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CONNECTIVITY AND EQUILIBRIUM IN RANDOM GAMES

BY CONSTANTINOS DASKALAKIS ∗ ,
ALEXANDROS G. DIMAKIS † AND ELCHANAN MOSSEL‡

We studyhow the structure of the interaction graphof a game affects the
existence of pure Nash equilibria. In particular, for a fixedinteraction graph,
we are interested in whether there are pure Nash equilibria arising when ran-
dom utility tables are assigned to the players. We provide conditions for the
structure of the graph under which equilibria are likely to exist and comple-
mentary conditions which make the existence of equilibria highly unlikely.
Our results have immediate implications for many deterministic graphs and
generalize known results for random games on the complete graph. In partic-
ular, our results imply that the probability that bounded degree graphs have
pure Nash equilibria is exponentially small in the size of the graph and yield a
simple algorithm that finds small non-existence certificates for a large family
of graphs. Then we show that in any strongly connected graph of n vertices
with expansion(1+Ω(1)) log2(n) the distribution of the number of equilib-
ria approaches the Poisson distribution with parameter1, asymptotically as
n → +∞.

In order to obtain a refined characterization of the degree ofconnectiv-
ity associated with the existence of equilibria, we also study the model in
the random graph setting. In particular, we look at the case where the in-
teraction graph is drawn from the Erdős-Rényi,G(n, p), model where each
edge is present independently with probabilityp. For this model we estab-
lish a double phase transitionfor the existence of pure Nash equilibria as
a function of the average degreepn, consistent with the non-monotone be-
havior of the model. We show that when the average degree satisfiesnp >
(2+Ω(1)) loge(n), the number of pure Nash equilibria follows a Poisson dis-
tribution with parameter1, asymptotically asn → ∞. When1/n << np <
(0.5−Ω(1)) loge(n), pure Nash equilibria fail to exist with high probability.
Finally, whennp = O(1/n) a pure Nash equilibrium exists with constant
probability.
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1. Introduction. In recent years there has been a convergence of ideas from
computer science and the social sciences aiming to model andanalyze large com-
plex networks such as the web graph, social networks and recommendation sys-
tems. From the computational perspective, it has been recognized that the suc-
cessful design of algorithms performed on such networks, including routing, rank-
ing and recommendation algorithms, must take into account the social dynamics
and economic incentives as well as the technical propertiesthat govern these net-
works [20, 24, 27].

Game theory has been very successful in modeling strategic behavior in large
systems of economically incentivized entities. In the context of routing, for in-
stance, it has been employed to study the effect of selfishness on the efficiency of
a network, whereby the performance of the network at equilibrium is compared
to the performance when a central authority can simply dictate a solution [7, 30–
32]. The effect of selfishness has been studied in several othersettings, e.g. load
balancing [8, 9, 21, 29], facility location [34], and network design [3].

A simple way to model interactions between agents in a large network is with a
graphical game[19]: a graphG = (V,E) is defined whose vertices represent the
players of the game and an edge(v,w) ∈ E corresponds to the strategic interaction
between playersv andw; each playerv ∈ V has a finite set of strategiesSv, which
throughout this paper will be assumed to be binary so that there are two possible
strategies for each player. Autility, or payoff, tableuv for playerv assigns a real
numberuv(σv, σN (v)) to every selection of strategies by playerv and the players in
v’s neighborhood, i.e. the set of nodesv′ such that(v, v′) ∈ E, denoted byN (v).
A pure Nash equilibrium(PNE) of the game is some state, orstrategy profile, σ of
the game, assigning to every playerv a single strategyσv ∈ Sv, such that no player
has a unilateral incentive to deviate. Equivalently, for every playerv ∈ V ,

uv(σv, σN (v)) ≥ uv(σ
′
v , σN (v)), for every strategyσ′

v ∈ Sv.(1)

When condition (1) is satisfied, we say that the strategyσv is abest response to the
strategiesσN (v).

The concept of the pure strategy Nash equilibrium is more compelling, decision
theoretically, than the concept of the mixed strategy Nash equilibrium—its coun-
terpart that allows players to choose distributions over their strategy sets. This is
because it is not always meaningful in applications to assume that the players of
a game may adopt randomized strategies. Unfortunately, unlike mixed Nash equi-
libria, PNE do not always exist. It is then an important problem to study how the
existence of PNE depends on the properties of the game.

The focus of this paper is to understand how the connectivityof the under-
lying graph affects the existence of a PNE. We obtain two kinds of results. The
first concerns the existence of a PNE in an ensemble of random graphical games
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defined on a random—G(n, p)—graph. We obtain a characterization of the proba-
bility that a PNE exists as a function of the density of the graph. The second set of
results concerns random graphical games on deterministic graphs. Here, we obtain
conditions on the structure of the graph under which a PNE does not exist with
high probability, suggesting also an efficient algorithm for finding witnesses of the
non-existence of a PNE. We also give complementary conditions on the structure
of the graph under which a PNE exists with constant probability. Our results are
described in detail in Section1.3.

Comparison to Typical Constraint Satisfaction Problems.Graphical games pro-
vide a more compact way for representing large networks of interacting agents,
than normal form games, in which the game is described as if itwere played on the
complete graph. Besides the compact description, one of themotivations for the in-
troduction of graphical games is their intuitive affinity tographical statistical mod-
els; indeed, several algorithms for graphical games do havethe flavor of algorithms
for solving Bayes nets or constraint satisfaction problems[10, 13, 16, 22, 23].

In the other direction, the notion of a PNE provides anew genre of constraint
satisfaction problems; notably one in which, for any assignment of strategies (val-
ues) to the neighborhood of a player (variable), there is always a strategy (value)
for that player which makes the constraint (1) corresponding to that player satisfied
(i.e. being in best response). The reason why it might be hardto satisfy simulta-
neously the constraints corresponding to all players is thelong range correlations
that may arise between players. Indeed, deciding whether a PNE exists is NP-hard
even for very sparse graphical games [16].

Viewed as a constraint satisfaction problem, the problem ofthe existence of
PNE poses interesting challenges. First, for natural random ensembles over payoff
tables such as the one adopted in this paper (see Definition1.2), theexpected num-
ber of PNE is1 for any graph(this is shown for our model in the main body of
the paper; see Eq. (10)). On the contrary, for typical constraint satisfaction prob-
lems, the expected number of solutions is exponential in thesize of the graph with
different exponents corresponding to different density parameters. Second, unlike
typical constraint satisfaction problems studied before,the existence of PNE is a-
priori not a monotone property of the connectivity. It is surprising that given these
novel features of the problem it is possible to obtain a result establishing a double
phase transition on the existence of PNE as described below.

1.1. Our Model. We define the notion of a graphical game and proceed to
describe the ensemble of random graphical games studied in this paper.

DEFINITION 1.1 (Graphical Game). Given a graphG = (V,E), we define
theneighborhood of nodev ∈ V to be the setN (v) = {v′ | (v, v′) ∈ E}. If Sv is
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a set associated with vertexv, for all v ∈ V , we denote bySN (v) := ×v′∈N (v)Sv′

the Cartesian product of the sets associated with the nodes in v’s neighborhood.

A graphical gameonG is a collection(Sv, uv)v∈V , whereSv is thestrategy set
of nodev anduv : Sv × SN (v) → R theutility (or payoff) function (or table) of
playerv. We also definethe best response function (or table) of playerv to be the
functionBRv : Sv × SN (v) → {0, 1} such that

BRv(σv , σN (v)) = 1 ⇔ σv ∈ argx max{uv(x, σN (v))},

for all σv ∈ Sv andσN (v) ∈ SN (v).

DEFINITION 1.2 (Random Graphical Games on a Fixed Graph).Given a graph
G = (V,E) and an atomless distributionF over R, the probability distribution
DG,F over graphical games(Sv, uv)v∈V onG is defined as follows:

• Sv = {0, 1}, for all v ∈ V ;
• the payoff values{uv(σv, σN (v))}v∈V,σv∈Sv,σN (v)∈SN (v)

are mutually inde-
pendent and identically distributed according toF .

REMARK 1.3 (Invariance under Payoff Distributions).It is easy to see that the
existence of a PNE is only determined by thebest response tablesof the game; see
Condition (1). In particular, given that the distributions considered inthis paper
are atomless, we can study PNE underDG,F , for any atomlessF , by restricting
our attention (up to probability0 events) to the measureDG over best response
tables, defined as follows

• {BRv(0, σN (v))}v∈V,σN (v)∈SN (v)
are mutually independent and uniform in

{0, 1};
• BRv(1, σN (v)) = 1 − BRv(0, σN (v)), for all σN (v) ∈ SN (v).

We will sometimes refer to a graphical game defined in terms ofits best response
tables as anunderspecified graphical game. Other times, we will overload our
terminology and just call it a graphical game. We usePG[.] and EG[.] to denote
probabilities of events and expectations respectively under the measureDG.

REMARK 1.4 (Invariance under Payoff Distributions II).Given our observa-
tion in Remark1.3, it follows that it is not important to use a common distribution
F for sampling the payoffs of all the players of the game. All our results in this
work are true if different players have different distributions as long as these dis-
tributions are atomless and all payoffs values are sampled independently.

Extending the Model to Random Graphs.One of the goals of this paper is to
investigate what average degree is required in a graph for a graphical game played
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on this graph to have a PNE. To study this question, it is natural to consider families
of graphs with different densities and relate the probability of PNE existence with
the density of the graph. We consider graphical games on graphs drawn from the
Erdős-Rényi,G(n, p), model, with varying values of the edge probabilityp. The
ensemble of graphical games we consider is formally the following.

DEFINITION 1.5. Givenn ∈ N, p ∈ [0, 1] and an atomless distributionF
overR, we define a measureD(n,p,F) over graphical games. A graphical game is
drawn fromD(n,p,F) as follows:

• a graphG is drawn fromG(n, p);
• a random graphical game is drawn fromDG,F .

REMARK 1.6 (Invariance under Payoff Distributions III).Given our discus-
sion in Remark1.3, it follows that in order to study PNE in the random ensemble of
Definition1.5it is sufficient to consider a measure that fixes only the best response
tables of the players in the sampled games.

For a givenn ∈ N andp ∈ [0, 1], we define the measureD(n,p) over underspec-
ified graphical games. An underspecified graphical game is drawn fromD(n,p) as
follows:

• a graphG is drawn fromG(n, p);
• a random underspecified graphical game is drawn fromDG.

We useP(n,p)[.] to denote probabilities of events under the measureD(n,p) and
PG [.] for probabilities of events measurable underG(n, p).

In the model defined in Definition1.5 and Remark1.6, there are two sources
of randomness: the selection of the graph, determining whatplayers interact with
each other, and the selection of the payoff tables. Note thatin the two-stage process
that samples a graphical game from our distribution, the payoff tables can only be
realized once the graph is fixed. This justifies the subscriptG in the measureDG

defined above.

1.2. Discussion.

Non-Monotonicity. Observe that the existence of a PNE is anon-monotone prop-
erty of p: any graphical game on the empty graph has a PNE for trivial reasons; on
the complete graph a random graphical game has a PNE with asymptotic probabil-
ity 1− 1

e (see [12, 28]); but our results indicate that, whenp is in some intermediate
regime, a PNE does not exist with probability approaching1 asn → +∞ (see The-
orem1.10).
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The non-monotonicity in the average degree of the existenceof a PNE makes
the relation between PNE and connectivity non-obvious. Surprisingly, we show
(Theorem1.9) that the convergence to a Poisson distribution of the distribution of
the number of PNE in complete graphs [26, 33] extends to much sparser graphs,
as long as the average degree is at leastlogarithmic in the number of players. If
the sparsity increases further, we show (Theorem1.10) that a PNE does not exist
with high probability, while if the graph is essentially empty, PNE exist with prob-
ability 1 (Theorem1.11). Our results establish adouble phase transitionconsistent
with the non-monotonicity of the model.

Methodological Challenges.Our study here is an instance of studying the satisfi-
ability of constraint satisfaction problems (CSPs). The generic question is to inves-
tigate the effect of the structure of the constraint graph onthe satisfiability of the
problems defined on that graph, as well as their computational complexity. In the
context of CNF formulas (corresponding to the SATisfiability problem) the graph
property most commonly studied in the literature is the density of the hypergraph
that contains an edge for each clause of the formula, see e.g.[14]. In other settings,
different structural properties of the constraint graph are relevant, e.g. measures of
cyclicity of the graph [6, 17]. In our case, studying the average degree reveals an
interesting, non-monotonic behavior of the model, as described above.

In a typical CSP, to show that a solution does not exist one either uses the first
moment method to exhibit that the expected number of solutions is tiny [2], or finds
a witness of unsatisfiability that exists with high probability. To show that a satis-
fying assignmentdoesexist it is quite common to use the second moment method
or its refinements, which have provided some of the best bounds for satisfiability to
date [1]. In our model the expected number of satisfying assignments turns out to
be1 for any graph (see Eq. (10) below). This suggests that the analysis of the prob-
lem should be harder, since in particular we cannot use the first moment method
to establish the non-existence of a PNE. Our proof of the non-existence of PNE
(Theorems1.10and1.16) uses succinct non-existence witnesses that appear with
high probability in sufficiently sparse graphs. These witnesses are specific sub-
game structures that do not possess a PNE with high probability. To establish the
existence of a PNE for sufficiently large densities (Theorems 1.9and1.13) we use
the second moment method. Further, we use Stein’s [4] method to establish that
the distribution of the number of PNE converges asymptotically to a Poisson(1)
distribution in this case.

1.3. Outline of Main Results. We describe first our results for random graphs
(for the measureD(n,p) defined in Remark1.6), and proceed with our results for
deterministic graphs (for the measureDG defined in Remark1.3).
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PNE on Random Graphs.We study how the connectivity probabilityp influences
the existence of PNE for games sampled fromD(n,p). The transition is described by
the following theorems applying to different levels of graph connectivity. Before
stating the theorems, we introduce some notation.

REMARK 1.7 (Order Notation). Let f(x) and g(x) be two functions defined
on some subset of the real numbers. One writesf(x) = O(g(x)) if and only if,
for sufficiently large values ofx, f(x) is at most a constant timesg(x) in absolute
value. That is,f(x) = O(g(x)) if and only if there exists a positive real number
M and a real numberx0 such that

|f(x)| ≤ M |g(x)|, for all x > x0.

Similarly, we writef(x) = Ω(g(x)) if and only if there exists a positive real num-
berM and a real numberx0 such that

|f(x)| ≥ M |g(x)|, for all x > x0.

We casually use theorder notationO(·) andΩ(·) throughout the paper. When-
ever we useO(f(n)) or Ω(f(n)) in some bound, there exists a constantc > 0
such that the bound holds true for sufficiently largen if we replace theO(f(n)) or
Ω(f(n)) in the bound byc · f(n).

REMARK 1.8 (Order Notation Continued).If g(n) is a function ofn ∈ N,
then we denote byω(g(n)) any functionf(n) such thatf(n)/g(n) → +∞, asn →
+∞; similarly, we denote byo(g(n)) any functionf(n) such thatf(n)/g(n) → 0,
asn → +∞. Finally, for two functionsf(n) and g(n), we writef(n) >> g(n)
wheneverf(n) = ω(g(n)).

THEOREM 1.9 (High Connectivity). Let Z denote the number of PNE in a
graphical game sampled fromD(n,p), wherep = (2+ǫ) loge(n)

n , ǫ = ǫ(n) > 0. For
an arbitrary constantc > 0 we assume thatǫ(n) > c and (in order forp ≤ 1)
ǫ(n) ≤ n

loge(n) − 2.

Under the above assumptions, for all finiten, with probability at least1 −
2n−ǫ/8 over the random graph sampled fromG(n, p), it holds that the total varia-
tion distance betweenZ and aPoisson(1) r.v. W is bounded by:

(2) ||Z − W || ≤ O(n−ǫ/8) + exp(−Ω(n)).

In other words,

(3) PG

[

||Z − W || ≤ O(n−ǫ/8) + exp(−Ω(n))
]

≥ 1 − 2n−ǫ/8.
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In particular, the distribution ofZ converges in total variation distance to a
Poisson(1) distribution, asn → +∞.

(Note that the two terms on the right hand side of(2) can be of the same order
whenǫ is of the order ofn/ loge(n).)

THEOREM 1.10 (Medium Connectivity). For all p = p(n) ≤ 1/n, if a graph-
ical game is sampled fromD(n,p), the probability that a PNE exists is bounded
by:

exp(−Ω(n2p)).

For p(n) = g(n)/n, whereloge(n)/2 > g(n) > 1, the probability that a PNE
exists is bounded by:

exp(−Ω(eloge(n)−2g(n))).

In particular, the probability that a PNE exists goes to0 as n → +∞ for all
p = p(n) satisfying

1

n2
<< p < (0.5 − ǫ′(n))

loge(n)

n
,

whereǫ′(n) = ω
(

1
loge(n)

)

.

THEOREM 1.11 (Low Connectivity). For every constantc > 0, if a graphical
game is sampled fromD(n,p) with p ≤ c

n2 , the probability that a PNE exists is at
least

(

1 − c

n2

)

n(n−1)
2 −→ e−

c
2 .

Note that our upper and lower bounds forG(n, p) leave a small gap, between
p ≈ 0.5 loge(n)

n andp ≈ 2 loge(n)
n . The behavior of the number of PNE in this range

of p remains open. We establish the non-existence of PNE for medium connectivity
graphs via a simple structure that prevents PNE from arising, called the ‘indifferent
matching pennies game’ (see Definition1.18below). It is natural to ask whether
our ‘indifferent matching pennies’ witnesses are (similarly to isolated vertices in
connectivity) the smallest structures that prevent the existence of PNE and the last
ones to disappear.

General Graphs. We give conditions on the structure of a graph implying the
(likely) existence or non-existence of a PNE in a random gameplayed on that
graph. The existence of a PNE is guaranteed by sufficient connectivity of the un-
derlying graph. The connectivity that we require is captured by the notion of(α, δ)-
expansiongiven next.
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DEFINITION 1.12 ((α, δ)-Expansion). A graphG = (V,E) has(α, δ)-expansion
iff every setV ′such that|V ′| ≤ ⌈δ|V |⌉ has|N (V ′)| ≥ min(|V |, α|V ′|) neighbors.
Here we let

N (V ′) = {w ∈ V : ∃u ∈ V ′ with (u,w) ∈ E}.
(Note in particular thatN (V ′) may intersectV ′).

We show the following result.

THEOREM 1.13 (Strongly Connected Graphs).Let Z denote the number of
PNE in a graphical game sampled fromDG, whereG is a graph onn vertices
that has(α, δ)-expansion withα = (1 + ǫ) log2(n), δ = 1

α and ǫ > 0. Then
the total variation distance between the distribution ofZ and the distribution of a
Poisson(1) r.v. W is bounded by:

(4) ||Z − W || ≤ O(n−ǫ) + O(2−n/2).

Next we provide a complementary condition for the non-existence of PNE. The
condition will be given in terms of the following structure.

DEFINITION 1.14 (d-Bounded Edge). An edgee = (u, v) ∈ E of a graph
G(V,E) is calledd-boundedif bothu andv have degrees smaller or equal tod.

We bound the probability that a PNE exists in a game sampled from DG as
a function of the number ofd-bounded edges inG. For the stronger version of
our theorem, we also need the notion of amaximal weighted independent edge-set
defined next.

DEFINITION 1.15 (Maximal Weighted Independent Edge-Set).Given a graph
G(V,E), a subsetE ⊆ E of the edges is calledindependentif no pair of edges in
E are adjacent.

If w : E → R is a function assigning weights to the edges ofG, we extendw to
subsets of edges by assigning to eachE ⊆ E the weightwE =

∑

e∈E w(e). Then
we call a subsetE ⊆ E of edgesa maximal weighted independent edge-setif E is
an independent edge-set with maximal weight among independent edge-sets.

THEOREM 1.16. A random game sampled fromDG, whereG is a graph with
at leastm vertex disjointd-bounded edges, has no PNE with probability at least

(5) 1 − exp

(

−m

(

1

8

)22d−2
)

.
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In particular, if G has at leastm edges that ared-bounded, then a game sampled
fromDG has no PNE with probability at least

(6) 1 − exp

(

−m

2d

(

1

8

)22d−2)

.

Moreover, there exists an algorithm of complexityO(n2+m2d+2) for proving that a
PNE does not exist, which has success probability given by (5) and (6) respectively.

More generally, let us assign to every edge(u, v) ∈ E the weight

w(u,v) := − loge

(

1 − p(u,v)

)

,

for p(u,v) = 8−2du+dv−2
, wheredu anddv are respectively the degrees ofu andv.

Given these weights, suppose thatE is a maximal weighted independent edge-set
with valuewE . Then the probability that there exists no PNE is at least

1 − exp (−wE) .

An easy consequence of this result is that many sparse graphs, such as the line
and the grid, do not have a PNE with probability tending to1 as the number of
players increases.

The proof of Theorem1.16is based on a small witness for the non-existence of
PNE, called theindifferent matching pennies game. As the name implies this game
is inspired by the simplematching pennies game. Both games are described next.

DEFINITION 1.17 (The Matching Pennies Game).We say that two playersa
andb play thematching pennies gameif their payoff matrices are the following, up
to permuting the players’ names.

Payoff table of player a :

b plays 0 b plays 1

a plays 0 1 0
a plays 1 0 1

Payoff table of player b :

b plays 0 b plays 1

a plays 0 0 1
a plays 1 1 0

DEFINITION 1.18 (The Indifferent Matching Pennies Game).We say that two
playersa and b that are adjacent to each other in a graphical game play thein-
different matching pennies gameif, for all strategy profilesσN (a)∪N (b)\{a,b} in the
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neighborhood ofa andb, the playersa andb play a matching pennies game against
each other.

In other words, for all fixedσ := σN (a)∪N (b)\{a,b}, the payoff tables ofa andb
projected onσN (a)\{b} andσN (b)\{a} respectively are the following, up to permut-
ing the players’ names.

Payoffs to player a :

b plays0,
other neighbors
playσN (a)\{b}

b plays1,
other neighbors
playσN (a)\{b}

a plays 0 1 0
a plays 1 0 1

Payoffs to player b :

a plays0,
other neighbors
play σN (b)\{a}

a plays1,
other neighbors
playσN (b)\{a}

b plays 0 0 1
b plays 1 1 0

Observe that if a graphical game contains an edge(u, v) so that playersu and
v play the indifferent matching pennies game then the game hasno PNE. In partic-
ular, the indifferent matching pennies game provides asmall witnessfor the non-
existence of a PNE, which is a coNP-complete problem for bounded degree graph-
ical games [16]. Our analysis implies that, with high probability over bounded
degree graphical games, there are short proofs for the non-existence of PNE which
can be found efficiently. A related analysis and randomized algorithm was intro-
duced for mixed Nash equilibria in 2-player games by Bárány et al. [5].

1.4. Related Work. The number of PNE in random games with i.i.d. payoffs
has been extensively studied in the literature prior to our work: Goldberg et al. [15]
characterize the probability that a two-player random gamewith i.i.d. payoff tables
has a PNE, as the number of strategies tends to infinity. Dresher [12] and Papavas-
silopoulos [25] generalize this result to n-player random games on the complete
graph. Powers [26] and Stanford [33] generalize the result further, showing that
the distribution of the number of PNE approaches aPoisson(1) distribution as the
number of strategies increases. Finally, Rinott et al. [28] investigate the asymptotic
distribution of PNE for a more general ensemble of random games on the com-
plete graph where there are positive or negative dependencies among the players’
payoffs.
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Our work generalizes the above results for i.i.d. payoffs beyond the complete
graph to random graphical games on random graphs and severalfamilies of deter-
ministic graphs. Parallel to our work, Bistra et al. [11] studied the existence of PNE
in certain families of deterministic graphs, and Hart et al.[18] obtained results for
evolutionarily stable strategies in random games. These results are related but not
directly comparable to our results.

1.5. Acknowledgement.We thank Martin Dyer for pointing out an error in a
previous formulation of Theorem1.16. We also thank the anonymous referee for
comments that helped improve the presentation of this work.

2. Random Graphs.

2.1. High Connectivity. In this section we study the number of PNE in graph-
ical games sampled fromD(n,p). We show that, when the average degree ispn =
(2 + ǫ(n)) loge(n), whereǫ(n) > c andc > 0 is any fixed constant, the distribu-
tion of the number of PNE converges to aPoisson(1) random variable, asn goes
to infinity. This implies in particular that a PNE exists withprobability converging
to 1 − 1

e as the size of the network increases.

As in the study of the complete graph in [28], we use the following result of
Arratia et al. [4], established using Stein’s method. For two random variablesZ,Z ′

supported on0, 1, . . . we define theirtotal variation distance||Z − Z ′|| as

||Z − Z ′|| :=
∞
∑

i=0

|Z(i) − Z ′(i)|.

LEMMA 2.1 ([4]). Consider arbitrary Bernoulli random variablesXi, i =
0, . . . , N . For eachi, define someneighborhood of dependenceBi of Xi such that
Bi satisfies that(Xj : j ∈ Bc

i ) are independentof Xi. Let

(7) Z =
N
∑

i=0

Xi, λ = E[Z],

and assume thatλ > 0. Also, let

b1 =
N
∑

i=0

∑

j∈Bi

P[Xi = 1]P[Xj = 1]

and b2 =
N
∑

i=0

∑

j∈Bi\{i}

P[Xi = 1,Xj = 1].
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Then the total variation distance between the distributionof Z and aPoisson ran-
dom variableWλ with meanλ is bounded by

||Z − Wλ|| ≤ 2(b1 + b2).(8)

Proof of Theorem 1.9: For ease of notation, we identify the players of the graph-
ical game with the indices1, 2, . . . , n. We also identify pure strategy profiles with
the integers in{0, . . . , 2n − 1}, mapping each integer to a strategy profile. The
mapping is defined so that, if the binary expansion ofi is i(1) . . . i(n), playerk
playsi(k).

Next, to each strategy profilei ∈ {0, . . . , N}, whereN = 2n − 1, we assign an
indicator random variableXi which is1 if the strategy profilei is a PNE. Then the
counting random variable

(9) Z =
N
∑

i=0

Xi

corresponds to the number of PNE. Hence the existence of a PNEis equivalent to
the random variableZ being positive.

Let us condition on a realization of the graphG of the graphical game, but
not its best response tables. For a given strategy profilei, each player is in best
response with probability1/2 over the selection of her best response table;∗ there-
fore EG[Xi] = 2−n, for all i, where recall thatEG denotes expectation under the
measureDG. Hence, conditioning onG the expected number of PNE is

(10) EG[Z] = 1.

Since this holds for any realization of the graphG it follows thatE[Z] = 1.

In Lemma2.2that follows, we characterize the neighborhood of dependenceBi

of the variableXi in order to be able to apply Lemma2.1on the collection of vari-
ablesX0, . . . ,XN . Note that this neighborhood depends on the graph realization,
but is independent of the realization of the payoff tables.

LEMMA 2.2. For a fixed graphG, we can choose the neighborhoods of de-
pendence for the random variablesX0, . . . ,XN as follows:

B0 = {j : ∃k such that∀k′ with (k, k′) ∈ E(G) it holds thatj(k′) = 0}
and

Bi = i ⊕ B0 = {i ⊕ j : j ∈ B0},
wherei⊕ j = (i(1) ⊕ j(1), . . . , i(n) ⊕ j(n)) and⊕ is the exclusive or operation.

∗This follows directly from our model (Remark1.6), following our assumption of atomless payoff
distributions (Definition1.5).
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REMARK 2.3. Intuitively, when the graphG is realized, the neighborhood of
dependence of the strategy profile0 (variable X0) contains all strategy profilesj
(variablesXj) assigning0 to all the neighbors of at least one playerk. If such a
playerk exists, then whether0 or j(k) is a best response to the all-0 neighborhood
are dependent random variables (over the selection of the best response table of
player k). The definition ofBi in terms ofB0 is justified by the symmetry of our
model.

PROOF OFLEMMA 2.2. By symmetry, it is enough to show thatX0 is inde-
pendent of{Xi}i/∈B0

. Fix somei /∈ B0. Observe that ini, each playerk of the
game has at least one neighbork′ playing strategy1. By the definition of measure
DG, it follows that whether strategy0 is a best response for playerk in strategy
profile 0 is independent of whether strategyi(k) is a best response for playerk
in strategy profilei, since these events depend on different strategy profiles ofthe
neighbors ofk.

Now, for a fixed graphG, the functionsb1(G) andb2(G) (corresponding tob1

andb2 in Lemma2.1) are well-defined. We proceed to bound the expectation of
these functions over the sampling of the graphG.

EG [b1(G)] = EG





N
∑

i=0

∑

j∈Bi

PG[Xi = 1]PG[Xj = 1]





= EG

[

1

(N + 1)2

N
∑

i=0

|Bi|
]

=
EG [|B0|]
N + 1

;(11)

EG [b2(G)] = EG





N
∑

i=0

∑

j∈Bi\{i}

PG[Xi = 1,Xj = 1]





= (N + 1)
∑

j 6=0

EG [PG[X0 = 1,Xj = 1]I[j ∈ B0]] .(12)

In the last line of both derivations we made use of the symmetry of the model.
Invoking symmetry again, we observe that the expectation

EG [PG[X0 = 1,Xj = 1]I[j ∈ B0]]

in (12) depends only on the number of1’s in the strategy profilej, denoteds below.
Let us writeYs for the indicator that the strategy profilejs, where the firsts players
play 1 and all the other players play0, is a PNE. Also, writeIs for the indicator
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that this strategy is inB0 (note thatIs is a function of the graph only). Using this
notation, we obtain:

EG [b2(G)] = 2n
n
∑

s=1

(

n

s

)

EG [IsPG[Y0 = 1, Ys = 1]];(13)

and EG [b1(G)] = 2−n
n
∑

s=0

(

n

s

)

EG [Is].(14)

LEMMA 2.4. EG [b1(G)] andEG [b2(G)] are bounded as follows.

EG [b1(G)] ≤ R(n, p) :=
n
∑

s=0

(

n

s

)

2−n min(1, n(1 − p)s−1);

EG [b2(G)] ≤ S(n, p) :=
n
∑

s=1

(

n

s

)

2−n [(1 + (1 − p)s)n−s − (1 − (1 − p)s)n−s].

PROOF. We begin with the study ofEG [b1(G)]. Clearly, it suffices to bound
E[Is] by n(1 − p)s−1, for s > 0. For the strategy profilejs to belong inB0 it must
be that there is at least one player who is not connected to anyplayer in the set
S := {1, 2, . . . , s}. The probability that a specific playerk is not connected to any
player inS is either(1 − p)s or (1 − p)s−1, depending on whetherk ∈ S; so it is
always at most(1 − p)s−1. By a union bound it follows that the probability there
is at least one player not connected toS is at mostn(1 − p)s−1.

We now analyzeEG [IsPG[Y0 = 1, Ys = 1]]. Recall from the previous para-
graph thatIs = 1 only when there exists a playerk who is not connected to any
player inS. If there exists such a playerk with the extra property thatk ∈ S, then
PG[Y0 = 1, Ys = 1] = 0, since it cannot be that both0 and1 are best responses for
playerk when all her neighbors play0.

Therefore the only contribution toEG [IsPG[Y0 = 1, Ys = 1]] is from the event
every player inS is connected to at least one other player inS. Conditioning on this
event, in order forIs = 1 it must be that at least one of the players inSc := V \ S
is not adjacent to any player inS.

Let us defineps := PG[∄ isolated node in the subgraph induced byS] and lett
denote the number of players inSc, which are not connected to any player inS.
Since every player outsideS is non-adjacent to any player inS with probability
(1 − p)s, the probability that exactlyt players are not adjacent toS is

(

n − s

t

)

[(1 − p)s]t(1 − (1 − p)s)n−s−t.
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Moreover, conditioning on the event that exactlyt players inSc are not adjacent to
any player inS, we have that the probability thatY0 = 1 andYs = 1 is:

1

2t

1

2n−t

1

2n−t
.

Putting these together we obtain:

EG [IsPG[Y0 = 1, Ys = 1]]

= ps

n−s
∑

t=1

(

n − s

t

)

[(1 − p)s]t(1 − (1 − p)s)n−s−t 1

2t

1

4n−t
,

=
ps

4n

(

(2(1 − p)s + (1 − (1 − p)s))n−s − (1 − (1 − p)s)n−s
)

=
ps

4n

(

(1 + (1 − p)s)n−s − (1 − (1 − p)s)n−s) ;

therefore

EG [b2(G)] =
n
∑

s=1

2−n

(

n

s

)

ps
[

(1 + (1 − p)s)n−s − (1 − (1 − p)s)n−s] ≤ S(n, p).

In the appendix we show that

LEMMA 2.5.
S(n, p) ≤ O(n−ǫ/4) + exp(−Ω(n)),

and
R(n, p) ≤ O(n−ǫ/4) + exp(−Ω(n)).

Given the above bounds onEG [b1(G)] andEG [b2(G)], Markov’s inequality im-
plies that with probability at least1 − n−ǫ/8 − 2−n over the selection of the graph
G from G(n, p) we have

max(b1(G), b2(G)) ≤ O(n−ǫ/8) + exp(−Ω(n)).(15)

Let us condition on the event that Condition (15) holds. Under this event, Lemma2.1
implies that:

||Z − W || ≤ 2(b1(G) + b2(G)) ≤ O(n−ǫ/8) + exp(−Ω(n))

as needed. Noting that1 − n−ǫ/8 − 2−n ≥ 1 − 2n−ǫ/8, we obtain

(16) PG

[

||Z − W || ≤ O(n−ǫ/8) + exp(−Ω(n))
]

≥ 1 − 2n−ǫ/8.
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Using the pessimistic upper bound of2 on the total variation distance when
Condition (15) fails, we obtain

||Z − W || ≤ O(n−ǫ/8) + exp(−Ω(n)).

Taking the limit of the above bound asn → +∞ we obtain our asymptotic result.
This concludes the proof of Theorem1.9. �

2.2. Medium Connectivity.

PROOF OFTHEOREM 1.10. Recall thematching pennies gamefrom Defini-
tion 1.17. It is not hard to see that this game does not have a PNE. Hence,if a
graphical game contains two players who are connected to each other, are isolated
from all the other players, and play matching pennies against each other, then the
graphical game will have no PNE. The existence of such a witness for the non-
existence of PNE is precisely what we use to establish our result. In particular, we
show that with high probability a random game sampled fromD(n,p) will contain
an isolated edge between two players playing a matching pennies game.

We use the following exposure argument. Label the vertices of the graph with
the integers in[n] := {1, . . . , n}. SetΓ1 = [n] and perform the following opera-
tions, which iteratively define the sets of verticesΓi, i ≥ 2. If |Γi| ≤ n/2, for some
i ≥ 2, stop the process and do not proceed to iterationi: †

• Let j be the minimal value such thatj ∈ Γi.
• If j is adjacent to more than one vertex or to none, letΓi+1 = Γi \ ({j} ∪

N (j)). Go to the next iteration.
• Otherwise, letj′ be the unique neighbor ofj. If j′ has a neighbor6= j, let

Γi+1 = Γi \ ({j, j′} ∪ N (j′)). Go to the next iteration.
• Otherwise check if the playersj andj′ play a matching pennies game.‡ If

this is the case, declare NO NASH. Let Γi+1 = Γi \ {j, j′}. Go to the next
iteration.

Observe that the number of vertices removed at some iteration of the process
can be upper bounded (formally, it is stochastically dominated) by

2 + Bin(n, p),

†Throughout the processΓi represents the set of vertices that could be adjacent to an isolated
edge, given the information available to the process at the beginning of iterationi.

‡More precisely, check if the best response tables of the playersj andj′ are the same with the
best response tables of the playersa andb of the matching pennies game from Definition1.17(up to
permutations of the players’ names).
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whereBin(n, p) is a random variable distributed according to the Binomial distri-
bution withn trials and success probabilityp. This follows from the fact that the
vertices removed at some iteration of the process are eitherthe examined vertexj
andj’s neighbors (the number of those is stochastically dominated by aBin(n, p)
random variable), or—ifj has a single neighborj′—the removed vertices arej, j′

and the neighbors ofj′ (the number of those is also stochastically dominated by a
Bin(n, p) random variable). Lettingm := ⌈0.02n/(np + 1)⌉, the probability that
the process runs for at mostm iterations is bounded by

Pr [2m + Bin(mn, p) ≥ n/2] ≤ exp(−Ω(n)).

Condition on the information known to the exposure process up until the begin-
ning of iterationi, and assume that|Γi| > n/2. Letj be the vertex with the smallest
value inΓi. Now reveal all the neighbors ofj, and if j has only one neighborj′

reveal also the neighbors ofj′. The probability thatj is adjacent to a nodej′ who
has no other neighbors is at leastn

2 p(1−p)2n =: piso; note that we made use of the
condition|Γi| > n/2 in this calculation. Conditioning on this event, the probability
(over the selection of the payoff tables) thatj andj′ play a matching pennies game
is 1

8 =: pmp. Hence, the probability of outputting NO NASH in iterationi is at least
1
8

1
2np(1 − p)2n =: pimp.

The probability that the game has a PNE is upper bounded by theprobability
that the process described above does not return NO NASH, at any point through
its completion. To upper bound the latter probability, let us imagine the following
alternative process:

1. Stage 1:Tossn coins independently at random with head probabilitypiso.
Let I1,I2, . . . ,In ∈ {0, 1}, where1 represents ‘heads’ and0 represents
‘tails’, be the outcomes of these coin tosses.

2. Stage 2:Tossn coins independently at random with head probabilitypmp.
LetM1,M2, . . . ,Mn ∈ {0, 1}, be the outcomes of these coin tosses.

3. Stage 3:Run through the exposure process in the following way. At each
iterationi:

• conditioning on the information available to the exposure process at the
beginning of the iteration, compute the probabilitypj that the vertexj
corresponding to the smallest number inΓi is adjacent to an isolated
edge; given the discussion above it must be thatpj ≥ piso;

• if Ii = 1, then create an isolated edge connecting the playerj to a
random vertexj′ ∈ Γi \ {j}, forbidding all other edges fromj or j′ to
any other player, and make the playersj andj′ play a matching pennies
game ifMi = 1; if they do output NO NASH;
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• if Ii = 0, then sample the neighborhood ofj from the following mod-
ified model:

– with probability pj−piso

1−piso
, create an isolated edge connecting the

player j to a random vertexj′ ∈ Γi \ {j}, forbidding all other
edges fromj or j′ to any other player, and make the playersj and
j′ play a matching pennies game with probabilitypmp; if both of
these happen, output NO NASH;

– with the remaining probability, sample the neighborhood ofj and
the neighborhood of the potential unique neighborj′ fromG(n, p),
conditioning onj not being adjacent to an isolated edge.

• DefineΓi+1 fromΓi appropriately and exit the process if|Γi+1| ≤ n/2.

It is clear that the process given above can be coupled with the process defined
earlier to exhibit the same behavior. But it is easier to analyze. In particular, letting
S :=

∑m
i=1 IiMi, the probability that a Nash equilibrium does not exists canbe

lower bounded as follows:

PG[6 ∃ a PNE] ≥ Pr

[

S ≥ 1 ∧ process runs for
at leastm steps

]

≥ Pr [S ≥ 1] − Pr

[

process runs for
less thanm steps

]

≥ 1 − (1 − pimp)
m − exp(−Ω(n)).

Hence, the probability that a PNE exists can be upper boundedby

exp(−Ω(n)) +

(

1 − 1

16
np(1 − p)2n

)m

≤ exp(−Ω(n)) + exp(−Ω(mnp(1 − p)2n))

≤ exp(−Ω(mnp(1 − p)2n)).

Forp ≤ 1/n the last expression is

exp(−Ω(n2p)),

while for p = g(n)/n whereg(n) ≥ 1 the expression is

exp(−Ω(n(1 − p)2n)) = exp(−Ω(ne−2g(n))) = exp(−Ω(eloge(n)−2g(n))).

This concludes the proof of Theorem1.10.
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2.3. Low Connectivity.

PROOF OFTHEOREM 1.11. Note that if the graphical game is comprised of
isolated edges that are not matching pennies games then a PNEexists. (This can be
checked easily by enumerating all best response tables for a2× 2 game.) We wish
to lower bound the probability of this event. To do this, it isconvenient to sample
the graphical game in two stages as follows: At the first stagewe decide for each of
the possible

(n
2

)

edges whether the edge ispresent(with probabilityp) and whether
it is predisposedto be a matching pennies game (independently with probability
1/8); by ‘predisposed’ we mean that the edge will be set to be a matching pennies
game if the edge turns out to be isolated. At the second stage,we do the following:
for an edge that is both isolated and predisposed, we assign random payoff tables to
its endpoints conditioning on the resulting game being a matching pennies game;
for an isolated edge that is not predisposed, we assign random payoff tables to its
endpoints conditioning on the resulting gamenot being a matching pennies game;
finally, for any node that is part of a connected component with 0 or at least2 edges
we assign random payoff tables to the node. The probability that there is no edge
in the first stage that is both present and predisposed is

(1 − p/8)(
n

2).

Conditioning on this event, all present edges are not predisposed. Note also that,
whenc is fixed, the probability that there exists a pair of adjacentedges iso(1). It
follows that the probability that all present edges are not predisposed and no pair
of edges intersect can be lower bounded as

(1 − p/8)(
n

2) − o(1) =

(

1 − c

8n2

)

n(n−1)
2 − o(1).

But, as explained above if all edges are isolated and none of them is a matching
pennies game a PNE exists. Hence, the probability that a PNE exists is at least

(

1 − c

8n2

)

n(n−1)
2 − o(1) −→ e−

c
16 .

3. Deterministic Graphs.

3.1. A Sufficient Condition for Existence of Equilibria: Strong Connectivity.
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PROOF OFTHEOREM 1.13. We use the same notation as in the proof of Theo-
rem1.9, except that we make the slight modification of settingN := 2n−1. Recall
thatXi, i = 0, 1, . . . , N − 1, is the indicator random variable of the event that the
strategy profile encoded by the numberi is a PNE. It is rather straightforward (see
the proof of Theorem1.9) to show that

E [Z] = E

[

N−1
∑

i=0

Xi

]

= 1.

As in the proof of Theorem1.9, to establish our result, it suffices to bound the
following quantities.

b1(G) =
N−1
∑

i=0

∑

j∈Bi

P[Xi = 1]P[Xj = 1],

b2(G) =
N−1
∑

i=0

∑

j∈Bi\{i}

P[Xi = 1,Xj = 1],

where the neighborhoods of dependenceBi are defined as in Lemma2.2. ForS ⊆
{1, . . . , n}, denote byi(S) the strategy profile in which the players of the setS
play 1 and the players not inS play 0. Then writing1(j ∈ B) for the indicator of
the event thatj ∈ B we have:

b2(G) =
N−1
∑

i=0

∑

j∈Bi\{i}

P[Xi = 1,Xj = 1]

=
N−1
∑

i=0

∑

j 6=i

P[Xi = 1,Xj = 1]1(j ∈ Bi)

= N
∑

j 6=0

P[X0 = 1,Xj = 1]1(j ∈ B0) (by symmetry)

= N
n
∑

k=1

∑

S,|S|=k

P[X0 = 1,Xi(S) = 1]1(i(S) ∈ B0).

We will bound the sum above by bounding

(17) N

⌊δn⌋
∑

k=1

∑

S,|S|=k

P[X0 = 1,Xi(S) = 1]1(i(S) ∈ B0),

and

(18) N
n
∑

k=⌊δn⌋+1

∑

S,|S|=k

P[X0 = 1,Xi(S) = 1]1(i(S) ∈ B0)
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separately.

Note that if some setS satisfies|S| ≤ ⌊δn⌋ then|N (S)| ≥ α|S| since the graph
has(α, δ)-expansion. Moreover, each vertex (player) of the setN (S) is playing its
best response to the strategies of its neighbors in both profiles 0 and i(S) with
probability 1

4 , since its environment is different in the two profiles. On the other
hand, each player not in that set is in best response in both profiles0 andi(S) with
probability at most12 . Hence, we can bound (17) by

N

⌊δn⌋
∑

k=1

∑

S,|S|=k

P[X0 = 1,Xi(S) = 1]

≤ N

⌊δn⌋
∑

k=1

∑

S,|S|=k

(

1

2

)n−αk (1

4

)αk

=

⌊δn⌋
∑

k=1

(

n

k

)

(

1

2

)αk

<

(

1 +

(

1

2

)α)n

− 1 ≤ en−ǫ.

To bound the second term, notice that, if some setS satisfies|S| ≥ ⌊δn⌋ + 1, then
since the graph has(α, δ)-expansionN (S) ≡ V and, therefore, the environment of
every player is different in the two profiles0 andi(S). Hence,1(i(S) ∈ B0) = 0.
By combining the above we get that

b2(G) ≤ en−ǫ.

It remains to bound the expressionb1(G). We have

b1(G) − 2−n =
N−1
∑

i=0

∑

j∈Bi\{i}

P[Xi = 1]P[Xj = 1]

=
N−1
∑

i=0

∑

j 6=i

P[Xi = 1]P[Xj = 1]1(j ∈ Bi)

= 2−n
∑

j 6=0

1(j ∈ B0)

= 2−n
⌊δn⌋
∑

k=1

∑

S,|S|=k

1(i(s) ∈ B0) + 2−n
n
∑

k=⌊δn⌋+1

∑

S,|S|=k

1(i(s) ∈ B0).

The second term is zero as before. For all large enoughn the first summation
contains at most2n/2 terms and is therefore bounded by2−n/2. It follows that

b1(G) + b2(G) ≤ en−ǫ + 2−n/2.

An application of the result by Arratia et al. [4] concludes the proof of Theo-
rem1.13.
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3.2. A Sufficient Condition for the Non-Existence of Equilibria:Indifferent Match-
ing Pennies. In this section we provide a proof of Theorem1.16. Recall that an
edge of a graph is calledd-boundedif both adjacent vertices have degrees smaller
or equal tod. Theorem1.16specifies that any graph with many such edges is un-
likely to have PNE. We proceed to the proof of the claim.

PROOF OFTHEOREM 1.16. Consider a d-bounded edge in a game connect-
ing two playersa andb; suppose that each of these players interacts withd − 1
(or fewer) other players denoted bya1, a2 . . . ad−1 andb1, b2 . . . bd−1. § Recall that
if a andb play an indifferent matching pennies game against each other then the
game has no PNE. The key observation is that ad-bounded edge is an indifferent
matching pennies game with probability at least(1

8 )2
2d−2

=: pimp—since a ran-
dom two-player game is a matching pennies game with probability 1

8 and there
are at most22d−2 possible pure strategy profiles for the playersa1, a2 . . . ad−1,
b1, b2 . . . bd−1; for each of these pure strategy profiles the game betweena andb
must be a matching pennies game.

For a collection ofm vertex disjoint edges, observe that the events that each of
them is an indifferent matching pennies game are independent. Hence, the prob-
ability that the game has a PNE is upper bounded by the probability that none of
these edges is an indifferent matching pennies game, which is upper bounded by

(1 − pimp)
m ≤ exp(−mpimp) = exp

(

−m

(

1

8

)22d−2)

.

For the second claim of the theorem note that, if there arem d-bounded edges,
then there must be at leastm/(2d) vertex disjointd-bounded edges.

The algorithmic statement follows from the fact that we may find all nodes
with degree≤ d in time O(n2), and then find all edges joining two such nodes
in anotherO(n2) time, with the use of the appropriate data structures; theseedges
are thed-bounded edges of the graph. Then in timeO(m2d+2) we can check if the
endpoints of any such edge play an indifferent matching pennies game.

The final claim of the theorem has a similar proof where now thepotential
witnesses for the non-existence of a PNE are the edges inE .

Many random graphical games on deterministic graphs such asplayers arranged
on a line, grid, or any other bounded degree graph (withω(1) edges) are special
cases of the above theorem and hence are unlikely to have PNE asymptotically.

§We allow these lists to share players.
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APPENDIX A: OMITTED PROOFS

PROOF OFLEMMA 2.5. We need to bound the functionsS(n, p) andR(n, p).
We begin withS.

Bounding S. Recall that

S(n, p) :=
n
∑

s=1

(

n

s

)

2−n [(1 + (1 − p)s)n−s − (1 − (1 − p)s)n−s].

We split the range of the summation into four regions and bound the sum over each
region separately. We begin by choosingα = α(ǫ) as follows

(i) if ǫ ≤ 1790
105 , we chooseα =

(

ǫ
2+ǫ

)20
;

(ii) if ǫ > 1790
105 , we chooseα = ǫ

2+ǫ .

Given our choice ofα = α(ǫ) we define the following regions in the range ofs
(where—depending onǫ—Regions I and/or III may be empty and Region IV may
have overlap with Region II):

I. {s ∈ N | 1 ≤ s < ǫ
(2+ǫ)p};

II. {s ∈ N | ǫ
(2+ǫ)p ≤ s < αn};

III. {s ∈ N | αn ≤ s < 1
2+ǫn};

IV. {s ∈ N | 1
2+ǫn ≤ s < n}.

We then write

S(n, p) ≤ SI(n, p) + SII (n, p) + SIII (n, p) + SIV (n, p),

whereSI(n, p) denotes the sum over region I etc., and bound each term separately.

Region I. The following lemma will be useful.

LEMMA A.1. For all ǫ > 0, p ∈ (0, 1) ands such that1 ≤ s < ǫ
(2+ǫ)p ,

(1 − p)s ≤ 1 − (2 + 0.5ǫ)sp

2 + ǫ
.

PROOF. First note that, for allk ≥ 1,
(

s

2k + 2

)

p2k+2 ≤
(

s

2k + 1

)

p2k+1.(19)
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To verify the latter note that it is equivalent to

s ≤ 2k + 1 +
2k + 2

p
,

which is true sinces ≤ ǫ
(2+ǫ)p = 1

( 2
ǫ
+1)p

≤ 1
p .

Using (19), it follows that

(1 − p)s ≤ 1 −
(

s

1

)

p +

(

s

2

)

p2.(20)

Note finally that
0.5ǫ

2 + ǫ
sp >

s(s − 1)

2
p2,

which applied to (20) gives

(1 − p)s ≤ 1 − (2 + 0.5ǫ)sp

2 + ǫ
.
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Assuming that Region I is non-empty and applying LemmaA.1 we get:

SI(n, p) ≤
∑

s< ǫ
(2+ǫ)p

(

n

s

)

2−n(1 + (1 − p)s)n−s

≤
∑

s< ǫ
(2+ǫ)p

(

n

s

)

2−n
(

1 + 1 − (2 + 0.5ǫ)sp

2 + ǫ

)n−s

≤
∑

s< ǫ
(2+ǫ)p

(

n

s

)

2−s
(

1 − (1 + 0.25ǫ)sp

2 + ǫ

)n−s

≤
∑

s< ǫ
(2+ǫ)p

(

n

s

)

2−s exp

(

−(1 + 0.25ǫ)sp

2 + ǫ
(n − s)

)

≤
∑

s< ǫ
(2+ǫ)p

(

n

s

)

2−s exp

(

−(1 + 0.25ǫ)sp

2 + ǫ
n

)

exp

(

(1 + 0.25ǫ)sp

2 + ǫ
s

)

≤
∑

s< ǫ
(2+ǫ)p

(

n

s

)

2−s exp (−(1 + 0.25ǫ) loge(n) s) exp

(

(1 + 0.25ǫ)ǫ

(2 + ǫ)2
s

)

≤
∑

s< ǫ
(2+ǫ)p

ns2−sn−(1+0.25ǫ)s exp

(

1

2
s

)

≤
∑

s< ǫ
(2+ǫ)p

(√
e

2

)s

n−0.25ǫs

≤
∑

s< ǫ
(2+ǫ)p

(√
e

2

)s

n−0.25ǫ

≤ n−0.25ǫ
∑

s< 2ǫ
(2+ǫ)p

(√
e

2

)s

= O(n−0.25ǫ)

(

since
√

e

2
< 1

)

.
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Region II. We have

SII (n, p) ≤
∑

ǫ
(2+ǫ)p

≤s<αn

(

n

s

)

2−n(1 + (1 − p)s)n

≤
∑

ǫ
(2+ǫ)p

≤s<αn

(

n

s

)

2−n (1 + e−ps)n

≤
∑

ǫ
(2+ǫ)p

≤s<αn

(

n

αn

)

2−n
(

1 + e
−p ǫ

(2+ǫ)p

)n

≤ αn

(

n

αn

)(

1 + e−
ǫ

2+ǫ

2

)n

≤ αn2nH(α)(n + 1)

(

1 + e−
ǫ

2+ǫ

2

)n

≤ αn(n + 1)

(

2H(α) · 1 + e−
ǫ

2+ǫ

2

)n

.(21)

In the above derivationH(·) represents the entropy function, and for the second to
last derivation we used the fact that:

(

n

k

)

≤ (n + 1)2nH( k
n

).(22)

Our definition of the functionα = α(ǫ) guarantees that whenǫ ≤ 1790
105 :

(

2H(α) · 1 + e−
ǫ

2+ǫ

2

)

≤ 0.999,

while whenǫ > 1790
105 :

(

2H(α) · 1 + e−
ǫ

2+ǫ

2

)

≤ 0.99.

Using the above and (21) we obtain

SII (n, p) = exp(−Ω(n)).(23)

Region III. Let us assume that the region is non-empty. We show that each
positive term in the summationSIII (n, p) is exponentially small. Since there are
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O(n) terms in the summation it follows then thatSIII (n, p) is exponentially small.
(

n

s

)

2−n(1 + (1 − p)s)n ≤
(

n

s

)

2−n(1 + e−ps)n

≤
(

n

s

)

2−n(1 + e−pαn)n

≤
(

n

s

)

2−n
(

1 + e−(2+ǫ)α loge(n)
)n

=

(

n

s

)

2−n
(

1 +
1

n(2+ǫ)α

)n

=

(

n

s

)

2−n
(

1 +
1

n(2+ǫ)α

)n(2+ǫ)αn1−(2+ǫ)α

≤
(

n

s

)

2−nen1−(2+ǫ)α

≤ (n + 1)2nH( s
n)2−nen1−(2+ǫ)α

≤ (n + 1)2nH( 1
2+ǫ)2−nen1−(2+ǫ)α

= (n + 1)2n(H( 1
2+ǫ)−1)en1−(2+ǫ)α

,(24)

where in the third-to-last line of the derivation we employed the bound of Equa-
tion (22). Notice that the RHS of (24), seen as a function ofǫ > 0 andα > 0, is

decreasing in both. Sinceǫ > c, our choice ofα = α(ǫ) implies thatα >
(

c
c+2

)20
.

Hence, we can bound the RHS of (24) as follows:

(n + 1)2−n(1−H( 1
2+c))en

1−(2+c)( c
c+2)

20

= exp(−Ω(n)),

where we used the fact thatc is a constant, and therefore the factoren
1−(2+c)( c

c+2)
20

is sub-exponential inn, while the factor2−n(1−H( 1
2+c)) is exponentially small in

n.

Region IV. Note that, ifxk ≤ 1, then by the mean value theorem

(1 + x)k − (1 − x)k ≤ 2x max
1−1/k≤y≤1+1/k

kyk−1 = 2kx(1 + 1/k)k−1 ≤ 2ekx.

We can apply this fork = n − s andx = (1 − p)s since

(n − s)(1 − p)s ≤ (n − s)e−ps ≤ (n − s)e−
(2+ǫ) loge(n)

n
n

2+ǫ ≤ n − s

n
≤ 1.
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Hence,SIV (n, p) is bounded as follows.

SIV (n, p) ≤
∑

n
2+ǫ

≤s≤n

(

n

s

)

2−n2e(n − s)(1 − p)s

≤ 2e · 2−n · n
∑

n
2+ǫ

≤s≤n

(

n

s

)

(1 − p)s

≤ 2e · 2−n · n(1 + (1 − p))n

≤ 2en

(

1 − p

2

)n

≤ 2ene−
p

2
n

≤ 2ene−
(2+ǫ) loge(n)

2n
n

≤ 2enn− 2+ǫ
2

≤ 2en− ǫ
2 .

Putting everything together.Combining the above we get that

S(n, p) ≤ O(n−ǫ/4) + exp(−Ω(n)).

Bounding R. Observe that

R(n, p) = 2−n +
n
∑

s=1

(

n

s

)

2−n min(1, n(1 − p)s−1).
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We boundR as follows.

R(n, p) − 2−n ≤
n
∑

s=1

(

n

s

)

2−n min(1, n exp(−p(s − 1)))

≤ 2−n
∑

1≤s≤ n
6+3ǫ
3+ǫ

(

n

s

)

+ 2−n
∑

s> n
6+3ǫ
3+ǫ

(

n

s

)

n exp(−p(s − 1))

≤ 2−n
∑

1≤s≤ n
6+3ǫ
3+ǫ

(n + 1)2nH(s/n) + 2−n
∑

s> n
6+3ǫ
3+ǫ

(

n

s

)

n exp(−p(s − 1))

≤ n(n + 1)2−n2nH( 3+ǫ
6+3ǫ) + 2−n

∑

s> n
6+3ǫ
3+ǫ

(

n

s

)

n exp(−p(s − 1))

≤ exp(−Ω(n)) + 2−n
∑

s> n
6+3ǫ
3+ǫ

(

n

s

)

n exp(−p(s − 1)),

where in the last line of the derivation we used thatǫ > c > 0 for some absolute
constantc. To bound the last sum we observe that whens > n

6+3ǫ
3+ǫ

we have

n exp(−p(s − 1)) ≤ n exp

(

−(2 + ǫ) loge(n)

n

(

n
6+3ǫ
3+ǫ

− 1

))

≤ n · n
− 2+ǫ

6+3ǫ
3+ǫ · exp

(

(2 + ǫ) loge(n)

n

)

≤ n−ǫ/3 · n2/n · nǫ/n = O(n−ǫ/4).

Using this bound and the fact
∑n

s=0

(n
s

)

= 2n concludes the proof.
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