EE382V: VLSI Physical Design Automation Spring 2015 (Prof. David Pan)

Homework \#4: due April 13, 2015

1. ILP based global routing: Formulate an ILP-based routing problem for the following netlist: $\left\{n_{1}=B_{2}-B_{4}-B_{6}, n_{2}=B_{3}-B_{4}, n_{3}=B_{1}-B_{2}-B_{5}-B_{6}, n_{4}=B_{2}-B_{5}\right\}$. Assume that the capacity of each boundary is as follows: $\left\{B_{1}-B_{2}: 3, B_{2}-B_{3}: 4, B_{4}-B_{5}: 5, B_{5}-B_{6}: 4, B_{1}-B_{4}: 7, B_{2}-B_{5}: 5, B_{3}-B_{6}: 3\right\}$.

$$
\begin{array}{|l|l|l|}
\hline B_{1} & B_{2} & B_{3} \\
\hline B_{4} & B_{5} & B_{6} \\
\hline
\end{array}
$$

2. Maze \& line search algorithm: For each given algorithm that finds a path from s to t on the following grid, (i) fill in the visited cells with proper labels, (ii) give the total number of cells visited, and (iii) give the length of the path found.

a) Lee's maze router with double fan-out
b) Lee's maze router with Akers' 1122 sequence
c) Hadlock's minimum detour router
d) How many lines and exit points will Mikami-Tabuchi and Hightower algorithm generate?
