruction B and unmasks the interrupt. Before jumping

to the interrupt service routine, QUICK may need to send

the TM extra information regarding any memory accesses

or processor updates that have occurred while processing

the interrupt prior to the service routine. If the interrupt ser-

vice point (from the TM) is in the middle of a basic block,

QUICK splits the block in two by re-translating that block

within QEMU, since interrupts are currently only triggered

on basic-block boundaries. QUICK tracks the instruction

counts in each block during the first pass to exactly identify

which block to re-translate.

Other branch mispredictions may occur after jumping

to the interrupt handler but before committing the current

checkpoint. After rolling back on such mispredictions,

QUICK needs to be able to replay the interrupts indepen-

dently as the TM will not issue the interrupt command

again. By splitting basic blocks to signal the interrupts at

the appropriate place, QUICK deterministically replays the

interrupts. In most microarchitectures, interrupts are not

handled on a wrong-path since interrupts are handled after

draining the pipeline and waiting until all previous instruc-

tions are committed or flushed.

To generate target timer interrupts, QUICK features

a virtual timer instead of the original QEMU real-time

timer to ensure determinism. The virtual timer is based

on instruction count. As long as the timing of external

events is reproduced identically, perfect determinism can be

achieved. Ideally, timer interrupts should be initiated by the

TM as the TM is the master of time. The user can choose to

put a timer model in the TM for perfect cycle-accuracy or

use QUICK’s virtual timer for a deterministic approxima-

tion.

Exceptions are handled very similar to interrupts. Ex-

ceptions are also masked and deferred until the TM dis-

covers them at the right moment, after additional instruc-

tions on the original path are sent to the TM. Not all excep-

tions require these additional instructions to be sent. Ex-

ceptions such as instruction page faults or invalid opcode

exceptions make it impossible to fetch subsequent instruc-

tions and, hence, no additional instructions are needed from

the FM. On subsequent rollbacks due to mispredictions, the

exception does not need to be replayed (unlike interrupts)

since it will be detected naturally in QUICK.

3.2. Trace Support

The QUICK trace includes opcode, source and desti-

nation register usage, instruction and data addresses (both

virtual and physical), instruction length (for variable-length

x86 instructions) and branch information. An x86 instruc-

tion can be expressed in eight 32-bit words including all

information mentioned above. Since QUICK has already

decoded the instruction, it sends a flattened 10-bit opcode

to ease the decode complexity in the TM. To support trac-

ing, new tracing micro-ops were added to QEMU and are

introduced during QEMU translation.

Instruction trace entries contain static trace elements and

dynamic traces elements. Static traces entries do not change

with each dynamic instance of an instruction, including op-

code and register information. Dynamic trace entries may

change every time an instruction is executed, such as data

addresses and branch information (taken or not-taken). To

minimize computational overhead, the static trace is com-

puted at translate time and stored away as constant values

in the translated code. Only the dynamic trace is generated

during execute time and appended to the static trace before

being sent to the TM. Generated traces can be dumped to

a file for offline usage, passed through a TM function call,

or written to a circular buffer allocated in a memory region

shared to use with a TM in a separate process.

Since the trace takes up most of the communication



bandwidth between the FM and the TM, compressing the

trace can improve performance and make the system com-

patible with a wider range of hosts. Data and instruction ad-

dresses take up four out of the eight words. We developed

a compression technique that relies on the native translation

TLB that QEMU implements for its own internal transla-

tion. By mirroring the QEMU TLB in the TM and sending

updates to QEMU TLB to the TM TLB, the TM can trans-

late virtual addresses to physical addresses, eliminating the

need to send the physical address.

We also compressed the instruction addresses. As long

as the instruction does not branch, the instruction virtual ad-

dress can be obtained from the address and size of the pre-

vious instruction. The instruction size is already part of the

trace to support accurate simulation. Thus, only the starting

virtual address of a basic block needs to be sent to the TM.

These optimizations reduce the trace size of an instruction

to less than three 32-bit words on average.

The trace size can also be further reduced by caching

static trace entries in the TM. The next time a block is exe-

cuted, only the block ID, along with the necessary dynamic

information, is sent. It is important to tag the dynamic data.

Host TLB updates might occur before any memory access.

A data memory access may or may not occur for certain

instruction including x86 repeat string operations and pred-

icated instructions, depending on the state of the target. An

exception may occur in the middle of a basic block, caus-

ing the block to terminate early and jump to the exception

handling routine. To handle these situations appropriately

when the static trace is cached and not sent again, a short tag

with such information precedes data addresses. The trace

receiver is responsible for reading the tag first and taking

the correct action.

Experiments on the SPEC2000 integer benchmarks indi-

cate that using a static trace cache in the TM has a potential

of reducing the total trace size by an additional three times,

making the average trace entry less than 32 bits.

4. Case Studies and Simulation Performance

The experiments in this section were conducted on a

quad-core Intel Xeon X3230 running at 2.66GHz with 4MB

L2 cache per pair of cores and 4GB main memory.

4.1. QUICK+Dinero: Measuring OS Ef-
fects on Cache Behaviors

To demonstrate QUICK’s flexibility, we attached it to

Dinero IV[5], a trace-driven cache simulator. The integra-

tion process only took a few hours. To eliminate either a

pipe between two processes or a trace file, and thus maxi-

mize performance, the two frameworks were integrated into

a single process. We used QUICK+Dinero to measure the

L1 I-Cache 32KB, 32B lines, 8-way set associative, LRU

L1 D-Cache 32KB, 32B lines, 8-way set associative, LRU

L2 Cache Unified 2MB, 64B lines, 16-way set associative, LRU

Table 1. Cache configuration used in experi-

ment

Benchmark Description

Yahoo Launching Internet Explorer and opening Yahoo.com

Winamp Installing Winamp 5.54

GIMP Applying a line nova filter to an JPEG image (1000x667)

LAME WAV to MP3 encoding of a 3:52 song

Minesweeper Playing a beginner-level Minesweeper game

Word Typing in a page-long document in Microsoft Word 2003

Cygwin Installing Cygwin with default settings

Youtube Watching a 1-min-long Youtube video on Internet Explorer

Unzip Extracting a 43MB zip file in Explorer

Table 2. Windows XP benchmarks

impact of operating system on cache behaviors of applica-

tions. Cache configurations similar to that of an Intel Core

2 Duo described in Table 1 were used. The target proces-

sor is configured to have 512MB of main memory. QUICK

has the ability to separate operating system code and user

code and mark the memory accesses accordingly. The x86

Current Privilege Level (CPL)[9] is used to separate system

code from user code. If the CPL is 0 when a certain instruc-

tion is executed, we assume the instruction is operating sys-

tem code. From the generated trace, which contains the full

information of an instruction including opcodes and reg-

isters, only the relevant information (physical address and

access type) is passed to Dinero. Access types include in-

struction, data read and data write.

In this experiment, two separate instances of the cache

hierarchy were instantiated. One hierarchy was fed with

both user and OS accesses, whereas the other hierarchy

was fed only with user accesses. Among the various cache

statistics were gathered, we have chosen to compare the

number of cache misses per thousand instructions (MPKI)

between the two hierarchies to measure the impact of OS

accesses.

Figure 4(a) shows the L2 cache MPKI for the SPEC2000

integer benchmarks running the reference input sets on top

of Debian 4.0. The entire set of runs took less than seven

days on a single host system without sampling. Both user-

only and user/OS access statistics were gathered simulta-

neously. As is well known, operating system accesses have

virtually no impact on the cache when running SPEC bench-

marks. We also ran various user applications on Windows

XP while simultaneously gathering cache statistics, includ-

ing watching a YouTube video in Internet Explorer. Table 2

summarizes the Windows user applications that were run

for the experiment. L2 cache MPKI numbers are shown in

Figure 4(b) for both user and user/OS combined cache hi-
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Figure 4. L2 Cache Misses Per Kilo Instruc-

tions (MPKI)

erarchies. Unlike SPEC benchmarks, the operating system

accesses have a significant effect on L2 cache MPKI across

Windows XP benchmarks.

QUICK is also capable of gathering phase behaviors of

metrics by periodically polling counters. Figure 5 shows

the L2 cache miss rates while booting up Windows XP to

the desktop. Miss rates for user and OS accesses are sep-

arately shown. Figures 6(a) and 6(b) shows the simula-

tion performance for the QUICK+Dinero simulator running

the SPEC2000 and the Windows benchmarks, respectively.

Each run is simultaneously simulating two separate cache

hierarchies (one with only user accesses and the other with

both user and OS accesses.)

4.2. QUICK+BranchPredictor

Although writing a complex and realistic TM for QUICK

is beyond the scope of this paper, we present performance

results of QUICK with simple TMs that have synthetic tar-

get branch predictors to show the overhead of rollbacks.

We have run the SPEC2000 benchmarks against TMs with

three different branch prediction accuracies: 95%, 97% and

100%. The simulation performance includes the time exe-

cuting the instructions, generating and sending traces, tak-
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Figure 7. QUICK Simulation Speeds

ing checkpoints and rolling back to provide wrong-path in-

structions to the TM. For each mispredicted branch, ten

instructions are fetched into the target pipeline before the

branch gets resolved.

Figure 7(a) show the simulation performance of QUICK

running with the three different branch predictor configu-

rations. The average performances for the 95%, 97% and

100% branch predictors are 5.48 MIPS, 6.15 MIPS and 7.64

MIPS respectively. An analytical model of the QUICK per-

formance could be constructed as,

Performance =
1

Tinst + Frb × α
(1)

where Tinst is the average execution time for a single tar-

get instruction, including the time to generate the trace and

take checkpoints, Frb is the frequency of rollbacks, and α

is the average overhead of rolling back. From the 100%

branch predictor case, Frb = 0 and Tinst is approximately

131ns. Since a branch misprediction incurs a double roll-

back, Frb = 0.06 for the 97% branch predictor. In this

case, α becomes 527ns. If we use these numbers for the

95% case with Frb = 0.1, the performance is estimated to

be 5.44 MIPS which is very close to the measured perfor-

mance of 5.48 MIPS. α is only four times larger than Tinst.

This is due to the fact that, on the re-execution path, check-

points are not taken and traces are not generated.

If the user decides not to simulate wrong-path in-

structions, simulation performance can be dramatically in-

creased. The simulation performance without checkpoints

averages 38MIPS (Figure 7(b).) The simulation perfor-

mance without traces and checkpoints averages 54 MIPS,

which is slower than unmodified QEMU since some QEMU

optimizations, including block chaining and assembly-code

MMU, were disabled for easier modifications. These opti-

mizations will be re-enabled in the future.

5. Related Work

SimpleScalar[15] has been widely used in academia

since its introduction. The lack of full-system support, how-

ever, makes it a less attractive option in modern computer

architecture research.

FastSim[12] is a functional/timing partitioned simula-

tor that uses a Complete-and-Rollback FM created from

instrumented binary code. FastSim is, however, not full-

system since instrumenting operating system code is diffi-

cult and thus does not handle the various full-system issues

that QUICK handles. In addition, although both QUICK

and FastSim employ some sort of checkpoint and rollback

scheme, QUICK is different from FastSim because it is able

to speculate at the simulator level. FastSim calls the target

branch predictor function at every branch, which limits the

parallelism between the FM and TM4. In QUICK, the FM is

allowed to freely run ahead of the TM, making it much more

efficient to parallelize than in FastSim. The disadvantage is

two rollbacks are often required when only one is required

in FastSim. QUICK can also model a branch predictor that

mispredicts an instruction is a branch.

There is currently a proliferation of fast, full-system

functional simulators. Most of them apply dynamic trans-

lation techniques that let them run significantly faster than

traditional interpreters. Simics[7] and SimNow[13] are not

open-source, and thus are difficult to use as FMs that require

modifications to handle feedback from TMs. QEMU[1] and

Bochs[10], on the other hand, are open-source and lend

themselves well to being modified into a Complete-and-

Rollback simulator. None of these simulators provide light-

weight rollback capabilities in their original forms.

PTLsim[16] is a recent cycle-accurate full-system x86

simulation. PTLsim is highly optimized and runs faster

(about 270KIPS) than other simulators at similar detail lev-

els. However, it is not partitioned into functional/timing

models, making existing timing models, especially if devel-

oped for a different ISA, harder to be integrated and mak-

ing more abstract studies, such as perfect branch prediction,

4Note that, ideally, FastSim should access the branch predictor for ev-

ery instruction to model a BTB that may incorrectly predict any instruction

to be a taken branch.



difficult. Also, maintaining performance after user modifi-

cations has been found to be non-trivial.

COTSon[8] employs SimNow as a front-end and PTL-

sim as a detailed timing model. It uses sampling to deter-

mine when to switch back and forth between SimNow and

PTLsim. While sampling may improve the simulation per-

formance, it is possible to miss an interesting simulation

point if it is not detected as a phase change. Also COT-

Son shares the same downsides with PTLsim of having a

functionality-integrated timing model.

Asim[6] and HAsim[4] have the functional/timing split,

but require the FM to support the same structures that the

target microarchitecture supports. TFsim[11] also has the

functional/timing split but the TM still executes operations

functionally and compares the results with the FM.

FAST simulators[3] recently employed a Complete-and-

Rollback partitioning and achieved high performance simu-

lation by placing the TM in an FPGA. In this paper, we gen-

eralized this approach to make it compatible with a wider

range of host platforms and timing models.

6. Future Directions and Conclusions

QUICK can be extended to simulate multi-processor tar-

gets from functional only to full cycle-accurate. Support for

detecting and correcting out-of-order memory operations is

currently being added. In addition, QUICK is being paral-

lelized so it could run on multiple host cores, providing even

more performance when modeling multiple target cores.

To conclude, QUICK, the first generic version of a

Complete-and-Rollback FM we are aware of, is presented.

It is capable of very different predictive capabilities, ranging

from functional-only all the way to complex target cycle-

accurate. Simulation performance is excellent at any given

predictive level. It achieves its performance by leveraging

the power of the optimized just-in-time compilation capa-

bilities of QEMU and efficiently adding trace and rollback

capabilities. Such mechanisms greatly simplify the inter-

face between functional and timing models. By enabling

simulator-level speculation, they will potentially improve

the overall simulation performance when run on parallel

hosts.
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