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Sparse Recovery of Nonnegative Signals With
Minimal Expansion

M. Amin Khajehnejad, Alexandros G. Dimakis, Weiyu Xu, and Babak Hassibi

Abstract—We investigate the problem of reconstructing a
high-dimensional nonnegative sparse vector from lower-dimen-
sional linear measurements. While much work has focused on
dense measurement matrices, sparse measurement schemes can
be more efficient both with respect to signal sensing as well as
reconstruction complexity. Known constructions use the adja-
cency matrices of expander graphs, which often lead to recovery
algorithms which are much more efficient than �� minimization.
However, prior constructions of sparse measurement matrices rely
on expander graphs with very high expansion coefficients which
make the construction of such graphs difficult and the size of the
recoverable sets very small. In this paper, we introduce sparse
measurement matrices for the recovery of nonnegative vectors,
using perturbations of the adjacency matrices of expander graphs
requiring much smaller expansion coefficients, hereby referred
to as minimal expanders. We show that when �� minimization is
used as the reconstruction method, these constructions allow the
recovery of signals that are almost three orders of magnitude
larger compared to the existing theoretical results for sparse
measurement matrices. We provide for the first time tight upper
bounds for the so called weak and strong recovery thresholds when
�� minimization is used. We further show that the success of �� op-
timization is equivalent to the existence of a “unique” vector in the
set of solutions to the linear equations, which enables alternative
algorithms for �� minimization. We further show that the defined
minimal expansion property is necessary for all measurement
matrices for compressive sensing, (even when the non-negativity
assumption is removed) therefore implying that our construction
is tight. We finally present a novel recovery algorithm that exploits
expansion and is much more computationally efficient compared
to �� minimization.

Index Terms—Compressed sensing, � minimization, expander
graphs.

I. INTRODUCTION

W E investigate the problem of reconstructing a -sparse
signal from linear measurements, , where

is smaller than the ambient dimension of the signal , but
larger than . here is the measurement matrix. In this
paper, we focus on the case where the nonzero entries of are
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positive, a special case that is of great practical interest. Signals
arising in many problems are naturally nonnegative. Some ex-
amples are image processing, DNA microarrays, network mon-
itoring, hidden Markov models, and many more applications in
which the actual data is of nonnegative nature.

In compressed sensing, is often a dense matrix drawn from
some ensemble of random matrices (see, e.g., [3]). In this paper,
however, we will focus on sparse measurement matrices. This
is important for numerous reasons. In several applications, like
DNA microarrays, the cost of each measurement increases with
the number of coordinates of involved [16], [27]. Besides,
sparse measurement matrices often make possible the design of
faster decoding algorithms (e.g., [6], [8], [9], [12]–[14]) apart
from the general linear programming decoder [3], [19].

Unlike Gaussian matrices, where reasonably sharp bounds on
the thresholds which guarantee linear programming to recover
sparse signals have been obtained [2], such sharp bounds do
not exist for expander-graph-based measurements. Finding such
sharp bounds is the main focus of the current paper, for the spe-
cial case where the -sparse vector is nonnegative. Compressed
sensing for nonnegative signals has also been studied separately
in various papers [4], [11].

In this paper, we carefully examine the connection between
linear programming recovery and the fundamental properties of
the measurement matrix. In particular, we focus on sparse mea-
surement matrices. For a given measurement matrix, the suc-
cess of linear programming recovery is often certified by the
Restricted Isometry Property (RIP) of the matrix. For random
dense matrices, these conditions have been studied to a great
extent in the past few years. For sparse matrices, however, there
are only a handful of promising results, including the recent
work of Berinde et al. [5] that showed the adjacency matrices
of suitable unbalanced expander graphs satisfy an RIP prop-
erty for norm. However, it turns out that RIP conditions are
only sufficient conditions for the success of linear programming
decoding, and often fail to characterize all the good measure-
ment matrices. A complete characterization of good measure-
ment matrices was recently given in terms of their null spaces
[17], [20], [21], [23]. A necessary and sufficient condition for
the success of minimization is therefore called the “null space
property”1. Donoho et al. [1] were the first to prove the va-
lidity of this condition with high probability for random i.i.d.
Gaussian matrices, and were able to compute fairly tight thresh-
olds on when linear-programming-based compressed sensing
works [2]. The first analysis of the null space for sparse ma-
trices has been done by Berinde et al. [10], where in partic-
ular they consider measurement matrices that are adjacency ma-

1Also referred to as the �-neighborly property [1].
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trices of expander graphs. It is shown that every ex-
pander graph2 with satisfies the null space property, and
therefore every -sparse vector can be recovered from the cor-
responding linear measurements. The recovery thresholds given
by this result, namely the relationship between and for
which reconstruction is successful, are governed by the extents
at which the suitable expander graphs exist. Expander graphs
have either random or explicit construction (see, for example,
[18] for explicit constructions of expander graphs). In either
case, the resulting thresholds of [10] are very small (e.g., in the
order of for ), due to the high expansion as-
sumption, i.e., . This paper designs sparse measure-
ment matrices that obtain a threshold of 0.01, which however
holds only for nonnegative signals. The null space characteriza-
tion and its use in compressed sensing has also been studied in
[11], from a quite different perspective. In that paper, the authors
show that a so called “coherence” measure on the measurement
matrix is related to the null space property. Unfortunately, when
applied to sparse matrices, this result does not yield very sharp
bounds for the recovery threshold either.

Finally it is worth mentioning that there are other related
works that address the problem of sparse signal recovery in
the case of sparse matrices, but for different recovery methods.
One example can be found in [28], which provides a theoretical
analysis (based on Density Evolution technique) of the message
passing algorithm for recovering sparse signals measured by
sparse measurement matrices. Another example is [29], which
considers the same problem, but for nonnegative signals. A
shortcoming of density evolution technique is that it can only
determine asymptotic (infinite blocklength) results and relies
on an asymptotic limit exchange. Furthermore, it should be
clear that unlike these papers, we focus only on minimization
recovery. Finally, we provide a strong bound, namely the bound
for all nonnegative signals, which was not provided in [29].

1) Contributions of the Current Paper: We introduce sparse
measurement matrices that result from adding perturbations to
the adjacency matrices of expander graphs with a small crit-
ical expansion coefficient, hereby referred to as minimal ex-
panders. We show that when minimization is used to re-
construct nonnegative vectors, these constructions allow the re-
covery of sparse signals with way more nonzero entries—al-
most three orders of magnitude—than the existing theoretical
results for sparse measurement matrices, namely the results of
[10] and [11]. Please refer to Fig. 3 for details. We provide theo-
retical upper bounds for the so called weak and strong recovery
thresholds when minimization is used. These bounds are very
close (order-wise) to the bounds of Gaussian matrices for the
nonnegative case (Section V and Figs. 1 and 2). Furthermore,
by carefully examining minimization for sparse matrices, we
deduce certain uniqueness results for the nonnegative solution
of the linear equation when constant column sum matrices are
used (see Section III-A). We exploit this fact later to find faster
alternatives to minimization. In particular we present a novel
recovery algorithm that directly leverages the minimal expan-
sion property, and we prove that it is both optimal and robust to
noise (Section VI).

2We shall formally define ��� �� expander graphs shortly.

One critical innovation of our work is that for expander
graphs in the context of compressed sensing, we require a
much smaller expansion coefficient in order to be effective.
Throughout the literature, several sparse matrix constructions
rely on adjacency matrices of expander graphs [5], [10], [12],
[14], [15]. In these works, the technical arguments require very
large expansion coefficients, in particular, , in
order to guarantee a large number of unique neighbors [22] to
the expanding sets. Our analysis is the first to obtain error-cor-
rection results through small expansion . In fact we
show that the minimal expansion we use in our constructions
is actually necessary for any matrix that works for compressive
sensing (even when the nonnegativity assumption is removed).
See Section IV-C for more details on this.

II. PROBLEM FORMULATION

The goal in compressed sensing is to recover a sparse vector
from a set of underdetermined linear equations. In many real
world applications the original data vector is nonnegative, which
is the case that we will focus on in this paper. The original
problem of compressed sensing for the nonnegative input vec-
tors is the following:

(1)

where is the measurement matrix, is called the ob-
servation vector, is the unknown vector which is known
to be -sparse, i.e., to have only nonzero entries, and where

is norm, i.e., the number of nonzero entries of a given
vector. Equation (1) solves for the sparsest nonnegative solution
in the constraint set . The typical situation is that

. Donoho and Tanner have shown in [4] that, for a
class of matrices maintaining a so-called outwardly -neigh-
borly property and being at most -sparse, the solution to (1)
is unique and can be recovered via the following linear program-
ming problem:

(2)

They also show that i.i.d. Gaussian random matrices with
are outwardly -neighborly with high probability,

and thus allow the recovery of -sparse vectors via linear
programming. They further define a weak neighborly notion,
based upon which they show that the same Gaussian random
matrices will allow the recovery of almost all -sparse
nonnegative vectors via optimization for sufficiently large

.
In this paper, we primarily seek the answer to a similar ques-

tion when the measurement matrix is sparse and, in partic-
ular when is the adjacency matrix of an unbalanced bipartite
graph with constant left degree . The aim is to analyze the out-
wardly neighborly conditions for this class of matrices and come
up with sparse structures that allow the recovery of vectors with
sparsity proportional to the number of equations.

III. ANALYSIS OF MINIMIZATION

We begin by stating an equivalent version of the outwardly
neighborly condition which is in fact similar to the null space
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property that was mentioned in the introduction, but for the non-
negative case. Later we show that this has a much more mundane
interpretation for the special case of regular bipartite graphs,
namely a combinatorial null space condition. We leverage this
condition to derive bounds for the successful recovery of sparse
signals when particular sparse matrices are used.

A. Null Space and Uniqueness Conditions

As aforementioned in the Introduction, the success of mini-
mization in recovering sparse signals can be characterized by the
null space condition. This condition has been previously stated
for the general nondefinite sign signals in a couple of papers
[17], [20], [21], [23]. We present a similar condition for the suc-
cess of minimization in recovering nonnegative signals. We
also show that under the assumption that the measurement ma-
trix has constant column sum, this condition is equivalent to the
uniqueness of any nonnegative solution to the underdetermined
system of linear equations.

We present the first theorem in the same style as in [4].
Theorem 3.1: Let be an matrix and be a positive

integer. The following two statements are equivalent.
1. For every nonnegative vector with at most nonzero

entries, is the unique solution to (2) with .
2. For every vector in the null space of , and every

index set with such that
, it holds that .

Here is the complement set of in and de-
notes the subvector of constructed by those elements indexed
in . means the cardinality of the set .

Theorem 3.1 is in fact the counterpart of [17, Th. 1] for non-
negative vectors. It gives a necessary and sufficient condition
on the matrix , such that all the -sparse vectors can be re-
covered using (2). The condition is essentially that if a nonzero
vector in the null space of happens to have nonnegative
entries, then the sum of all its entries must be positive. We call
this property the nonnegative null space property.

Proof: Suppose has the nonnegative null space property.
We assume is -sparse and show that under the mentioned
null space condition, the solution to (2) produces . We denote
by the solution to (2). Let S be the support set of . We can
write

(3)

(4)

where and are the entry of and ,
respectively. The reason (3) and (4) are true is that and are
both nonnegative vectors and their -norm is simply the sum of
their entries. Now, if and are not equal, since is

in the null space of and is nonnegative on (because is
the support set of ) we can write

(5)

which implies

But we know that from the construction. This
means we should have .

Conversely, suppose there is a nonzero vector in the null
space of and a subset of size with

and . We construct a nonnegative vector
supported on , and show that there exists another nonneg-

ative vector such that and
. This means that is not the unique solution to (2) with

and will complete the proof. For simplicity we may
assume . We construct a nonnegative vector

supported on that cannot be recovered via minimization
of (2). Without loss of generality we write

(6)

where and are both nonnegative vectors. Now set

(7)

B. Null Space of Adjacency Matrices

In this paper we will be considering measurement matrices
with two main properties: sparse and constant column sum.

This class of matrices includes measurement matrices obtained
from the adjacency matrices of regular left degree bipartite
graphs (i.e., 0–1 matrices with a constant number of ones in
each column), as well as the perturbed expanders introduced
in Section IV-B. For this class of matrices we actually show
that the condition for the success of recovery is simply the
condition for there being a “unique” vector in the constraint set

. To this end, we prove the following
lemma and theorem.

Lemma 3.1: Let be a matrix with constant column
sum . For any vector in the null space of , the following
is true

(8)

Proof: Let be the vector of all
1’s. We have

(9)

where is the column sum of .
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Theorem 3.2: Let be a matrix with constant
column sum. Then the following three statements are equivalent.

1. For all nonnegative -sparse with an arbitrary (a partic-
ular) support set , it holds that

.
2. For every vector in the null space of , and every (a

particular) index set with such
that , it holds that .

3. For every (a particular) subset with
, there exists no vector in the null space

of such that .
Theorems 3.1 and 3.2 show that for the class of matrices with

constant column sum, the condition for the success of re-
covery is simply the condition for there being a “unique” vector
in the constraint set . In this case, any
optimization problem, e.g., , would also re-
cover the desired .

Proof: First, we show that for any matrix , the statements
1 and 3 of Theorem 3.2 are equivalent. Suppose that condition
3 holds for a specific subset . Consider a non-
negative vector supported on . If there exists another
nonnegative vector with the property that , then

would be a vector in the null space of which is also
nonnegative on , due to the nonnegativity of and the fact
that is the support set of . This contradicts the earlier as-
sumption of condition 3.

The proof of the converse is also straightforward. Suppose
that condition 1 holds for a specific subset and all nonnegative
vectors supported on . Let’s say one can find a nonzero
vector in the null space of with . As in the proof
of Theorem 3.1, we may write as

(10)

where and are both nonnegative vectors. Now if

(11)

then and are distinct nonzero vectors and belong to the
set . This is a contradiction to the as-
sumption we earlier made.

So far we have shown that for any matrix the two state-
ments 1 and 3 are equivalent. Now we show that for matrices
with constant column sum the two statements 2 and 3 are equiv-
alent. We make use of Lemma 3.1, that for this special class
of matrices with constant column sum, every vector in the null
space has a zero sum of entries. Therefore, statement 2 can be
true only if there is no in the null space of with .
Conversely if the condition in statement 3 holds, then there is no

such that is nonnegative and therefore
statement 2 is also true.

Corollary 1 (Corollary of Theorem 3.2): The three conditions
of Theorem 3.2 are equivalent to the following statement.

• Every nonzero vector in the null space of has at least
negative entries.

Proof: Follows directly from the third statement of The-
orem 3.2.

The results of this section show how the structure of the null
space of the measurement matrix is related to the recoverability
of sparse vectors. Thus, to achieve our primary goal of con-
structing optimal sparse measurement matrices, we need to find
appropriate bipartite graphs, the adjacency matrices of which
satisfy the nonnegative null space properties up to a maximal
sparsity. We define expander graphs in the next section and in-
troduce perturbed expanders. Using a linear algebraic view of
expanders, we will be able to make a probabilistic analysis of
the null space property for this class of sparse matrices.

IV. EXPANDER GRAPHS AND THEIR LINEAR ALGEBRAIC VIEW

Before proceeding, let us consider the following definitions,
whose relation to the main topic will be shortly made apparent.

Definition 1: For a matrix we define the Com-
plete Rank of (denoted by ) to be the maximum
integer with the property that every columns of

are linearly independent. In other words,
, where is the

support set of .
This notion is also known in linear algebra as “Kruskal rank”

(see [26]). It has also been given other names in the literature.
The complete rank of a matrix is equivalent to the minimum
Hamming distance (weight) of the null space of minus one
[30]. It is also referred to as the “spark” of the matrix minus one
[31].

Definition 2: A left regular bipartite graph with
and as the set of left and right vertices
and as the regular left degree is called a -unbalanced
expander if for every with , the following holds:

, where is the set of neighbors of
in .

We also define generalized bipartite graphs that allow us to
consider adjacency matrices with nonunitary entries.

Definition 3: Let be a nonnegative matrix. Con-
sider the weighted bipartite graph where

and are the sets
of nodes, is the set of edges, and is the set of weights as-
signed to the edges, where has the following property: for
every nonzero entry of the matrix , and are con-
nected together with an edge of weight . For the
zero entries of , there is no edge connecting the corresponding
nodes in . We call the generalized bipartite graph of , and
refer to as the generalized adjacency matrix of .

Note that the notions of “neighbor” of a vertex and “expan-
sion” in a weighted bipartite graph are the same as in a unitary
bipartite graph. So for instance, the neighbors of a node in
this graph are the set of nodes to which is connected with an
edge of nonzero weight. The following lemma connects the two
notions of expansion of a (generalized) bipartite graph and the
complete rank of its (generalized) adjacency matrix.

Lemma 4.1: Let be a nonnegative matrix with exactly
nonzero entries in each column. The generalized bipartite graph
of is a expander.

Proof: Let be the generalized bipartite
graph of . If with then the columns of

corresponding to the elements of are linearly independent.
So the submatrix of produced by only those columns which
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correspond to must be of full rank. Therefore, it must have
at least nonzeros rows, which is to say

.
A direct consequence of the proof of this theorem is that

(12)

The notion of complete rank is tightly related to the expansion
property. It is also related to the null space characterization we
are shooting for. The following theorem sheds some light on this
fact.

Theorem 4.1: Let be a nonnegative matrix with exactly
nonzero entries in each column. For every nonzero vector in
the null space of , the number of negative elements of is at
least .

Proof: Let and be the sets of left and right vertices
of the generalized bipartite graph of . Let be the set of
vertices in corresponding to the positive elements of , and

be the set of vertices corresponding to the negative elements.
3 Let . Since , we must have

, since otherwise, there exists a vertex in
connected to exactly one of the sets or . Therefore, the
coordinate of the vector corresponding to this node will not
sum up to zero. On the other hand, from the definition of ,
we must have . The number of edges emanating
from is , which is at least as large as the number of its
neighbors . Hence

where the last inequality is a consequence of (12).
We now turn to the task of constructing adjacency ma-

trices with complete rank proportional to the dimension .
Throughout this paper, all the thresholds that we achieve are
asymptotic, i.e., they hold for the regime of very large and .

A. Perturbed Expanders

When and are large, we are interested in con-
structing 0–1 matrices with (constant) 1’s in each
column such that is proportional to . Furthermore, the
maximum achievable value of is critical. This is a
very difficult question to address. However, it turns out to be
much easier if we allow for a small perturbation of the nonzero
entries of .

Lemma 4.2: For a matrix which is the adjacency
matrix of a bipartite left -regular graph, if in the submatrix
formed by any columns of , every columns have
at least nonzero rows (namely by Hall’s theorem, there exists
a perfect matching between some rows and the columns of
the submatrix), then it is possible to perturb the nonzero entries
of and obtain another nonnegative matrix through this pro-
cedure, with . Furthermore, the perturbations can be
done in a way that the sum of each column remains a constant

, and all perturbations are rational numbers representable by a
finite number of bits.

Proof: We add a random set of perturbations
to the nonzero

3We interchangeably use � and its variations to denote a set of vertices or a
support set of a vector.

elements of , while leaving the zero elements of intact. We
denote the perturbed matrix by . The way the random per-
turbations are generated is as follows. Suppose without loss of
generality that we scale the matrix up by a prime integer before
adding perturbations, so that the nonzero entries of are equal
to , and suppose that ’s are integers in .
For each nonzero entry of , we independently choose

uniformly at random from the set . We look
at the submatrix formed by arbitrary distinct columns
of . Without loss of generality, we index these columns
by the set . Then there exists a perfect
matching between these columns and some rows, which
we denote by the set accordingly.
First we bound the probability that makes the submatrix

have rank smaller than , i.e., .
In order for the submatrix to have rank smaller than ,
the determinant of the square matrix must be zero,
namely . By definition,
is a polynomial over the variables of , say , which
contains a product term which certainly has
a nonzero coefficient (actually its coefficient is either 1 or ).
Therefore, invoking Schwartz-Zippel lemma we can assert that

. Furthermore, the number of ways the
submatrix can be chosen is . Applying a union bound
over all possible choices of , we can write

(13)

For given and , we can choose a finite large enough such
that the right hand side of (13) is sufficiently small. Therefore,
there exists a choice of perturbations so that the resulting

satisfies . Furthermore, after scaling down the
perturbed matrix by , each perturbation is a rational number
of the form , , and is therefore representable by a
finite number of bits.

It is worth noticing that, after modifying based on pertur-
bations of Lemma 4.2, Theorems 3.1, 3.2, and 4.1, and Lemmas
3.1 and 4.1 all continue to hold for this class of matrices . The
reason is as follows. First of all, note that Lemma 3.1 and The-
orem 3.2 require only that be constant column sum, which is
true for . Theorem 3.1 assumes no restriction on the matrix.
Finally, Lemma 4.1 and Theorem 4.1 are valid, since they hold
for nonnegative matrices with a constant number of nonzero en-
tries in each column, and is such a matrix.

The conclusion of this section so far is that if one starts off
with the adjacency matrix of a regular bipartite graph and per-
turb its nonzero entries to obtain a nonzero constant column sum
matrix with , then the following guarantee exists:

minimization perfectly recovers a -sparse noneg-
ative vector from the measurements . Our goal now
becomes constructing expanders with the ratio

as large as possible. In Section V, we use a probabilistic
method to show that the desired expanders
exist and provide thresholds for . Before continuing, note
that we are using a expansion coefficient for per-
fect recovery, which is very small compared to other schemes
that use expanders (see, e.g., [5], [6], [10], [12]–[14]) and re-
quire expansion coefficients at least larger than .
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is indeed the critical expansion coefficient. We
shortly digress in a subsection to discuss this a little further.

B. Necessity of Expansion for Compressive Sensing

Let’s first consider the following definition:
Definition 4: Let be a weighted bipartite

graph and be a set of nodes in . Let be a subset of
edges of . is called a partial perfect matching saturating ,
if:

• .
• each node of is incident to exactly one edge in .
• no node in is incident to more that one edge in .
We prove that any good sparse measurement matrix corre-

sponds to an expander graph with a critical expansion coeffi-
cient.

Theorem 4.2: Let be a nonnegative matrix, with
nonzero entries per column, and assume that allows the

recovery of all -sparse vectors. Then the generalized bipartite
graph of is an expander.

Proof: The statement holds for any recovery algorithm. In
fact we show that if the generalized bipartite graph of is not an

expander, then even a stronger recovery algorithm
that magically knows the support of the vector, fails to recover
some -sparse vectors. Assume that the bipartite graph is not a

expander, i.e., there exists a set of columns
that is adjacent to (or fewer) rows. Therefore, the rank of
the submatrix corresponding to these columns must be strictly
smaller than regardless of what the nonzero entries are. By
selecting an adversary sparse signal supported exactly on these

columns, we see it is impossible for any algorithm to recover
it, even if the support is known, since there is a rank loss in the
corresponding measurement submatrix.

V. RECOVERY THRESHOLDS OF COMPRESSIVE SENSING FOR

MINIMAL EXPANDERS

In summary of Section IV, if one can construct a
expander graph with left degree , then from the adjacency ma-
trix of this expander, it is possible to obtain a measurement ma-
trix that allows the recovery of every sparse nonnegative
signals using minimization. The explicit relationship between
the ratio and the relative size, , of a recoverable set
is not yet clear. In this section, by addressing the question of
existence of appropriate expander graphs, we find this explicit
relationship known as the strong recovery threshold. We further
derive a weak recovery threshold that is concerned with the re-
covery of almost all sparse vectors of a certain sparsity.

A. Strong Bound

For fixed values of and we are interested
in the existence of expanders with constant
left degree . There are a few previous works that address the
construction of expanders (random or deterministic), and try to
find the relationships between their parameters. In [24] for in-
stance, it has been shown that for any value of and

, there exists a left degree bipartite expander
for some and some constant (not growing with )

. Also, an explicit construction of constant regular left degree

lossless (with arbitrarily close to 1) expanders is given in
[25]. As a consequence of the results of the latter, for any fixed

it is possible to explicitly construct a expander with
, and . The main reason we

cannot use these results directly here is that the relationship be-
tween the expansion factor and the left degree of the
graph is not clear in any of the previous works (even order
wise). Besides, in most of the previous arguments, the relation-
ship between the size of expansion set , the left set size and
the factor is expressed in terms of order functions, and the ex-
plicit constants are omitted. Our attempt here is to derive those
constants explicitly.

We use the standard first moment method argument to prove
the existence of our expanders of interest, namely

expanders, for appropriate , , and . The main
result is given below, while the complete proof can be found in
Appendix A.

Theorem 5.1: For sufficiently large , with and
, there exists a bipartite graph with left vertices and

right vertices, which is a expander, if

(14)

where is the Shannon entropy function defined as
.

More important is the question of how big the ratio can
be, since we earlier proved that we can recover vectors with
sparsity up to . A combination of the previous
derivations and Theorem 5.1 directly implies the following the-
orem, stating the strong sparsity threshold for sparse measure-
ment matrices.

Theorem 5.2 (Strong Threshold): For a fixed , let
and be the solutions of the following optimization program

For sufficiently large , there exists a sparse measurement ma-
trix with nonzero entries in each column, so that every

-sparse nonnegative vector can be recovered from
using minimization.

Fig. 1(a) illustrates the strong recovery threshold for different
values of , derived from Theorem 5.2.

B. Weak Bound

We are now interested in deriving conditions for recovering
a specific support set of size , rather than obtaining
a worst case bound for matrices that work for all support sets.
Recall that , left degree is , and define

.
Theorem 5.3 (Weak Threshold): Define the function

(15)
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Fig. 1. Recoverable sparsity size, weak achievable bound of Section V-B and the strong achievable threshold of (14). � is the ratio ���. (a) Strong bound. (b)
Weak versus strong bound.

For every such that for every that satisfy
, a randomly selected subset

of size is recoverable using minimization of (2) from
a random perturbed matrix with probability .

The bound that results from Theorem 5.3 is plotted in
Fig. 1(b) and has been compared to the strong threshold pre-
viously achieved. Also, the comparison of these bounds with
those of dense Gaussian i.i.d. matrices for the nonnegative
case that were obtained in the paper [4] is illustrated in Fig. 2.
Note that compared with the performance bounds achievable
for Gaussian dense matrices, the provable theoretical perfor-
mance bounds from our derivations is generally smaller, but
they are getting closer to the performance bounds achievable
for Gaussian dense matrices (see Fig. 2) and represent a step
towards closing the gap between the provable bounds for dense
and sparse measurement matrices. Finally, to highlight the
importance of our achieved bounds, we have compared the
strong threshold of this paper with the thresholds of [5] that
also uses expander graphs with in Fig. 3. Ostensibly,
the use of minimal expanders has increased the theoretical
recovery thresholds by almost three orders of magnitude.

The full proof of Theorem 5.3 is given in Appendix B. The
key argument is a matching condition for the recoverability of
vectors supported on a specific subset . The condition involves
looking at the two-hop graph from and checking if all sets of
size up to is saturated by a partial perfect matching:

Lemma 5.1: Given a set consider and denote
. Let the bipartite two-hop graph of be denoted by

. If every subset of size
has minimal expansion: then

there is a perturbation of nonzero entries of resulting in the
matrix so that any nonnegative vector supported on can
be recovered from using the optimization formulation
(2).

Proof: Consider the two-hop bipartite graph of and let
denote the remainder of the nodes in . Further

let denote the submatrix of corresponding to . By
Hall’s theorem since every subset of of size up to

has expansion equal to its size, it must also be saturated by a
partial perfect matching. In other words, corresponds to a

Fig. 2. Comparison of weak and strong bounds for dense i.i.d. Gaussian ma-
trices (and nonnegative signals) from [4] with those of the current paper for
sparse matrices. � here is equal to ���.

Fig. 3. Comparison of size of recoverable sparsity (strong bound) of this paper
with those from [5]. � � ���.

expander. Therefore by Lemma 4.2 it is
possible to perturb its nonzero entries to obtain a matrix
with .
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To show that a set can be recovered, it suffices to show
that every nonzero vector in the nullspace of cannot have
all its negative components in . Assume otherwise: that some

has indeed all its negative support . Observe now
that cannot contain any of the positive support of , because
every equation that is adjacent to a positive element must also
be adjacent to a negative elements (since the matrix coefficients
are nonnegative) and does not intersect . Therefore
the whole support of must be contained in .

Now we can show that . Assume otherwise,
that . Then we could select a subset of
such that . This set satisfies our assumption
and is contained in and therefore must have the minimal
expansion . But since

and (recall that by assump-
tion), it must hold that , which contradicts the
minimal expansion inequality.

Therefore, must be saturated by a partial perfect
matching which means that we can find a full rank subma-
trix (corresponding to that partial matching) such that

(where means the vector restricted to its
support). Since is full rank, must be the all zeros vector
which contradicts the assumption that can be contained in

.

VI. FAST ALGORITHM

We now describe a fast algorithm for the recovery of sparse
nonnegative vectors from noiseless or noisy measurements.
This algorithm relies on the minimal expansion we described
in Section IV-C. We employ a expander and
perturb it as Lemma (4.2) to obtain a sparse nonnegative matrix

with . The algorithm has two variations,
one that works specifically for -sparse signals with no mea-
surement noise, and one that also accounts for additive noise.
When measurement noise is present, the observation vector is
given by the following equation:

(16)

In either case, the sparsity of the unknown signal is given to
the algorithm.

Algorithm 1. Reverse Expansion Recovery:
1. Sort elements of in terms of absolute value, pick the

smallest of them, and denote them by . Also
denote by the index set of the elements of in , and by

its complement set. Without loss of generality, assume
that .

2. Locate in the neighbors of the set of nodes in corre-
sponding to , name the set and name the set of their
complement nodes in by .

3. Identify the sub-matrix of that represents the edges em-
anating from to . Call this sub-matrix . Columns
of correspond to nodes in , and its rows correspond
to the nodes in .

4. Set , and

If noiseless
Otherwise (17)

where and . Declare as the
output.

Note that in the noiseless case, Algorithm 1 transforms the
original underdetermined system of equations to an overdeter-
mined subset of equations. Appendix C provides theoretical jus-
tification for the effectiveness of this algorithm. Also, in next
theorem we claim that Algorithm 1 is robust to measurement
noise.

Theorem 6.1: If is the adjacency matrix of a ex-
pander with , is a -sparse nonnegative vector and
is the output of Algorithm 1 with for , then

.
Proof: Given in Appendix E.

VII. EXPERIMENTAL EVALUATION

We generated a random matrix with ,
and 1’s in each column. We then multiplied random
sparse vectors with different sparsity levels by , and tried re-
covering them via the linear program (2). Next, we added a
random set of perturbations to the nonzero entries of while
keeping it nonnegative and constant column sum (one way to
do that is by adding a uniformly random number in to
each 1 of , and then normalizing each column) and applied the
same sparse vectors to compare the recovery percentages in the
two cases. This process was repeated for a few generations of

and the best of the improvements we obtained is illustrated
in Fig. 4(a).

In Fig. 4(b) we have plotted the recovery percentage of Al-
gorithm 1 for a random 0–1 sparse matrix of size 250 500
with ones in each column. We have compared the performance
with the minimization method, the count-min algorithm of [7]
and the sparse matching pursuit (SMP) method of [8], all spe-
cific to positive signals. Note that for the count-min algorithm,
the measurement matrix must have other properties in addition
to the constant number of 1s in each column. Please see [8] for
more details. Although the deterministic theoretical bounds for
the proposed algorithm and the minimization are the same,
as observed in Fig. 4(b), in practice minimization is more ef-
fective for less sparse signals. However Algorithm 1 is consid-
erably faster than linear programming and easier to implement.

In general, the complexity of Algorithm 1 is which,
when is proportional to , is similar to linear programming’s

. However the constants are much smaller, which is of
practical advantage. Furthermore, taking advantage of fast ma-
trix inversion algorithms for very sparse matrices, Algorithm 1
can be performed in dramatically fewer operations. Fig. 5 shows
the signal-to-error ratio (SER) as a function of signal-to-noise
ratio (SNR) when Algorithm 1 with has been used to
recover noisy observations. Assuming that the output of the al-
gorithm is , SNR and SER functions are defined as

SNR SER

Measurement matrices are the same as before.

VIII. CONCLUSION

In this paper we considered the recovery of a nonnegative
sparse vector using a sparse measurement matrix in the com-
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Fig. 4. (a) Probability of successful recovery of � minimization for a random 0-1 sparse matrix of size 250� 500 with � � � ones in each column , and the
same probability when the matrix is randomly perturbed in the nonzero entries. (b) Comparison of � minimization nonnegative recovery, Algorithm 1, count-min
algorithm of [7] and SMP algorithm of [8] for sparse 0–1 measurement matrices with � ones in each column.�: � � �, �: � � �, : � � �. Blue: � minimization,
Black: Algorithm 1, Red: Count-min, Green: SMP. (a) � minimization for sparse 0–1 matrices with and without perturbations. (b) Comparison of algorithms.

Fig. 5. Simulation results for Algorithm 1, noisy case; SER versus SNR.

pressed sensing framework. We used the perturbed adjacency
matrix of a bipartite expander graph to construct the sparse mea-
surement matrix and proposed a novel fast algorithm. We com-
puted recovery thresholds and showed that for measurement ma-
trices with nonnegative entries and constant column sum the
constraint set is a singleton set, whenever

optimization is successful (which also means that any other
nontrivial optimization scheme which can examine the feasible
set would be successful). Finally, determining whether the ma-
trices constructed satisfy an RIP-2 property, and constructing
0–1 matrices that have complete rank proportional to are open
problems that may be worthy of further scrutiny.

APPENDIX A
PROOF OF THEOREM 5.1

Assuming that we generate a random matrix by placing
ones in each column uniformly at random and the rest of

the entries zero, it suffices to show that the probability that
has the desired expansion property is positive. For

, we denote by the event that
the columns of corresponding to the numbers
have at least entire 0 rows (rows that do not have

a single nonzero element in the columns .
In other words is the event that the set of nodes

in contracts in .

We use the following combinatorial analysis to bound
. The total number of 0–1 matrices of size

that have exactly 1s in every column is . In addition, if
a matrix is to have at least entirely zero columns,
all of its nonzero entries must be included in a submatrix of
size . There are choices for such a square submatrix,
and for each selection, the number of matrices that can be
constructed is by the same token as before equal to (It
should be clear that we are multiple-counting many cases). This
yields the following:

Hence

(A.18)
We show that for certain regimes of , and , the right hand
side of (A.18) becomes arbitrarily close to 1. To see this, we
prove the following two lemmas.

Lemma A.1: If and then
.
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Proof: We can write

(A.19)

where , and we have used the bounds
for , and . It is

easy to show that when , is decreasing in
, and thus replacing all the terms in (A.19) by the first term

will only increase the sum. The whole term is thus smaller than
for some positive constant .

Lemma A.2: For and , if
, then for any

the sum decays exponentially as
.

Proof: Using the standard bounds of (F.46) on binomial
coefficients and the fact that for , we
can write

(A.20)

where is the entropy
function. Assuming that , the largest term on the right
hand side of (A.20) is the one corresponding to (since

and are both increasing for ), and
therefore we can write

(A.21)
Note that we have used the fact that .
The right hand side of (A.21) vanishes as , if

.

APPENDIX B
DERIVATION OF THE WEAK BOUND

For a random set that has a linear-size cardinality (i.e.,
is not asymptotically zero), and small enough,

when . We first
need to ensure that is concentrated. We can show that

This concentration bound can be obtained by the standard
martingale concentration arguments if , for

, see [22], [24]. Therefore we define the
event . Consider the random graph
created from placing nonzero entries (with repetition) in every

column of . From the set , form , the corresponding
, and finally the bipartite graph .

Using the given combinatorial condition in Lemma 5.1, we can
recover a signal supported on if every subset of
size has sufficient expansion:
(note that subsequently we drop the term since it is negli-
gible for large ). First we condition on the concentration of

not recoverable

not recoverable

not recoverable (B.22)

not recoverable (B.23)

Therefore it suffices to bound the probability conditioned on
concentrated. We are going to do a union bound over all

possible selections of nodes in and of nodes in
so that . Since we are conditioning on ,

it suffices to have . The second problem is
that the set is random and dependent on . We are going
to avoid this conditioning by allowing the choice of to range
over all the nodes in .

not recoverable

(B.24)

Now the problem is that conditioning on implies that the
set does not expand too much, so it is actually increasing the
probability of the bad contraction event. We can however easily
show that this increase is at most a factor of 2

contracts
contracts

contracts

(B.25)

Now since , for sufficiently large ,
, so

contracts contracts (B.26)

The probability that the set contracts can be further
bounded by assuming (any smaller
neighborhood will have smaller probability) so

Putting everything together we obtain the bound

not recoverable

(B.27)



206 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 1, JANUARY 2011

We move everything to the exponent, assume , and use
standard binomial approximations to obtain (B.28) at the bottom
of the page.

Recall that the recoverable fraction is , , and
denote , . Define the function

(B.29)

and observe that the bound on the probability of failure (B.28)
becomes

not recoverable

Therefore for fixed and , we are trying to find the largest
that makes negative for every for which

. For this , we can recover sparse signals with
sparsity no bigger than with polynomially high probability,
conditioned on the fact that the sublinear sets do not contract
(which has already been established).

APPENDIX C
PROOF OF THE VALIDITY OF ALGORITHM 1

Algorithm 1 identifies a big zero portion of the output and
eliminates two large sets of nodes from and . Having done
this, a smaller system of linear equation remains, which turns
out to be an overdetermined system and can be uniquely solved
using matrix inversions. This procedure is therefore nothing
but a block diagonalization (after rearranging the rows and
columns) of into a lower triangular matrix:

(C.30)

where is a square or tall full rank matrix. The following
theorem certifies that Algorithm 1 is indeed valid and it recovers
any -sparse vector without error.

Theorem C.1 (Validity of Algorithm 1): If is a -sparse
nonnegative vector and is a perturbed ex-
pander with , then .

Proof: First of all, note that is -sparse, since every
column of has exactly nonzero entries. We also show that

and therefore is a full rank matrix. Suppose
. We also know that . Select an arbitrary

subset of size . Because of the fact that
and the expansion property: .

But is a subset of and this is a contradiction. Diag-
onalization of (C.30) and the fact that is a tall matrix and

together imply that has full column rank.

We now show that . If any entry in is greater than
zero, then there is at least one entry in which is indexed in

and is nonzero, since . This is in contradiction
with the choice of . Therefore . Also since

and and is full rank we conclude
that .

APPENDIX D
RIP-1 FOR EXPANDERS

We present a simple argument to show that the adjacency ma-
trix of a expander graph with has RIP-1 prop-
erty, which means that for every -sparse vector and suitable
constants , the norm of is close to the norm of

(D.31)

where and are two constants depending on the expansion
coefficient.

It should be acknowledged that Berinde et al. [5] already
prove this property, generally for norms where

. The argument we present here is arguably simpler and
easily extends to the case where the matrix is perturbed in the
nonzero entries.

Consider to be the adjacency matrix of a unbalanced
expander for . Consider , the support set of a -sparse

. By Hall’s theorem, since every set of size up to has
neighbors, there must exist a partial -matching, i.e.,

one in which every node in can be matched to unique
neighbors. Decompose the measurement matrix

(D.32)

Where is supported on the partial -matching (i.e
every row has one nonzero entry and every column has
non-zero entries). The remainder matrix has nonzero
entries in each column, and notice that the decomposition is
adapted to the support of the vector . By the triangle inequality

(D.33)

It is easy to see that

(D.34)

since is a vector that contains copies of each
entry of . Also since each column of contains nonzero
entries

(D.35)

(B.28)
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since each entry of is a summation of terms of and
is also a summation in which each entry of appears

times. A similar argument implies the upper bound

(D.36)

Therefore, putting these together we obtain

(D.37)

APPENDIX E
PROOF OF ROBUSTNESS OF ALGORITHM 1

We first state the following lemma from [5].
Lemma E.1 Consequence of Lemma 9 of [5]: If is the

adjacency matrix of a expander with and is a
-sparse vector, then .
If the original vector is -sparse, and each column of

has 1s, then has at most 1s, i.e., is -sparse.
By rearranging the rows and columns of , we may assume

, , and

, where and are those obtained by the al-

gorithm, and . Also let be the
reconstruction error vector. By (16) we then have

(E.38)

Hence we have

(E.39)
The first inequality holds as a result of nonnegativity of and

, and the fact that every column of has at least one 1.
The last inequality holds for the following reason. We know that

is -sparse. Let be a set of zeros of . We
then have

(E.40)

Let us assume . From the way is driven
in step 4 of the algorithm, it follows that

(E.41)

And thus

(E.42)

We may note that . Otherwise, since corresponds to
a expander, we can choose an arbitrary subset
of size , and conclude that

(E.43)

However, from the construction of , we know that
and . Therefore the vector is

-sparse (because the size of is at most ), and we can
apply the RIP-1 condition of Lemma E.1 to it, which yields

(E.44)

where . Equations (E.39) and (E.44) result in
(assuming ):

(E.45)

APPENDIX F
ELEMENTARY BOUNDS ON BINOMIAL COEFFICIENTS

For each , define the binomial entropy
(and by

continuity). We make use of the following standard bounds on
the binomial coefficients from [32]:

(F.46)
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