
NIFD: Non-Intrusive FPGA Debugger
Debugging FPGA ‘Threads’ for Rapid HW/SW Systems Prototyping

Hari Angepat, Gage Eads, Christopher Craik and Derek Chiou
Department of Electrical and Computer Engineering

The University of Texas of Austin
{angepat,geads,craik,derek}@fast.ece.utexas.edu

Abstract—Debugging hardware has always been difficult when
compared to debugging software, in large part due to a lack
of convenient visibility. This paper describes the open NIFD
framework that provides software-like debugging facilities to
both pure FPGA and hybrid FPGA/software platforms, allowing
a designer to treat the hardware logic like a specialized remote
software debug target. NIFD provides features such as single
stepping, breakpoints, and examination of the full hardware state
from a standard debug console such as GDB. The framework
leverages built-in readback support to enable non-intrusive,
transparent debugging with full observability and controllability.
This technique is not only useful for debugging, but can also be
used in production environments for infrequent events such as
the slow sampling of counters.

I. INTRODUCTION

With the growing complexity of modern digital systems,
debug, verification, and validation have become critical design
concerns. This paper introduces a open framework, NIFD
(Non-Intrusive FPGA Debugger), that enables software-like
debugging of FPGA-based simulators used for modeling
complex digital systems. This framework allows a designer to
treat an FPGA emulation environment as a specialized software
debug target without adding significant overhead in hardware
complexity. NIFD provides the capability to debug FPGAs
using variable inspection, breakpoints, and single stepping.

The debugging framework being proposed in this paper
is being developed in conjunction with the FAST simulator
[1]. FAST simulators are one of a new class of FPGA-based
computer system simulators [1]–[4] that run multiple orders
of magnitude faster than traditional software simulators, fast
enough and complete enough to run real software while accu-
rately predicting performance. A FAST simulator is partitioned
into a SW functional model and a FPGA-based timing model,
where the functional model executes first, provides a trace
to the timing model that then corrects the functional model
when necessary for accuracy. This simulation technique has
enabled us to simulate complex out-of-order superscalar x86
targets, using a single FPGA, orders of magnitude faster than
conventional cycle-accurate simulators. The NIFD framework
was conceived, designed, and implemented to make debugging
FAST simulators appear to be the same as debugging a purely
software simulator, thus requiring the ability to debug FPGA-
implemented components of the simulator precisely in the same
way as debugging the software-implemented components of the
simulator. In that spirit, we provide a GDB interface to interact
with the FPGA. Though NIFD was originally developed to

debug FAST, the NIFD framework is applicable to many FPGA
or hybrid FPGA/software systems.

A. Challenges to Flexible FPGA Usage

Traditionally, hardware development requires a stricter
testing strategy than software development due to the high
cost and time of fixing hardware bugs. In ASIC development,
two to three verification engineers per RTL designer is not
uncommon. Standard verification methodologies include unit
tests that test a single block and integration tests that test
several blocks together.

One can quickly and cheaply try out a design on the FPGA at
speeds equal to or approaching the final product. Accordingly,
FPGA development is often allocated less time and fewer
verification engineers than ASIC development. However, the
basic verification problem has not fundamentally changed from
an ASIC design. Complexity can still be significant, interactions
with other chips and software are still present, and visibility is
still poor when running on the FPGA itself.

Further complicating matters, FPGAs being used for ex-
ploratory work, such as in our architectural simulators, change
frequently and extensively. Rapid change makes building static
testbenches difficult as the behaviors and entire subsystems
may be replaced frequently.

B. Contributions

This paper introduces NIFD, an open, minimally-intrusive,
rapid turnaround, debugging framework for FPGAs. We demon-
strate the feasibility of using software debugging abstractions
for FPGAs in a working prototype of a human-in-the-loop de-
bugger. We also show that such abstractions are key to providing
a seamless debugging environment for hybrid software/FPGA
platforms.

II. PRIOR WORK: FPGA DEBUGGING

There has been significant work in the area of FPGA
debugging and co-simulation that we group into the following
main categories: Soft-Logic Analyzers, Soft Scan-Chains, Soft
Replication, Soft Processor Debug Monitor IP cores, and RTL
Emulation Platforms.

A. Logic Analyzers

In-situ logic analyzers such as Xilinx Chipscope [5] or Altera
SignalTap [6] enable the monitoring of selected user signals
by inserting small circular history buffers that capture some

limited number of signal samples. A centralized trigger unit
controls these buffers, allowing multiple logic expressions to
be used to trigger a sample dump. Physical transport of sample
data off-chip is typically accomplished over the JTAG port to a
waveform viewer running on an attached computer. Users may
select trigger conditions at run-time while signals are selected
at synthesis-time. However, there is generally a limit to the
number of monitored signals and changing the monitored set
requires either re-synthesis or additional place-and-route runs
which hinders effective turn-around time.

This technique can be compared to printf-style for software
applications. The user must decide what to ‘print/select’
at ‘compile/synthesize’ time. If they want to add a new
‘variable/signal’, it requires a new ‘compile/synthesis’. For
small software projects the turn-around time can a few seconds
of human-in-the-loop time. For hardware projects, however, the
place and route time can be on the order of hours. In addition,
such techniques have significant performance overheads as the
number of ‘prints/signals’ increases.

B. Soft Scan-Chains

Design-level scan-chain insertion techniques [7]–[9] use
netlist rewriting to provide transparent debugging of arbitrary
FPGA logic by inserting additional logic in-front of all state
elements. By connecting these elements to form a design-level
scan-chain, it is possible to examine the full state of the design
at run-time. Physical transport of the chain data off-chip is
typically provided over JTAG. While this technique provides
full visibility, it consumes significant FPGA resources, up
to 100% increase, often making it impossible to use when
resources and/or timing is a concern.

Soft scan-chains can be compared to application tracing
or binary instrumentation for software. The user provides
a ‘binary/netlist’ to a tool that inserts hooks to ‘tracing
functions/scan-chain’. This allows the user to have full visibility
into their design but with significant resource and performance
costs.

A related technique, soft replication, creates two instances of
a user design to minimize the intrusiveness of the scan-chain
insertion on the running design. One instance of the design
operates normally, while the other has a design-level scan chain
and lags behind the normal design with its clock controlled
by a software debug agent. The design-level scan chain on the
lagging design allows full visibility and control but at a very
high resource cost.

Soft replication is somewhat akin to the strategy of forking
processes periodically for checkpointing, fault tolerance and
debugging purposes in software development. The user provides
a ‘binary/netlist’ to a tool that instantiates duplicate copies of
the design. For hardware designs, this still requires soft scan
chain insertion and duplication of logic.

C. Soft Processor Debug IP Cores

Debug cores are the closest in spirit to our approach.
In particular, for soft microprocessor cores, debug cores,
such as the Microblaze Debug Monitor (MDM) [5], can

provide a remote GDB target that can be controlled from
software. The debug core directly controls soft processor logic
enabling single-step execution, reading architectural registers
and setting program-counter based breakpoints. However, such
cores typically require a stable set of signals to monitor and
restrict the number of signals that can be monitored (typically
register-files and/or bus accessible memory locations). Thus
such debug cores are typically provided with soft processor
cores, but not usually for more ad-hoc blocks (e.g. DMA
controllers, Network Routers, etc). Our approach attempts to
fill in the feature gap left between stable design-level debug
cores and ad hoc debugging.

D. RTL Emulation Platforms

RTL emulators such as Palladium [10] are yet another
approach to debugging FPGAs. While they provide RTL-level
signal visibility, they require custom toolchains and platforms
and are typically not suitable as a generic ad-hoc debugging
framework for FPGAs.

III. NIFD DEBUG FRAMEWORK

NIFD is designed as an open framework using a series
of modular HW and SW components. Software components,
written in C and Python, are provided to parse netlists,
readback FPGA frames, and implement the GDB user interface.
Hardware components, written in Verilog, are provided to
communicate over JTAG, set breakpoints, and control clocking
a user design.

The key technique used to enable non-intrusive sampling of
FPGA state is the ability to readback hardware state over an
existing configuration cable in an actively running FPGA. We
currently support the Xilinx logic family due to availability,
however, other FPGAs with similar readback support could
also be supported.

A. Tool Flow

FPGA debugging using NIFD is very similar to standard
software debugging. Software is compiled normally with a
typical compiler flag to embed symbol and source line-numbers
into the generated binary. The standard GDB debugger can use
these symbols to setup breakpoints and provide useful stack
backtraces.

In our framework, hardware debugging symbols are gener-
ated in much the same way as in software. Standard FPGA
implementation tools are used to synthesize and implement
a user design into a deployable bitstream (in our current
implementation this is a Xilinx ISE xst/map/par toolflow).
Similar to a software ‘debug’ flag, we require that synthesis
preserves the module level hierarchy. For the Xilinx ISE
toolflow, this requires setting a project-wide “keep hierarchy”
flag when synthesizing the design. While this does reduce
room for synthesis optimization somewhat as modules cannot
be collapsed, we have found it to be lightweight enough to
keep enabled for the majority of development time.

Our framework constructs a symbolic map that relates state
elements in a user design to the spatial location of that symbol

!"#$%&'(!")&*'+(,-.-//0(1%&2$%&'(!")&*'+(,3'&45"6.3178.90(

:;<=(!>?@A'+4+.;5%*'.B")@'(!"#$%&'(-"CD45%E"?(

F8:(

G4?%&>(

!3:.GHI(

G4@+@&'%C(

8"64*(

=55"*%E"?(

J78(

K'@54+@(

L(

!"#$%&$'%()*+),-%
!"#$%#.&/%

.0)10233-0%

40255-0%

!"#$%6738),9:%!-;,9+;%

.20+-0%

Fig. 1. Tool Flow

on the FPGA. This information comes from both a logical
allocation file and an ASCII representation of the post-place-
route netlist. This basic toolflow is depicted in Figure 1

B. SW Core Library

The SW components of the framework consist of a jtag cable
layer, a core readback layer and a symbolic readback/netlist
parser layer. At the lowest layer, we communicate with the
FPGA fabric via standard JTAG cables by wrapping an existing
open-source JTAG cable library, urjtag [11], which enables
support for a variety of cables. The core readback layer handles
the low-level details of invoking a frame readback operation
against the FPGA configuration logic. This includes setting
up a readback transaction, extracting the useful dynamic state
from the static configuration data in the readback reply, as
well as handling specifics of frame layout differences between
various FPGA families.

The symbolic readback/netlist parser decodes the resource
allocation tables and netlist of the user design to create a
hardware symbol table. We implemented parsers for the Xilinx
logic allocation file (.ll) and the ASCII netlist format (.xdl).
The files are parsed first to extract a set of (symbol name,
frame addr, frame offset) tuples. A second pass recombines the
individual bits into user symbols using a set of heuristics about
naming conventions, name mangling and bit slice packing.

C. HW IP Core Library

The HW components of the framework consist of a fail-
safe communication link over JTAG, as well as a breakpoint
controller. The JTAGlink module provides a simple 8-bit fifo
abstraction that can be connected to software via a pseudo-
serial protocol. This enables communication with the FPGA
even if the machine around the FPGA has itself crash (as can
happen with hybrid CPU/FPGA platforms). The framework
also provides a lightweight breakpoint controller that provides a
set of trigger ports and registers to maintain trigger conditions.
The breakpoint controller enables the user to setup a limit
value for a synthesis-time signal and halt the user design when
the condition is reached. The non-intrusive sampling of FPGA
state can then be used to examine the FPGA in an ad-hoc
fashion.

D. User Interface

At the user interface level, we implement a GDB 7.x+ plug-
in using Python that exposes GDB-style operators for the FPGA

fabric. This includes tab-completion for symbolic names, as
well as wrappers for programming the FPGA directly from
the debug console. We implemented breakpoint commands
by adding support for communicating with our breakpoint
controller using the JTAGlink as described above. By sending
packets over this link, we support the GDB abstraction of
setting, listing, enabling, and disabling breakpoints for the set
of signals attached at synthesis time to the controller. Co-debug
with software is provided transparently with GDB 7.1+ support
for switching debug views between multiple software processes
and the hardware ‘process’.

E. Challenges and Limitations

While implementing debug on-top of existing hardware
readback logic is attractive, it does have some limitations. First,
certain elements such as RAMs cannot be read back online
due to limited port resources. We use a clock-gating approach
to avoid actively using the RAMs while a readback is in
progress. Second, as we use a slow-speed configuration link for
readback, our off-chip bandwidth for sampling is limited. While
alternative high-speed links are possible, for small numbers of
samples, the current implementation is sufficient for transparent
user-interaction. Finally, as readback forms the basis of the
framework, we are restricted in the platforms we can support.
We currently only support Xilinx parts although the framework
is applicable to any fabric that supports readback in some
fashion.

IV. NIFD EXAMPLE SESSION

We present an example session of a user with a Xilinx
Virtex-II Pro XUPV2 development board connected to a host
computer via a USB JTAG programming cable. The NIFD gdb
console is presented to the user which allows for programming
the FPGA, setting breakpoints, and sampling FPGA state of
the JTAG link.

In Fig 2(i) the user first loads the bitstream and synthesis
generated placement and allocation files to create the NIFD
symbol table. The board communication channel is then setup,
allowing the FPGA to be programmed.

The user may then use the ‘nifd-print’ command to print
the state of a variable in the active design (Fig 2(ii)). The
command provides tab-completion to navigate through the
design hierarchy.

Along with simply printing variables as the ‘thread’ executes,
NIFD allows setting breakpoints to halt the design when a
given value is matched. In the example, the user uses the
‘nifd-breakpoint‘ command to set a breakpoint against the ‘cnt’
variable with a value of 5. (Fig 2(iii)). Once the breakpoint
triggers, additional variables may be monitored. The breakpoint
can also be disabled by signalling to the breakpoint controller
(Fig 2(iv)).

By providing this familiar software debug session for
hardware (that can be viewed as user ‘threads’ executing on
the FPGA), NIFD lowers the bar to debugging FPGAs. By
hiding programming detail, allowing variables of interest to
be selected after place-and-route, and controlling breakpoints

 Welcome to NIFD!
(gdb) nifd-set-bitstream fpgatop.bit
(gdb) nifd-set-bitsyms fpgatop.ll
(gdb) nifd-set-bitxdl fpgatop.xdl
(gdb) nifd-set-fpgalink-program usb
(gdb) nifd-set-fpgalink-readback jtag
(gdb) nifd-fpga-program

 (i)

(gdb) nifd-print <TAB>

 cnt
 fifo/rdptr

(gdb) nifd-print cnt
 cnt has value 0

 (ii)

(gdb) nifd-breakpoint cnt 5
 cnt bkpt=5 at indx=0
(gdb) nifd-breakpoint-list
 index status value
 ----- ------ -----
 0 ON 0
(gdb) nifd-fpga-resume

 (iii)

(gdb) nifd-print cnt
 cnt has value 5
(gdb) nifd-breakpoint-list
 index status value
 ----- ------ -----
 0 TRIGGERED 5
(gdb) nifd-breakpoint 0 off

 (iv)

Fig. 2. Example User Session

while the FPGA is active executing a ‘thread’ maintains the
illusion that the FPGA is simply a custom processor executing
a program.

V. COMPARISONS TO ALTERNATIVE APPROACHES

Previous techniques [7]–[9], [12]–[18] have limitations such
as (i) imposing significant requirements on the design flow
including explicitly marking signals to be used for debugging,
(ii) requiring a full resynthesis when adding additional debug
signals and (iii) requiring FPGA resources for the tracing
structures that sometimes results in a 100% overhead.

Our framework is designed to provide a familiar software-
style interface to the FPGA fabric itself, while minimizing
hardware constraints. In particular we have attempted to
leverage the built-in readback support as much as possible to
provide no-overhead, transparent debugging. We also believe
our framework is the first published work to treat hardware
as an “FPGA-thread”, reducing the debugging burden. This
also allows a designer to have a completely unified view of
the running system, extending to both hardware and software
components of the system under test.

VI. CURRENT STATUS AND FUTURE WORK

Our current prototype is built using a standalone Xilinx
XUPV2 board. The readback link uses a Xilinx USB pro-
gramming cable that operates rates up to 500 kB/s. As static
configuration overhead incurs a penalty of 25x, we have an
effective sampling bandwidth of 20kB/s. This is sufficient for
matching user interaction rates with a debug console.

While NIFD provides a comprehensive software-style view
of an active FPGA program, it would be useful to provide
concurrent views of both software and hardware in a more
unified fashion. As NIFD currently exposes a FPGA program
as a separate “software process”, we can monitor both hardware
and software from the same console. Unifying breakpoints and
single-stepping to allow cross triggering breakpoints across
multiple such processes is the subject of future work.

Additionally, we are adding support for a flexible board
platform configuration interface that enables an end user to
quick add support for their specific FPGA platform board.
Once completed, we believe the introduction of the open NIFD
framework can significantly lower the development bar typically
found in FPGA/hardware development and have a significant
impact on developer productivity.

VII. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 0541416 and 0615352.
We thank Xilinx for software and hardware donations, and the
anonymous reviewers for their feedback.

REFERENCES

[1] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. H. Reinhart, D. E. Johnson,
J. Keefe, and H. Angepat, “FPGA-Accelerated Simulation Technologies
(FAST): Fast, Full-System, Cycle-Accurate Simulators,” in Proc. of IEEE
Symp. of Microelectronics (MICRO), Dec. 2007.

[2] E. S. Chung, E. Nurvitadhi, J. C. Hoe, B. Falsafi, and K. Mai,
“A Complexity-Effective Architecture for Accelerating Full-System
Multiprocessor Simulations Using FPGAs,” in Proc. of IEEE Symp.
on Field Programmable Gate Arrays (FPGA), Feb. 2008.

[3] D. Patterson, Arvind, K. Asanović, D. Chiou, J. C. Hoe, C. Kozyrakis,
S.-L. Lu, , M. Oskin, J. Rabaey, and J. Wawrzynek, “RAMP: Research
Accelerator for Multiple Processors,” in Proc. of Hot Chips 18, Aug.
2006.

[4] N. Dave, M. Pellauer, Arvind, and J. Emer, “Implementing a Func-
tional/Timing Partitioned Microprocessor Simulator with an FPGA,” in
Proc. of the Workshop on Architecture Research using FPGA Platforms
(WARFP), Feb. 2006.

[5] Xilinx, “Xilinx.” [Online]. Available: www.xilinx.com
[6] Altera, “Signaltap.” [Online]. Available: www.altera.com
[7] P. Graham, B. Nelson, and B. Hutchings, “Instrumenting bitstreams

for debugging FPGA circuits,” in Proc. of IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM), 2001.

[8] A. Tiwari and K. Tomko, “Scan-chain based watch-points for efficient
run-time debugging and verification of FPGA designs,” in Asia South
Pacific Design Automation Conference (ASP-DAC), 2003.

[9] T. Wheeler, P. Graham, B. Nelson, and B. Hutchings, “Using Design-
Level Scan to Improve FPGA Design Observability and Controllability for
Functional Verification,” in Proc. of IEEE Symp. on Field-Programmable
Custom Computing Machines (FCCM), 2001.

[10] Cadence, “Cadence incisive palladium.” [Online]. Available:
www.cadence.com

[11] UrJTAG, “Universal JTAG.” [Online]. Available: urjtag.org
[12] K. Camera, H. K.-H. So, and R. W. Brodersen, “An integrated debugging

environment for reprogrammble hardware systems,” in Proc. of ACM
Symp. on Automated Analysis-Driven Debugging (ADDEBUG), 2005.

[13] D. Castells-Rufas and J. Carrabina, “Jumble: A Hardware-in-the-Loop
Simulation System for JHDL,” in Proc. of IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM), 2007.

[14] K. S. Hemmert, “Source Level Debugging of Circuits Synthesized from
High Level Language Descriptions,” Ph.D. dissertation, Brigham Young
University, 2004.

[15] Y. Nakamura, K. Hosokawa, I. Kuroda, K. Yoshikawa, and T. Yoshimura,
“A fast hardware/software co-verification method for system-on-a-chip
by using a C/C++ simulator and FPGA emulator with shared register
communication,” in Design Automation Conference (DAC), 2004.

[16] E. Roesler and B. Nelson, “Debug methods for hybrid CPU/FPGA
systems,” in Proc. of IEEE Conf. on Field-Programmable Technology
(FPT), Dec. 2002.

[17] E. de la Torre, M. Garcia, T. Riesgo, Y. Torroja, and J. Uceda,
“Nonintrusive debugging using the JTAG interface of FPGA-based
prototypes,” in Proc. of IEEE Symp. on Industrial Electronics, 2002.

[18] SGI, “Reconfigurable application-specific computing user’s guide,” 2005.

