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CONNECTIVITY AND EQUILIBRIUM IN RANDOM GAMES

BY CONSTANTINOS DASKALAKIS ™,
ALEXANDROS G. DIMAKIS T AND ELCHANAN MOSSEL

We studyhow the structure of the interaction grapf a game affects the
existence of pure Nash equilibria. In particular, for a fixetraction graph,
we are interested in whether there are pure Nash equiliigem@ when ran-
dom utility tables are assigned to the players. We providalitimns for the
structure of the graph under which equilibria are likely xéseand comple-
mentary conditions which make the existence of equilibighly unlikely.
Our results have immediate implications for many deterstiigraphs and
generalize known results for random games on the complafghgin partic-
ular, our results imply that the probability that boundedrée graphs have
pure Nash equilibria is exponentially small in the size @fginaph and yield a
simple algorithm that finds small non-existence certifisdite a large family
of graphs. Then we show that in any strongly connected graphvertices
with expansion(1 + (1)) log,(n) the distribution of the number of equilib-
ria approaches the Poisson distribution with parameteisymptotically as
n — —+00.

In order to obtain a refined characterization of the degreeoahectiv-
ity associated with the existence of equilibria, we alsalgtthe model in
the random graph setting. In particular, we look at the cakerethe in-
teraction graph is drawn from the Erd6s-Réngi;n, p), model where each
edge is present independently with probabilityFor this model we estab-
lish adouble phase transitiofor the existence of pure Nash equilibria as
a function of the average degrpe, consistent with the non-monotone be-
havior of the model. We show that when the average degresfisatip >
(2+9(1)) log, (n), the number of pure Nash equilibria follows a Poisson dis-
tribution with parametet, asymptotically ass — co. Whenl/n << np <
(0.5—9(1)) log. (n), pure Nash equilibria fail to exist with high probability.
Finally, whennp = O(1/n) a pure Nash equilibrium exists with constant
probability.
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1. Introduction. In recent years there has been a convergence of ideas from

computer science and the social sciences aiming to modedrzalgize large com-
plex networks such as the web graph, social networks ancdmmmemdation sys-
tems. From the computational perspective, it has been nioed) that the suc-
cessful design of algorithms performed on such networks$yding routing, rank-

ing and recommendation algorithms, must take into accdwnsocial dynamics
and economic incentives as well as the technical propetietsgovern these net-
works [20, 24, 27].

Game theory has been very successful in modeling strategiavior in large
systems of economically incentivized entities. In the eahiof routing, for in-
stance, it has been employed to study the effect of selfishmeshe efficiency of
a network, whereby the performance of the network at eqitliy is compared
to the performance when a central authority can simply tichasolution |, 30—
37). The effect of selfishness has been studied in several s#ttings, e.g. load
balancing 8, 9, 21, 29, facility location [34], and network design3].

A simple way to model interactions between agents in a laej@ark is with a
graphical gamg19): a graphG = (V, E) is defined whose vertices represent the
players of the game and an edgew) € E corresponds to the strategic interaction
between players andw; each playew € V has a finite set of strategiés, which
throughout this paper will be assumed to be binary so thaetaee two possible
strategies for each player. @ility, or payoff, tableu,, for playerv assigns a real
numberu, (o, oxr(,)) 10 €very selection of strategies by playeand the players in
v’s neighborhood, i.e. the set of nodéssuch that(v,v') € E, denoted byV (v).

A pure Nash equilibriunfPNE) of the game is some state srategy profile o of
the game, assigning to every playea single strategy,, € S, such that no player
has a unilateral incentive to deviate. Equivalently, faemgwplayerv € V,

(1) Uy (00, ON(v)) = o (0, Opr(r)), fOT every strategyr, € S,.

When condition {) is satisfied, we say that the strategyis abest response to the
strategieso u/(y)-

The concept of the pure strategy Nash equilibrium is morepasing, decision
theoretically, than the concept of the mixed strategy Naglilierium—its coun-
terpart that allows players to choose distributions oveirtbtrategy sets. This is
because it is not always meaningful in applications to asstirat the players of
a game may adopt randomized strategies. Unfortunatelkeumixed Nash equi-
libria, PNE do not always exist. It is then an important pesblto study how the
existence of PNE depends on the properties of the game.

The focus of this paper is to understand how the connectifitthe under-
lying graph affects the existence of a PNE. We obtain two kiofiresults. The
first concerns the existence of a PNE in an ensemble of randaphigal games
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defined on a random-&{(n, p)—graph. We obtain a characterization of the proba-
bility that a PNE exists as a function of the density of thepral he second set of
results concerns random graphical games on deterministghg. Here, we obtain
conditions on the structure of the graph under which a PNE daé exist with
high probability, suggesting also an efficient algorithmffoding witnesses of the
non-existence of a PNE. We also give complementary comditan the structure
of the graph under which a PNE exists with constant prolighiDur results are
described in detail in Sectich3.

Comparison to Typical Constraint Satisfaction Problem&raphical games pro-
vide a more compact way for representing large networks tefacting agents,
than normal form games, in which the game is described awéri¢ played on the
complete graph. Besides the compact description, one onttieations for the in-

troduction of graphical games is their intuitive affinitygoaphical statistical mod-
els; indeed, several algorithms for graphical games do thevavor of algorithms
for solving Bayes nets or constraint satisfaction problgnis13, 16, 22, 23].

In the other direction, the notion of a PNE provideseav genre of constraint
satisfaction problemaotably one in which, for any assignment of strategies-(val
ues) to the neighborhood of a player (variable), there isgdna strategy (value)
for that player which makes the constraif} ¢orresponding to that player satisfied
(i.e. being in best response). The reason why it might be twasatisfy simulta-
neously the constraints corresponding to all players iddhg range correlations
that may arise between players. Indeed, deciding whethBiEaeRists is NP-hard
even for very sparse graphical gam@g][

Viewed as a constraint satisfaction problem, the problerthefexistence of
PNE poses interesting challenges. First, for natural nanelosembles over payoff
tables such as the one adopted in this paper (see Defititprtheexpected num-
ber of PNE is1 for any graph(this is shown for our model in the main body of
the paper; see EqlQ)). On the contrary, for typical constraint satisfactiomlpr
lems, the expected number of solutions is exponential isitteeof the graph with
different exponents corresponding to different densitsapeeters. Second, unlike
typical constraint satisfaction problems studied beftire,existence of PNE is a-
priori not a monotone property of the connectivity. It ismusing that given these
novel features of the problem it is possible to obtain a tessthblishing a double
phase transition on the existence of PNE as described below.

1.1. Our Model. We define the notion of a graphical game and proceed to
describe the ensemble of random graphical games studibisipaper.

DEFINITION 1.1 (Graphical Game). Given a graphG = (V, E), we define
the neighborhood of node € V to be the setV'(v) = {v' | (v,v') € E}. If S, is
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a set associated with vertex for all v € V', we denote by, := Xyenr(v)Svr
the Cartesian product of the sets associated with the node's heighborhood.

A graphical gamen G is a collection(S,, u, ),cv, WheresS, is thestrategy set
of nodev andw, : S, x Sy,) — R theutility (or payoff) function (or table) of
playerv. We also definéghe best response function (or table) of playdo be the
functionBR, : S, x Sy, — {0,1} such that

BRy(0v, 0 (v)) = 1 & 0y € arg, max{u,(z,0pr()) }
forall o, € Sy, ando () € Sar(u)-

DEFINITION 1.2 (Random Graphical Games on a Fixed Grapl@iven a graph
G = (V,E) and an atomless distributioff over R, the probability distribution
D¢, F over graphical gamesS,, u, ),cy onG is defined as follows:

e S, =1{0,1},forallv e V;
e the payoff valuegu, (o, UN(U))}vevvaueSmoN@)eSN(U) are mutually inde-
pendent and identically distributed according&o

REMARK 1.3 (Invariance under Payoff Distributions)lt is easy to see that the
existence of a PNE is only determined by liest response table$the game; see
Condition (1). In particular, given that the distributions consideredthis paper
are atomless, we can study PNE und&t #, for any atomlessF, by restricting
our attention (up to probability) events) to the measuf@; over best response
tables, defined as follows

° {BRv(QUN(U))}vev,aN(z,)eSN(l,) are mutually independent and uniform in
{0,1}
° BRU(I, UN(U)) =1- BRU(O, U/\/(v))- for all ON(@) € S./\/(v)-

We will sometimes refer to a graphical game defined in ternits dfest response
tables as arunderspecified graphical gam@ther times, we will overload our
terminology and just call it a graphical game. We u&g[.] and E¢;[.] to denote
probabilities of events and expectations respectiveleutite measur®g.

REMARK 1.4 (Invariance under Payoff Distributions Il) Given our observa-
tion in Remarkl.3, it follows that it is not important to use a common distribat
F for sampling the payoffs of all the players of the game. All sults in this
work are true if different players have different distrilauts as long as these dis-
tributions are atomless and all payoffs values are sampieépendently.

Extending the Model to Random GraphsOne of the goals of this paper is to
investigate what average degree is required in a graph faghgal game played
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on this graph to have a PNE. To study this question, it is ahtarconsider families
of graphs with different densities and relate the probgbdf PNE existence with
the density of the graph. We consider graphical games orhgrdgawn from the
Erd6s-RényiG(n,p), model, with varying values of the edge probabilityThe
ensemble of graphical games we consider is formally thewatg.

DEFINITION 1.5. Givenn € N, p € [0,1] and an atomless distributiofF
overR, we define a measu®,, ,, r) over graphical games. A graphical game is
drawn fromD,,, ,, r) as follows:

e agraphG is drawn fromG(n, p);
e arandom graphical game is drawn frofg r.

REMARK 1.6 (Invariance under Payoff Distributions Ill).Given our discus-
sion in Remark..3, it follows that in order to study PNE in the random ensemlble o
Definition 1.5it is sufficient to consider a measure that fixes only the lesgionse
tables of the players in the sampled games.

Foragivenn € Nandp € [0, 1], we define the measut?,, ., over underspec-
ified graphical games. An underspecified graphical gameasvdrfromD,, .,) as
follows:

e agraphG is drawn fromG(n, p);
e arandom underspecified graphical game is drawn f@m

We useP, ,[.] to denote probabilities of events under the measbyg,,) and
[Pg[.] for probabilities of events measurable undgfn, p).

In the model defined in Definitioh.5 and RemarklL.6, there are two sources
of randomness: the selection of the graph, determining plagers interact with
each other, and the selection of the payoff tables. Noteritihe two-stage process
that samples a graphical game from our distribution, theffagbles can only be
realized once the graph is fixed. This justifies the subs¢ript the measur®q
defined above.

1.2. Discussion.

Non-Monotonicity. Observe that the existence of a PNE iso@-monotone prop-
erty of p: any graphical game on the empty graph has a PNE for trivéaaes; on
the complete graph a random graphical game has a PNE withpastioprobabil-
ity 1—1 (see [.2, 28]); but our results indicate that, wheris in some intermediate
regime, a PNE does not exist with probability approacHiagn — +oo (see The-
orem1.10.
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The non-monotonicity in the average degree of the existeheePNE makes
the relation between PNE and connectivity non-obviouspsingly, we show
(Theoreml.9) that the convergence to a Poisson distribution of theildigion of
the number of PNE in complete graph&5] 33] extends to much sparser graphs,
as long as the average degree is at l&agrithmic in the number of players. If
the sparsity increases further, we show (Theoieff) that a PNE does not exist
with high probability, while if the graph is essentially etpyPNE exist with prob-
ability 1 (Theoreml.11). Our results establishdouble phase transitiooonsistent
with the non-monotonicity of the model.

Methodological Challenges. Our study here is an instance of studying the satisfi-
ability of constraint satisfaction problems (CSPs). Theag& question is to inves-
tigate the effect of the structure of the constraint graphhensatisfiability of the
problems defined on that graph, as well as their computdtmmrmaplexity. In the
context of CNF formulas (corresponding to the SATisfiapifitoblem) the graph
property most commonly studied in the literature is the dgrf the hypergraph
that contains an edge for each clause of the formula, seEl€]gln other settings,
different structural properties of the constraint graphratevant, e.g. measures of
cyclicity of the graph §, 17]. In our case, studying the average degree reveals an
interesting, non-monotonic behavior of the model, as desdrabove.

In a typical CSP, to show that a solution does not exist oreeiises the first
moment method to exhibit that the expected number of saisti®tiny [], or finds
a witness of unsatisfiability that exists with high prob#ilTo show that a satis-
fying assignmentioesexist it is quite common to use the second moment method
or its refinements, which have provided some of the best ofordatisfiability to
date [1]. In our model the expected number of satisfying assignmmns out to
be1 for any graph (see Eql() below). This suggests that the analysis of the prob-
lem should be harder, since in particular we cannot use tsienfioment method
to establish the non-existence of a PNE. Our proof of the eastence of PNE
(Theoremsl.10and1.16) uses succinct non-existence witnesses that appear with
high probability in sufficiently sparse graphs. These vases are specific sub-
game structures that do not possess a PNE with high praiyabii establish the
existence of a PNE for sufficiently large densities (The@ér@andl.13 we use
the second moment method. Further, we use Steif'spthod to establish that
the distribution of the number of PNE converges asymptibyic¢a a Poisson(1)
distribution in this case.

1.3. Outline of Main Results. We describe first our results for random graphs

(for the measur®,,, ;) defined in Remark..6), and proceed with our results for
deterministic graphs (for the measupg: defined in Remark..3).
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PNE on Random Graphs.We study how the connectivity probabilipjinfluences
the existence of PNE for games sampled frby ). The transition is described by
the following theorems applying to different levels of gnagponnectivity. Before
stating the theorems, we introduce some notation.

REMARK 1.7 (Order Notation). Let f(x) and g(x) be two functions defined
on some subset of the real numbers. One wrftes) = O(g(z)) if and only if,
for sufficiently large values of, f(x) is at most a constant timggx) in absolute
value. That is,f(z) = O(g(x)) if and only if there exists a positive real number
M and a real number, such that

|f(x)] < Mlg(z)|, forall z > xg.

Similarly, we writef (z) = Q(g(z)) if and only if there exists a positive real num-
ber M and a real number such that

|f(x)] > Mlg(z)|, forall z > xg.

We casually use therder notationO(-) and €2(-) throughout the paper. When-
ever we us&)(f(n)) or Q(f(n)) in some bound, there exists a constant- 0
such that the bound holds true for sufficiently largé we replace the)(f(n)) or
Q(f(n)) inthe bound by: - f(n).

REMARK 1.8 (Order Notation Continued).If g(n) is a function ofn € N,
then we denote hy(g(n)) any functionf (n) such thatf (n)/g(n) — +oo, asn —
+oo; similarly, we denote by(g(n)) any functionf (n) such thatf (n)/g(n) — 0,
asn — +oo. Finally, for two functionsf(n) and g(n), we write f(n) >> g(n)
wheneverf(n) = w(g(n)).

THEOREM 1.9 (High Connectivity). Let Z denote the number of PNE in a
graphical game sampled fro@,, ), wherep = Mﬂ"ge("), e = €(n) > 0. For
an arbitrary constantt > 0 we assume that(n) > ¢ and (in order forp < 1)
e(n) < loge% —2.

Under the above assumptions, for all finite with probability at leastl —
2n~¢/8 over the random graph sampled frad(n, p), it holds that the total varia-

tion distance betweef and aPoisson(1) r.v. W is bounded by:

) 1Z = W < O(n~®) + exp(~Q(n)).

In other words,

@) Pg[llZ - W[ <0 %) +exp(—n)] > 1— 20,
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In particular, the distribution ofZ converges in total variation distance to a
Poisson(1) distribution, asn — +o0.

(Note that the two terms on the right hand side(gf can be of the same order
whene is of the order of1/ log,(n).)

THEOREM 1.10 (Medium Connectivity). For all p = p(n) < 1/n, if a graph-
ical game is sampled fro®,, ,,), the probability that a PNE exists is bounded
by:

exp(—Q(n’p)).
For p(n) = g(n)/n, wherelog.(n)/2 > g(n) > 1, the probability that a PNE
exists is bounded by:
exp(_Q(eloge(n)—%(n)))

In particular, the probability that a PNE exists goes @casn — +oo for all
p = p(n) satisfying

1 log,(n)
S <<p< (0.5 — e'(n))T,

wheree'(n) = w (m)

THEOREM1.11 (Low Connectivity). For every constant > 0, if a graphical
game is sampled fror®,, ,) with p < -5, the probability that a PNE exists is at
least

. n(n271)
(o) s
n

Note that our upper and lower bounds f@(n, p) leave a small gap, between
p ~ 22108(0) gangy, ~ 2108-(1) The pehavior of the number of PNE in this range
of p remains open. We establish the non-existence of PNE forurmredonnectivity
graphs via a simple structure that prevents PNE from arisialded the ‘indifferent
matching pennies game’ (see Definitibri8 below). It is natural to ask whether
our ‘indifferent matching pennies’ witnesses are (sinyldo isolated vertices in
connectivity) the smallest structures that prevent theterce of PNE and the last
ones to disappear.

Nlo

General Graphs. We give conditions on the structure of a graph implying the
(likely) existence or non-existence of a PNE in a random galaged on that
graph. The existence of a PNE is guaranteed by sufficientemivity of the un-
derlying graph. The connectivity that we require is capiurg the notion of o, J)-
expansiorgiven next.
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DEFINITION 1.12 (o, 0)-Expansion). AgraphG = (V, E) has(«, §)-expansion
iff every sef’/such thatfV’| < [4|V|] has|N (V")| > min(|V], «|V'|) neighbors.
Here we let

NV ={w eV :3Fue V' with (u,w) € E}.

(Note in particular that\' (V') may intersect”).

We show the following result.

THEOREM 1.13 (Strongly Connected Graphs)Let Z denote the number of
PNE in a graphical game sampled frofd;, whereG is a graph onn vertices
that has(c, §)-expansion withy = (1 + €)logy(n), § = L ande > 0. Then
the total variation distance between the distributionZoédnd the distribution of a
Poisson(1) r.v. W is bounded by:

(4) 1Z — W < O(n™) +0(27"/?).

Next we provide a complementary condition for the non-exise of PNE. The
condition will be given in terms of the following structure.

DEFINITION 1.14 ({-Bounded Edge). An edgee = (u,v) € E of a graph
G(V, E) is calledd-boundedf both « andv have degrees smaller or equaldo

We bound the probability that a PNE exists in a game samplad o as
a function of the number of-bounded edges it:. For the stronger version of
our theorem, we also need the notion ghaximal weighted independent edge-set
defined next.

DEFINITION 1.15 (Maximal Weighted Independent Edge-Sefziven a graph
G(V,E), asubsef C E of the edges is callethdependenif no pair of edges in
£ are adjacent.

If w: F — Ris a function assigning weights to the edges&ofve extendo to
subsets of edges by assigning to edci E the weightwg = > cc w(e). Then
we call a subsef C F of edgesa maximal weighted independent edgeisétis
an independent edge-set with maximal weight among indep¢rdige-sets.

THEOREM1.16. Arandom game sampled frofy;, whereG is a graph with
at leastm vertex disjointd-bounded edges, has no PNE with probability at least

) 1—exp (—m <%)22d2> .
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In particular, if G has at leastn edges that arel-bounded, then a game sampled
from D has no PNE with probability at least

(6) 1 —exp (_;n_d (%)22d2> .

Moreover, there exists an algorithm of complexitgn?+m29+2) for proving that a
PNE does not exist, which has success probability giveB)mand 6) respectively.

More generally, let us assign to every edgev) € E the weight

Wy,w) = — loge (1 - p(u,v)) )
for pu..) = 872", whered, andd, are respectively the degreeswfandv.
Given these weights, suppose tlat a maximal weighted independent edge-set
with valuewg. Then the probability that there exists no PNE is at least

1 —exp (—wg).

An easy consequence of this result is that many sparse grsytis as the line
and the grid, do not have a PNE with probability tendingl tas the number of
players increases.

The proof of Theorem.16is based on a small witness for the non-existence of
PNE, called théndifferent matching pennies gams the name implies this game
is inspired by the simplenatching pennies gamBoth games are described next.

DEeFINITION 1.17 (The Matching Pennies Game)We say that two players
andb play thematching pennies ganiigtheir payoff matrices are the following, up
to permuting the players’ names.

‘ b plays 0 b plays 1
Payoff table of player « : a plays 0 1 0
a plays 1 0 1

‘ bplays 0 bplays 1
Payoff table of player b : a plays 0 0 1
a plays 1 1 0

DEFINITION 1.18 (The Indifferent Matching Pennies Game)\Ve say that two
playersa and b that are adjacent to each other in a graphical game playithe
different matching pennies garifefor all strategy profiless xr(q)un )\ a0} N the
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neighborhood ofi andb, the players: andb play a matching pennies game against
each other.

In other words, for all fixedr := o (a)yun(v)\ (0,5}, the payoff tables of andb
projected oo zr(q)\ (5} @Nd o )\ () FESPECtively are the following, up to permut-
ing the players’ names.

Payoffs to player a :

‘ b olavsg, Oher neighbors other neighbors
PREYSY: play o ) PEYSL blay opr(a o)
a plays 0 1 0
a plays 1 0 1
Payoffs to player b :
‘ lavs0 other neighbors avs1 other neighbors
@ PRV play opre) gy PRYSL biay o)
b plays 0 0 1
b plays 1 1 0

Observe that if a graphical game contains an €dge) so that players. and
v play the indifferent matching pennies game then the game®&NE. In partic-
ular, the indifferent matching pennies game providesnall witnesdor the non-
existence of a PNE, which is a coNP-complete problem for dedrdegree graph-
ical games [6]. Our analysis implies that, with high probability over lmoied
degree graphical games, there are short proofs for the xieterece of PNE which
can be found efficiently. A related analysis and randomiZzgdrahm was intro-
duced for mixed Nash equilibria in 2-player games by Baétral. [5].

1.4. Related Work. The number of PNE in random games with i.i.d. payoffs
has been extensively studied in the literature prior to cankinGoldberg et al.15]
characterize the probability that a two-player random geittei.i.d. payoff tables
has a PNE, as the number of strategies tends to infinity. BrgsH and Papavas-
silopoulos P5] generalize this result to n-player random games on the tEep
graph. PowersZ6] and Stanford $3] generalize the result further, showing that
the distribution of the number of PNE approachdisson(1) distribution as the
number of strategies increases. Finally, Rinott etZ] nvestigate the asymptotic
distribution of PNE for a more general ensemble of randomegaon the com-
plete graph where there are positive or negative depereieaonong the players’
payoffs.
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Our work generalizes the above results for i.i.d. payoffigobe the complete
graph to random graphical games on random graphs and séumibés of deter-
ministic graphs. Parallel to our work, Bistra et dl1] studied the existence of PNE
in certain families of deterministic graphs, and Hart ef at] obtained results for
evolutionarily stable strategies in random games. Thesdtseare related but not
directly comparable to our results.

1.5. Acknowledgement.We thank Martin Dyer for pointing out an error in a
previous formulation of Theorerh.16. We also thank the anonymous referee for
comments that helped improve the presentation of this work.

2. Random Graphs.

2.1. High Connectivity. In this section we study the number of PNE in graph-
ical games sampled fro®,, ,,. We show that, when the average degregris=
(2 + €(n))log.(n), wheree(n) > ¢ andc > 0 is any fixed constant, the distribu-
tion of the number of PNE converges tdaisson(1) random variable, as goes
to infinity. This implies in particular that a PNE exists wilobability converging
tol — % as the size of the network increases.

As in the study of the complete graph iag], we use the following result of
Arratia et al. 1], established using Stein’s method. For two random vae=b| 2’
supported of), 1, ... we define theitotal variation distancd|Z — Z’|| as

12 = 2" :=_|2(i) - Z'(i)|.
=0

LEMMA 2.1 ([4]). Consider arbitrary Bernoulli random variableX;, i =
0,...,N. For eachi, define someaeighborhood of dependenés of X; such that
B; satisfies that X, : j € By) areindependentf X;. Let

(7) Z=> X;, A=E[Z],
and assume that > 0. Also, let

N
b =) Y PX;=1PX; =1]

i=0j€B;

N
andb, =Y > PX;=1X,=1]
i=0 jeB;\{i}
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Then the total variation distance between the distributtd® and aPoisson ran-
dom variablel’/, with mean) is bounded by

(8) 1Z — Wil <2(b1 + ba).

Proof of Theorem 1.9 For ease of notation, we identify the players of the graph-
ical game with the indices, 2, ..., n. We also identify pure strategy profiles with
the integers in{0,...,2" — 1}, mapping each integer to a strategy profile. The
mapping is defined so that, if the binary expansion &f i(1)...i(n), playerk
playsi(k).

Next, to each strategy profitec {0,..., N}, whereN = 2" — 1, we assign an
indicator random variabl&; which is1 if the strategy profilé is a PNE. Then the
counting random variable

N
1=0

corresponds to the number of PNE. Hence the existence of ai$éltiivalent to
the random variabl& being positive.

Let us condition on a realization of the graghof the graphical game, but
not its best response tables. For a given strategy prgféach player is in best
response with probability /2 over the selection of her best response tabthere-
fore Eq[X;] = 27", for all i, where recall thaE denotes expectation under the
measureD. Hence, conditioning ofF the expected number of PNE is

(10) Eq[Z] = 1.

Since this holds for any realization of the graghit follows thatE[Z] = 1.

In Lemma2.2that follows, we characterize the neighborhood of depecel&n
of the variableX; in order to be able to apply Lemn2zal on the collection of vari-
ablesXy, ..., Xy. Note that this neighborhood depends on the graph realizati
but is independent of the realization of the payoff tables.

LEMMA 2.2. For a fixed graphG, we can choose the neighborhoods of de-
pendence for the random variablgs, . .., X as follows:

By = {j : 3k such thatvk’ with (k, k') € E(G) it holds thatj (k") = 0}

and
Bi=i®Bo={i®j:j€ Bo},
wherei & j = (i(1) @ j(1),...,i(n) ® j(n)) anda is the exclusive or operation.

*This follows directly from our model (Remaitk6), following our assumption of atomless payoff
distributions (Definitionl.5).
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REMARK 2.3. Intuitively, when the grapli- is realized, the neighborhood of
dependence of the strategy profil§variable X) contains all strategy profileg
(variables X ;) assigning0 to all the neighbors of at least one playkr If such a
player k exists, then whethéror j(k) is a best response to the @lneighborhood
are dependent random variables (over the selection of tisé lesponse table of
player k). The definition ofB; in terms of By is justified by the symmetry of our
model.

PROOF OFLEMMA 2.2. By symmetry, it is enough to show tha, is inde-
pendent of{ X };¢p,. Fix somei ¢ B,. Observe that iri, each player of the
game has at least one neighlddiplaying strategyl. By the definition of measure
D¢, it follows that whether strateg¥ is a best response for playkrin strategy
profile 0 is independent of whether strategit) is a best response for playgr
in strategy profile, since these events depend on different strategy profiléseof
neighbors ofc. W

Now, for a fixed graphG, the functionsh; (G) andbs(G) (corresponding td,
and b, in Lemmaz2.1) are well-defined. We proceed to bound the expectation of
these functions over the sampling of the gréph

N
Eg[bi(G)] =Eg | Y. Y PalX; =1|Pg[X; = 1]]

| =0 jEB;

1 N
—Eg | 5 > |Bi
g (N+1)2i:0’ ‘]

@ - Eol)

N
Bglba(G)] =Eg |3 3 pg[xizl,xj:u]
[0 je i}

(12) — (N +1) Y Eg [Pa[Xo = 1, X; = 1]I[j € Bo].
J#0

In the last line of both derivations we made use of the symynettrthe model.
Invoking symmetry again, we observe that the expectation

Eg [Pe[Xo =1, X; = 1]I[j € Bol|

in (12) depends only on the number 8§ in the strategy profilg, denoteds below.
Let us writeY; for the indicator that the strategy profilg where the first players
play 1 and all the other players play; is a PNE. Also, writel, for the indicator
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that this strategy is itBy (note thatl; is a function of the graph only). Using this
notation, we obtain:

a3) Eg Z( )Egmcyozl,ys:ln;
=1

(14) and Eg[bh (G i( )

LEMMA 2.4. Eg[bi(G)] andEg[b2(G)] are bounded as follows.

n

Egb1(G)] < R(n,p) == <Z> 2 " min(1,n(1 — p)*1);

s=0

Eg[b2(G)] < S(n,p) = i <Z> 27 [(1+ (1—p)*)"* — (1 — (1 —p)*)"*].
s=1

PROOF We begin with the study ofg[b;(G)]. Clearly, it suffices to bound
E[I,] by n(1 —p)*~1, for s > 0. For the strategy profilg, to belong inBj it must
be that there is at least one player who is not connected tplaggr in the set
S :=1{1,2,...,s}. The probability that a specific playéris not connected to any
player inS is either(1 — p)* or (1 — p)*~!, depending on whethdr € S; so it is
always at most1 — p)*~!. By a union bound it follows that the probability there
is at least one player not connectedStés at mostn (1 — p)*~L.

We now analyzeéig[I,P;[Yo = 1,Ys = 1]]. Recall from the previous para-
graph thatl; = 1 only when there exists a playérwho is not connected to any
player inS. If there exists such a playérwith the extra property thdt € S, then
Pa[Yo = 1,Ys = 1] = 0, since it cannot be that bothand1 are best responses for
playerk when all her neighbors play.

Therefore the only contribution t&¢[/;P;[Yo = 1,Ys = 1]] is from the event
every player inS is connected to at least one other playe$ if€onditioning on this
event, in order for, = 1 it must be that at least one of the playerssth:= V' \ S
is not adjacent to any player i

Let us definey, := Pg[7 isolated node in the subgraph induceddjyand lett
denote the number of players ¥, which are not connected to any playerSn
Since every player outsidg€ is non-adjacent to any player is with probability
(1 — p)*, the probability that exactly players are not adjacent fis

(" n ) [(1—p)*TH(1 = (1 —p)*)" ",

t
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Moreover, conditioning on the event that exactjglayers inS¢ are not adjacent to
any player inS, we have that the probability that = 1 andY; = 1 is:

11 1
? on—t 9n—t :
Putting these together we obtain:

Eg[IsPg[Yo = 1,Y, = 1]]

<" n ) [(1—p)TH(1 — (1= p)*)" =

t

11
ot 4n—t’

I
B
b

~+
Il
—

=2 (Co-pr+a--p) = 1= (1 -p)))
= (@A =p) T = = (1))

therefore

n

Bglba(G)) = Y- 27" (Z)ps [(1+(1=p))" = (1= (1= p)*)"~] < S(n,)

s=1

In the appendix we show that

LEMMA 2.5.
S(n,p) < O(n~ ") + exp(—Q(n)),

and
R(n,p) < O(n~*) + exp(—Q(n)).

Given the above bounds d@iy; [b; (G)] andEg [b2(G)], Markov’s inequality im-
plies that with probability at leagt— n~¢/8 — 2" over the selection of the graph
G from G(n,p) we have

(15) max(by (G), b2(G)) < O(n~%) + exp(—Q(n)).

Let us condition on the event that Conditidrbf holds. Under this event, Lemn2al
implies that:

1Z = W|| < 2(b1(G) + b2(G)) < O(n~/®) + exp(—Q(n))
as needed. Noting that— n—¢/8 — 2= > 1 — 2n=¢/8 we obtain

(16) Pg [||Z = W[ < O(n~%) + exp(~Q(n))| > 1207,

imsart-aap ver. 2007/12/10 file: RandonGanesAAP_nml4.tex date: My 17,

2010



17

Using the pessimistic upper bound ®fon the total variation distance when
Condition (L5) fails, we obtain

1Z = W|| < O(n=®) + exp(~Q(n)).

Taking the limit of the above bound as— +oo we obtain our asymptotic result.
This concludes the proof of Theoreh©. B

2.2. Medium Connectivity.

ProoOF OFTHEOREM 1.10. Recall thematching pennies gamfeom Defini-
tion 1.17 It is not hard to see that this game does not have a PNE. Héree,
graphical game contains two players who are connected toaher, are isolated
from all the other players, and play matching pennies agaimsh other, then the
graphical game will have no PNE. The existence of such a estrfier the non-
existence of PNE is precisely what we use to establish outtrés particular, we
show that with high probability a random game sampled fom,) will contain
an isolated edge between two players playing a matchingigegame.

We use the following exposure argument. Label the vertiédseograph with
the integers ifn] := {1,...,n}. Setl'; = [n] and perform the following opera-
tions, which iteratively define the sets of vertidgs: > 2. If |T';| < n/2, for some
i > 2, stop the process and do not proceed to iteration

e Letj be the minimal value such thate T';.

e If j is adjacent to more than one vertex or to nonel'let; = I'; \ ({j} U
N(j)). Go to the next iteration.

e Otherwise, letj’ be the unique neighbor gf If ;' has a neighbo j, let
Tiy1 =1\ ({4,5'} UN(F)). Go to the next iteration.

e Otherwise check if the playersandj’ play a matching pennies gamnielf
this is the case, declared\NASH. LetT';.; = I'; \ {j,5'}. Go to the next
iteration.

Observe that the number of vertices removed at some itarafithe process
can be upper bounded (formally, it is stochastically dortedaby

2 + Bin(n, p),

fThroughout the process; represents the set of vertices that could be adjacent tootates
edge, given the information available to the process atéginning of iteration.

fMore precisely, check if the best response tables of theepdgyand ;' are the same with the
best response tables of the playe@ndb of the matching pennies game from Definitibri 7 (up to
permutations of the players’ names).
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whereBin(n, p) is a random variable distributed according to the Binomistrd
bution with n trials and success probability This follows from the fact that the
vertices removed at some iteration of the process are dhibezxamined vertex
andj’s neighbors (the number of those is stochastically dorethaly aBin(n, p)
random variable), or—if has a single neighbgf—the removed vertices are ;'

and the neighbors of (the number of those is also stochastically dominated by a

Bin(n, p) random variable). Letting: := [0.02n/(np + 1)], the probability that
the process runs for at mastiterations is bounded by

Pr [2m + Bin(mn, p) > n/2] < exp(—Q(n)).

Condition on the information known to the exposure procgsgniil the begin-
ning of iterationi, and assume thdt;| > n/2. Let;j be the vertex with the smallest
value inT';. Now reveal all the neighbors gf and if ; has only one neighboj’
reveal also the neighbors ¢f The probability thatj is adjacent to a nodg who
has no other neighbors is at legsf(1 —p)?" =: piso; NOte that we made use of the
condition|I';| > n/2in this calculation. Conditioning on this event, the proligb
(over the selection of the payoff tables) thiand;’ play a matching pennies game
is % =: pmp. HeNce, the probability of outputtingdNASH in iterations is at least
g5np(1—p)*"

The probability that the game has a PNE is upper bounded bgrttbility
that the process described above does not retwrNNsH, at any point through
its completion. To upper bound the latter probability, Istimnagine the following
alternative process:

= Pimp-

1. Stage 1:Tossn coins independently at random with head probabiity.
Let 71,75, ...,Z, € {0,1}, wherel represents ‘heads’ arnt represents
‘tails’, be the outcomes of these coin tosses.

2. Stage 2:Tossn coins independently at random with head probability,.

Let My, My, ..., M, € {0, 1}, be the outcomes of these coin tosses.
3. Stage 3:Run through the exposure process in the following way. Aheac
iterationi:

e conditioning on the information available to the exposupss at the
beginning of the iteration, compute the probabilitythat the vertex
corresponding to the smallest numberinis adjacent to an isolated
edge; given the discussion above it must be that pi.;

e if 7, = 1, then create an isolated edge connecting the playtera
random vertex’ € T'; \ {j}, forbidding all other edges fromor ;' to
any other player, and make the playgend;’ play a matching pennies
game ifM; = 1; if they do output N NASH;
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e if Z, = 0, then sample the neighborhoodjofrom the following mod-
ified model:

— with probability pf’__—gi‘), create an isolated edge connecting the
player;j to a random vertey’ € T; \ {j}, forbidding all other
edges fromy or ;' to any other player, and make the playgend
j' play a matching pennies game with probabiity,,; if both of
these happen, outputd\NASH;

— with the remaining probability, sample the neighborhood ahd
the neighborhood of the potential unique neighfdrom G(n, p),
conditioning onj not being adjacent to an isolated edge.

e Definel';; fromT'; appropriately and exit the processlif 1| < n/2.

It is clear that the process given above can be coupled wittpthcess defined
earlier to exhibit the same behavior. But it is easier toya®lln particular, letting
S = >, I;M,, the probability that a Nash equilibrium does not exists loan
lower bounded as follows:

Pg[Aa PNE] > Pr {5 .1 , Process runs for ]

at leastmn steps
process runs for
less thann steps

> 1= (1= pimp)™ — exp(—Q(n)).

zPr[Szl]—Pr[

Hence, the probability that a PNE exists can be upper boubhged

exp(~0(m)) + (1= (1 =)

< exp(—Q(n)) + exp(—Q(mnp(1 — p)*™))
< exp(—Q(mnp(1 — p)*™)).

Forp < 1/n the last expression is
exp(—Q(n’p)),
while for p = g(n)/n whereg(n) > 1 the expression is
exp(~Q(n(1 ~ p)")) = exp(~Qne~*)) = exp(— Qe 2)),

This concludes the proof of TheoremlO ®

imsart-aap ver. 2007/12/10 file: RandomGanesAAP_nal4.tex date: May 17, 2010



20

2.3. Low Connectivity.

ProOF OFTHEOREM 1.11 Note that if the graphical game is comprised of
isolated edges that are not matching pennies games then aX@N& (This can be
checked easily by enumerating all best response table2fer agame.) We wish
to lower bound the probability of this event. To do this, it@venient to sample
the graphical game in two stages as follows: At the first stegjeecide for each of
the possiblg;,) edges whether the edgepigeseni(with probability p) and whether
it is predisposedo be a matching pennies game (independently with prolabili
1/8); by ‘predisposed’ we mean that the edge will be set to be amvad pennies
game if the edge turns out to be isolated. At the second stagdo the following:
for an edge that is both isolated and predisposed, we assiglom payoff tables to
its endpoints conditioning on the resulting game being echag pennies game;
for an isolated edge that is not predisposed, we assign mapdyoff tables to its
endpoints conditioning on the resulting gana being a matching pennies game;
finally, for any node that is part of a connected componerit vir at leas® edges
we assign random payoff tables to the node. The probabiiay there is no edge
in the first stage that is both present and predisposed is

(1-p/8)(2).

Conditioning on this event, all present edges are not goedid. Note also that,
whenc is fixed, the probability that there exists a pair of adjacaiges i (1). It
follows that the probability that all present edges are metljsposed and no pair
of edges intersect can be lower bounded as

(1—p/8)(3) — o(1) = <1 - L>— ~o(1).

8n?

But, as explained above if all edges are isolated and nonleeafi is a matching
pennies game a PNE exists. Hence, the probability that a RISES és at least

n(n—1)
C 2 c
(1 — —8n2) —o(l) — e 1.
|

3. Deterministic Graphs.

3.1. A Sufficient Condition for Existence of Equilibria: Strongridectivity.
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PROOF OFTHEOREM 1.13. We use the same notation as in the proof of Theo-

rem1.9, except that we make the slight modification of settivig= 2" — 1. Recall

thatX;,i =0,1,..., N — 1, is the indicator random variable of the event that the

strategy profile encoded by the numbés a PNE. It is rather straightforward (see
the proof of TheoremL.9) to show that

N—-1
E[Z]=E lz XZ-] =1
=0

As in the proof of Theoreni.9, to establish our result, it suffices to bound the

following quantities.

N—-1
bi(G) = Y. > PX;=1PX;=1],

=0 jE€B;

N—-1
b(G) = > Y PX,=1X;=1],
i=0 jeB;\{i}

where the neighborhoods of dependentare defined as in Lemnfa2. ForS C
{1,...,n}, denote byi(S) the strategy profile in which the players of the Set
play 1 and the players not i§ play 0. Then writing1(j € B) for the indicator of
the event thaj € B we have:

N-1
bo(G) = > Y PXi=1X;=1]

1=0 jeB;\{i}
N-1
= Y Y PX;=1,X;=1]1(j € B)
i=0 j#i
= NY P[Xo=1,X;=1]1(j € By) (by symmetry)
J#0
= N> Y P[Xo=1 X5 =1]1(i(S) € By).
k=1S,|S|=k

We will bound the sum above by bounding

[6n)

(17) N> Y PXo=1,X,s = 1]1(i(5) € Bo),
k=1 S,|S|=Fk

and

(18) N > ) PlXo=1,X,s =1]1(i(S) € Bo)

k=|6n|+1S,|S|=k
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separately.

Note that if some sef satisfied S| < |dn | then|N'(S)| > «|S] since the graph
has(«, ¢)-expansion. Moreover, each vertex (player) of the\éef) is playing its
best response to the strategies of its neighbors in bothlggdfiand i(S) with
probability i, since its environment is different in the two profiles. Og tither
hand, each player not in that set is in best response in bofigsi0 andi(S) with
probability at mos%. Hence, we can bound.{) by

[on]
N> > PlXo=1 X = 1]
k=1 5,|S|=k
Lo ] n—ak 1 ak o7 n 1 ak
vy > (37206
k=1 S,|S|=k k=1

1 aN\ n
<<1—|—<§) > —1<en -

To bound the second term, notice that, if someSsétisfieg.S| > [dn]| + 1, then
since the graph hdsy, 4)-expansion\V/(S) = V and, therefore, the environment of
every player is different in the two profil@sandi(.S). Hence,1(i(S) € By) = 0.
By combining the above we get that

ba(G) < en™“.

It remains to bound the expressionG). We have

b ( —2”—22]@ P[X; = 1]

=0 jeB;\{i}
N—-1
= > > PXi =1JP[X; =1]1(j € By)
1=0 j#i
=2"") 1(j € By)
§#0
|6n]
=27y N l(i(s)eBo)—i—T" Z > 1(i(s) € By).
k=15,|S|=k =[6n]+1 S,|S|=k

The second term is zero as before. For all Iarge enaughe first summation
contains at mos?™/2 terms and is therefore bounded by*/2. It follows that

b1 (G) + ba(G) < en™ + 2772,

An application of the result by Arratia et al/][concludes the proof of Theo-
reml.13 =
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3.2. A Sufficient Condition for the Non-Existence of Equilibtiadifferent Match-
ing Pennies. In this section we provide a proof of Theorelml& Recall that an
edge of a graph is calledtboundedf both adjacent vertices have degrees smaller
or equal tod. Theoreml.16 specifies that any graph with many such edges is un-
likely to have PNE. We proceed to the proof of the claim.

ProOOF OFTHEOREM 1.16. Consider a d-bounded edge in a game connect-
ing two playersa andb; suppose that each of these players interacts with1
(or fewer) other players denoted by, as . .. ag_1 andby, by ... by_1. ¢ Recall that
if a andb play an indifferent matching pennies game against each tilea the
game has no PNE. The key observation is théttmunded edge is an indifferent
matching pennies game with probability at Ie(an%)z%2 =: pimp—Since a ran-
dom two-player game is a matching pennies game with prdt;a%iland there
are at mos2?-2 possible pure strategy profiles for the playefsas . ..aq_1,
b1, by ...bg_1; for each of these pure strategy profiles the game betwesamd b
must be a matching pennies game.

For a collection ofn vertex disjoint edges, observe that the events that each of
them is an indifferent matching pennies game are indepéntemce, the prob-
ability that the game has a PNE is upper bounded by the pritiabiat none of
these edges is an indifferent matching pennies game, whiagbger bounded by

1 92d—2
(1 _pimp)m < eXp(_mpimp) = €xXp <—m <§) .

For the second claim of the theorem note that, if thererarebounded edges,
then there must be at least/(2d) vertex disjointd-bounded edges.

The algorithmic statement follows from the fact that we mandfall nodes
with degree< d in time O(n?), and then find all edges joining two such nodes
in anotherO(n?) time, with the use of the appropriate data structures; tedges
are thed-bounded edges of the graph. Then in tid@n2¢+2) we can check if the
endpoints of any such edge play an indifferent matching jesrgame.

The final claim of the theorem has a similar proof where now gbtential
witnesses for the non-existence of a PNE are the edgés im

Many random graphical games on deterministic graphs suglagsrs arranged
on a line, grid, or any other bounded degree graph (with) edges) are special
cases of the above theorem and hence are unlikely to have 8Miptotically.

$We allow these lists to share players.
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APPENDIX A: OMITTED PROOFS

PROOF OFLEMMA 2.5. We need to bound the functiod§n, p) and R(n, p).
We begin withS.

Bounding S. Recall that

S(n,p) =3 @2‘” [(1+ (1= p)*y"™ = (1= (1= p)*)"].

s=1

We split the range of the summation into four regions and ddbe sum over each
region separately. We begin by choosiag- a(e) as follows

20
N 1790 _ [ e .
() if e < o5 we chooser = (2_+5) X

(ii) if € > 19 we choosey = 5

105 +e

Given our choice ofyr = «(¢) we define the following regions in the range ©f
(where—depending oar—Regions | and/or 11l may be empty and Region IV may
have overlap with Region II):

{8€N|1<S<(2+6) h

. {seN| rop <8<om}

{sEN]om<s< SN}
IV. {8€N|2—+6’I’L§S<TL}

We then write
S(n,p) < Si(n,p) + Si(n,p) + Su(n,p) + Sv(n,p),

whereS) (n, p) denotes the sum over region | etc., and bound each term selpara
Region I. The following lemma will be useful.
LEMMA A.l. Foralle > 0,p € (0,1) ands such thatl < s < Crop’

(24 0.5¢)sp
1—-p)f<l—-—F—"—.
(1-p)"< 2+e€

PrRoOE First note that, for alk > 1,

S S
19 2k+2 2k+1'
(19) <2k+2>p = <2k+1>p
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To verify the latter note that it is equivalent to

2k + 2

s <2k+1+ i )
i i H € _ 1 1
which is true since < Fr = T+0p <3

Using (19), it follows that

(20) (1-p)°<1- <i>p+ <;>p2-

Note finally that

0.5¢ s(s—1) ,
syl T
which applied to 20) gives
< (2 +0.5¢)sp
1-— <l——7".
( Py s 24€
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Assuming that Region | is non-empty and applying Leminawe get:

n
Si(n,p) < Y s>2_n(1+(1_p)8)”‘3
s<(aFop
2+ 0. o
S<(2+€E)P ° o
n—s
< & (-
s<m N 6
2\ (1 + 0.25¢)sp
5 (e, )
s<(aFop ’ o
) 5 1 2
< X (Mo (U e (120
s<T%op ’ o .
140.25
< X <n>2_sexp(_(1+0.256) log(n) ) exp (% )
s<m ’ ( +6)
< N nt2men (0298 o (%S)
s<m
S
S Z <§> n—0.2568
s<m
S
C oy <§> 1 —0.25¢
s<m
S
< 0256 Z (%)
<@
_ O(n_o.zse) (sinceg < 1) .
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Region Il. We have

Si(n,p) < <Z> 271+ (L =p)°)"

(n) 27" (1 4 e~ P5)"
S
£ —<s<an

< ( " )2—" (1+ e"’—<2+€e)p)"
an
s<an

€ n
1 T e
an 2

1+e )"
2

IN

< an2™@) (n 4+ 1) <

(21) < an(n+1) <2H<a> - 1*%) .

In the above derivatio/ (-) represents the entropy function, and for the second to
last derivation we used the fact that:

(22) (Z) < (n+ 1)2rHE),
Our definition of the functionx = «a(¢) guarantees that when< 1799:

105 -
<2H(a) . W%) < 0.999,

: 1790.
while whene > o5 -

<2H(a) . @) < 0.99.

Using the above an() we obtain
(23) Sii(n,p) = exp(=Q(n)).

Region Ill. Let us assume that the region is non-empty. We show that each
positive term in the summatiofi (n, p) is exponentially small. Since there are
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O(n) terms in the summation it follows then théi (n, p) is exponentially small.

(Z) 271+ (1—p)*)" < (") 27" (1 4 ¢P%)"

n(2+e)an17(2+e)a
n
>2 (o)
s 5)04

(1)
(1)
- <Z>2 n 1+ E)a>n
[
(

1—(2+4€)a

(24 —(n+ 1>2n<H<2;> 1>enlf<2+e>a,

where in the third-to-last line of the derivation we employbe bound of Equa-
tion (22). Notice that the RHS of24), seen as a function ef > 0 anda > 0, is

20
decreasing in both. Sinee> ¢, our choice ofx = «(¢) implies thato > (C+2)
Hence, we can bound the RHS &#j as follows:

)

(n+1)27" n(1- H(2+c))e"17(2+0)(c = exp(—Q(n)),

20
—(24e)( 28
where we used the fact thais a constant, and therefore the faoi(‘)lr 2o )

is sub-exponential im, while the factoQ‘"(l‘H(%w)) is exponentially small in
n.

Region IV. Note that, ifzk < 1, then by the mean value theorem

E_ (1 -k < k=1 _ k=1 ~ .
(14+2) = (1—-2)" <2 1—1/k1£5é(1+1/k ky 2kx(1+ 1/k)" " < 2ekx

We can apply this fok = n — s andz = (1 — p)® since

(24€)loge(n) n _
(n—s)1—p)<(n—s)eP <(n—se = ze< 2

<1

n
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Hence,Sy (n, p) is bounded as follows.

Siv(n,p) < Z <Z> 27"2e(n — s)(1 —p)?®

n
2—+6§5§n

<2-27"-n > <Z>(1—p)s

n
2—+6§8§n

<2-27"-n(l+(1-p)"

pTL
<2 1—=
= e”( 2>

_D
< 2ene” 2"

(2+¢€) loge (n)
< 2ene” P

2+e€

< 2enn” 2

< 2en” 3.

Putting everything together.Combining the above we get that

S(n,p) < O(n~*) + exp(~Q(n)).

Bounding R. Observe that

R(n,p) =27"+ 2“: <Z> 2 " min(1,n(1 — p)*t).
s=1
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We boundR as follows.

R(n,p) —27" < z”: <Z> 27" min(1,nexp(—p(s — 1)))

1
<2™" <Z> +27" Z <Z>nexp(—p(s -1))

n

1<s< 6+n36 §> 6 3¢
BTe TTe
<27" (n+ 1)2nH /) 4 o= Z <n>nexp(—p(s -1))
1<s< 5l s> glgr \7
3+e 3+e
<n(n+ 1)2_"2”H(%) +2™" Z <n>nexp(—p(s -1))
s
> 5130
3+e
<exp(—Q(n)) +27" Y <n>nexp(—p(8 — 1)),
s>t \
BTe

where in the last line of the derivation we used that ¢ > 0 for some absolute
constante. To bound the last sum we observe that when +- we have

mexp(—p(s — 1)) < nexp (— S <6f36 - 1))
3+e

2+e€

<n- n Se . exp (—(2 +<) loge(n)>
n

< n—e/3 . n2/n . ne/n _ O(TL_E/4).

Using this bound and the fa$t}_, () = 2" concludes the proof. ®
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