
Example

12

3

4

5

6

12

3

4
5

6 G
G

2
1

(a) (b)

Figure 6: (a) A circuit to be partitioned (b) Its corre-
sponding graph

Chapter 2: Partitioning – p.30



Example - contd
• Step 1: Initialization.

Let the initial partition be a random division of vertices
into the partition A={2,3,4} and B={1,5,6}.

A′ = A ={2,3,4}, and B′ = B ={1,5,6}.
• Step 2: Compute D−values.

D1 = E1 − I1 = 1− 0 = +1

D2 = E2 − I2 = 1− 2 = −1

D3 = E3 − I3 = 0− 1 = −1

D4 = E4 − I4 = 2− 1 = +1

D5 = E5 − I5 = 1− 1 = +0

D6 = E6 − I6 = 1− 1 = +0

Chapter 2: Partitioning – p.31



Example - contd
• Step 3: Compute gains.

g21 = D2 +D1 − 2c21 = (−1) + (+1)− 2(1) = −2

g25 = D2 +D5 − 2c25 = (−1) + (+0)− 2(0) = −1

g26 = D2 +D6 − 2c26 = (−1) + (+0)− 2(0) = −1

g31 = D3 +D1 − 2c31 = (−1) + (+1)− 2(0) = +0

g35 = D3 +D5 − 2c35 = (−1) + (+0)− 2(0) = −1

g36 = D3 +D6 − 2c36 = (−1) + (+0)− 2(0) = −1

g41 = D4 +D1 − 2c41 = (+1) + (+1)− 2(0) = +2

g45 = D4 +D5 − 2c45 = (+1) + (+0)− 2(1) = −1

g46 = D4 +D6 − 2c46 = (+1) + (+0)− 2(1) = −1

• The largest g value is g41. (a1, b1) is (4, 1), the gain
g41 = g1= 2, and
A′ = A′−{4}={2,3}, B′ = B′ − {1} = {5, 6}.

Chapter 2: Partitioning – p.32



Example - contd
• Both A′ and B′ are not empty; then we update the
D−values in the next step and repeat the procedure from
Step 3.

• Step 4: Update D−values of nodes connected to (4,1).

The vertices connected to (4,1) are vertex (2) in set A′

and vertices (5,6) in set B′. The new D−values for
vertices of A′ and B′ are given by

D
′

2 = D2 + 2c24 − 2c21 = −1 + 2(1− 1) = −1

D
′

5 = D5 + 2c51 − 2c54 = +0 + 2(0− 1) = −2

D
′

6 = D6 + 2c61 − 2c64 = +0 + 2(0− 1) = −2

Chapter 2: Partitioning – p.33



Example - contd
• To repeat Step 3, we assign Di = D

′

i and then recompute
the gains:

g25 = D2 +D5 − 2c25 = (−1) + (−2)− 2(0) = −3

g26 = D2 +D6 − 2c26 = (−1) + (−2)− 2(0) = −3

g35 = D3 +D5 − 2c35 = (−1) + (−2)− 2(0) = −3

g36 = D3 +D6 − 2c36 = (−1) + (−2)− 2(0) = −3

• All the g values are equal, so we arbitrarily choose g36,
and hence the pair (a2, b2) is (3, 6),

g36 = g2 = −3,
A′ = A′ − {3} = {2},
B′ = B′ − {6} = {5}.

Chapter 2: Partitioning – p.34



Example - contd
• The new D−values are:

D
′

2 = D2 + 2c23 − 2c26 = −1 + 2(1− 0) = 1

D
′

5 = D5 + 2c56 − 2c53 = −2 + 2(1− 0) = 0

• The corresponding new gain is:
g25 = D2 +D5 − 2c52 = (+1) + (0)− 2(0) = +1

• Therefore the last pair (a3, b3) is (2,5) and the
corresponding gain is g25 = g3 = +1.

Chapter 2: Partitioning – p.35



Example - contd
• Step 5: Determine k.
• We see that g1 = +2, g1 + g2 = −1, and
g1 + g2 + g3 = 0.

• The value of k that results in maximum G is 1.
• Therefore, X = {a1} = {4} and Y = {b1} = {1}.
• The new partition that results from moving X to B and Y

to A is, A = {1, 2, 3} and B = {4, 5, 6}.
• The entire procedure is repeated again with this new

partition as the initial partition.
• Verify that the second iteration of the algorithm is also

the last, and that the best solution obtained is
A = {1, 2, 3} and B = {4, 5, 6}.

Chapter 2: Partitioning – p.36



Time Complexity
• Computation of the D−values requires O(n2) time

((O(n) for each node).
• It takes constant time to update any D−value. We update

as many as (2n− 2i) D−values after swapping the pair
(ai, bi).

• Therefore the total time spent in updating the D−values
can be

n
∑

i=1

(2n− 2i) = O(n2)

• The pair selection procedure is the most expensive step in
the Kernighan-Lin algorithm. If we want to pick (ai, bi),
there are as many as (n− i+ 1)2 pairs to choose from
leading to an overall complexity of O(n3). Chapter 2: Partitioning – p.37



Time Complexity - contd
• To avoid looking at all pairs, one can proceed as follows.
• Recall that, while selecting (ai, bi), we want to maximize
gi = Dai

+Dbi − 2caibi .

• Suppose that we sort the D−values in a decreasing order
of their magnitudes. Thus, for elements of Block A,

Da1 ≥ Da2 ≥ · · · ≥ Da(n−i+1)

• Similarly, for elements of Block B,

Db1 ≥ Db2 ≥ · · · ≥ Db(n−i+1)

Chapter 2: Partitioning – p.38



Time Complexity - contd
• Sorting requires O(n log n).
• Next, we begin examining Dai

and Dbj pairwise.
• If we come across a pair (Dak

, Dbl) such that (Dak
+Dbl)

is less than the gain seen so far in this improvement
phase, then we do not have to examine any more pairs.

• Hence, if Dak
+Dbl < gij for some i, j then gkl < gij .

• Since it is almost never required to examine all the pairs
(Dai

, Dbj), the overall complexity of selecting a pair
(ai, bi) is O(n log n).

• Since n exchange pairs are selected in one pass, the
complexity of Step 3 is O(n2 log n).

Chapter 2: Partitioning – p.39



Time Complexity - contd
• Step 5 takes only linear time.

• The complexity of the Kernighan-Lin algorithm is O(pn2 log n), where
p is the number of iterations of the improvement procedure.

• Experiments on large practical circuits have indicated that p does not
increase with n.

• The time complexity of the pair selection step can be improved by
scanning the unsorted list of D−values and selecting a and b which
maximize Da and Db. Since this can be done in linear time, the
algorithm’s time complexity reduces to O(n2).

• This scheme is suited for sparse matrices where the probability of

cab > 0 is small. Of course, this is an approximation of the greedy

selection procedure, and may generate a different solution as compared

to greedy selection.

Chapter 2: Partitioning – p.40




