UT Austin, ECE Department

VLSI Design

7. Combinational Circuits

7. Combinational Circuits

- Last module:
- Delay in logic networks
- Logical Effort
- Choosing the best number of stages
- This module:
- Designing CMOS gate networks
- Speeding up combinational gates
D. Z. Pan

Example 2

2) Sketch a design using NAND, NOR, and NOT gates. Assume $\sim S$ is available.

Example 3

3) Sketch a design using one compound gate and one NOT gate. Assume $\sim S$ is available.

D. Z. Pan
7. Combinational Circuits 5

Example 1

module mux(input $s, d 0, d 1$, output y);
assign $y=s \quad$? d1 : d0;
endmodule

1) Sketch a design using AND, OR, and NOT gates.

D. Z. Pan 7. Combinational Circuits 2

Bubble Pushing

- Start with network of AND / OR gates
- Convert to NAND / NOR + inverters
- Push bubbles around to simplify logic
- Use DeMorgan's Law
$D-\leftrightarrow-{ }_{-\infty}^{-\infty}$
(a)

(b)

(a)

D. Z. Pan 7. Combinational Circuits 4

Compound Gates

- Logical Effort of compound gates

UT Austin, ECE Department

VLSI Design

7. Combinational Circuits

Example 4

- The multiplexer has a maximum input capacitance of 16 units on each input. It must drive a load of 160 units. Estimate the delay of the NAND and compound gate designs.

$$
\begin{aligned}
& \text { I C. Combinational Ciro } \\
& \begin{array}{ll}
\mathrm{B}=160 \\
\mathrm{~N}=2 & 16=10
\end{array}
\end{aligned}
$$

$P=2+2=4$
$G=(4 / 3) \llbracket(4 / 3)=16 / 9$
$F=G B H=160 / 9$
$\hat{f}=\sqrt[N]{F}=4.2$
$D=N \hat{f}+P=12.4 \tau$

Compound Solution

$P=4+1=5$
$G=(6 / 3) \llbracket(1)=2$
$F=G B H=20$
$\hat{f}=\sqrt[N]{F}=4.5$
$D=N \hat{f}+P=14 \tau$

Input Order

- Our parasitic delay model was too simple
- Calculate parasitic delay for Y falling
- If A arrives latest? 2τ
- If B arrives latest? 2.33τ

D. Z. Pan

Example 5

- Annotate your designs with transistor sizes that achieve this delay.

Inner \& Outer Inputs

- Inner input is closest to output (A)
- Outer input is closest to rail (B)

- If input arrival time is known
- Connect latest input to inner terminal

7. Combinational Circuits

Asymmetric Gates

- Asymmetric gates favor one input over another
- Example: Suppose input A of a NAND gate is most critical
- Use smaller transistor on A (less capacitance)
- Boost size of noncritical input
- So total resistance is same

- $g_{A}=10 / 9$
- $g_{B}=2$
- $g_{\text {total }}=g_{A}+g_{B}=28 / 9$

- Asymmetric gate approaches $g=1$ on critical input
- But total logical effort goes up
D. Z. Pan

7. Combinational Circuits 13

Skewed Gates

- Skewed gates favor one edge over another
- Ex: suppose rising output of inverter is most critical
- Downsize noncritical nMOS transistor

- Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge.
$-g_{u}=2.5 / 3=5 / 6$
$-g_{d}=2.5 / 1.5=5 / 3$

Symmetric Gates

- Inputs can be made perfectly symmetric

HI- and LO-Skew

- Logical effort of a skewed gate for a particular transition is the ratio of the input capacitance of that gate to the input capacitance of an unskewed inverter delivering the same output current for the same transition
- Skewed gates reduce size of noncritical transistors
- HI-skew gates favor rising output (small nMOS)
- LO-skew gates favor falling output (small pMOS)
- Logical effort is smaller for favored direction
- But larger for the other direction

Asymmetric Skew

- Combine asymmetric and skewed gates
- Downsize noncritical transistor on unimportant input
- Reduces parasitic delay for critical input

UT Austin, ECE Department

VLSI Design

7. Combinational Circuits

Best P/N Ratio for Least Avg Delay

- We have selected P/N ratio for unit rise and fall resistance ($\mu=2-3$ for an inverter).
- Alternative: ratio for least average delay
- Ex: inverter
- Delay driving identical inverter
$-\mathrm{t}_{\text {pdf }}=(\mathrm{P}+1)$
$-t_{\text {pdr }}=(P+1)(\mu / P)$
$-t_{p d}=(P+1)(1+\mu / P) / 2=(P+1+\mu+\mu / P) / 2$
- Differentiate $t_{\text {pd }}$ w.r.t. P
- Least delay for $\mathrm{P}=\sqrt{\mu}$

P/N Ratios

- In general, best P / N ratio for lowest avg delay is the square root of that giving equal delay
- Only improves average delay slightly for inverters
- But significantly decreases area and power for NOR

- In practice, P / N ratio consideration not really average delay

