Example

Figure 6: (a) A circuit to be partitioned (b) Its corresponding graph

Example - contd

Step 1: Initialization.
Let the initial partition be a random division of vertices into the partition $A=\{2,3,4\}$ and $B=\{1,5,6\}$.

$$
A^{\prime}=A=\{2,3,4\}, \quad \text { and } \quad B^{\prime}=B=\{1,5,6\} .
$$

- Step 2: Compute D-values.

$$
\begin{aligned}
& D_{1}=E_{1}-I_{1}=1-0=+1 \\
& D_{2}=E_{2}-I_{2}=1-2=-1 \\
& D_{3}=E_{3}-I_{3}=0-1=-1 \\
& D_{4}=E_{4}-I_{4}=2-1=+1 \\
& D_{5}=E_{5}-I_{5}=1-1=+0 \\
& D_{6}=E_{6}-I_{6}=1-1=+0
\end{aligned}
$$

Example - contd

Step 3: Compute gains.

$$
\begin{aligned}
& g_{21}=D_{2}+D_{1}-2 c_{21}=(-1)+(+1)-2(1)=-2 \\
& g_{25}=D_{2}+D_{5}-2 c_{25}=(-1)+(+0)-2(0)=-1 \\
& g_{26}=D_{2}+D_{6}-2 c_{26}=(-1)+(+0)-2(0)=-1 \\
& g_{31}=D_{3}+D_{1}-2 c_{31}=(-1)+(+1)-2(0)=+0 \\
& g_{35}=D_{3}+D_{5}-2 c_{35}=(-1)+(+0)-2(0)=-1 \\
& g_{36}=D_{3}+D_{6}-2 c_{36}=(-1)+(+0)-2(0)=-1 \\
& g_{41}=D_{4}+D_{1}-2 c_{41}=(+1)+(+1)-2(0)=+2 \\
& g_{45}=D_{4}+D_{5}-2 c_{45}=(+1)+(+0)-2(1)=-1 \\
& g_{46}=D_{4}+D_{6}-2 c_{46}=(+1)+(+0)-2(1)=-1
\end{aligned}
$$

- The largest g value is $g_{41} \cdot\left(a_{1}, b_{1}\right)$ is $(4,1)$, the gain $g_{41}=g_{1}=2$, and
$A^{\prime}=A^{\prime}-\{4\}=\{2,3\}, B^{\prime}=B^{\prime}-\{1\}=\{5,6\}$.

Example - contd

Both A^{\prime} and B^{\prime} are not empty; then we update the D-values in the next step and repeat the procedure from Step 3.

- Step 4: Update D-values of nodes connected to $(4,1)$.

The vertices connected to $(4,1)$ are vertex (2) in set A^{\prime} and vertices $(5,6)$ in set B^{\prime}. The new D-values for vertices of A^{\prime} and B^{\prime} are given by

$$
\begin{aligned}
& D_{2}^{\prime}=D_{2}+2 c_{24}-2 c_{21}=-1+2(1-1)=-1 \\
& D_{5}^{\prime}=D_{5}+2 c_{51}-2 c_{54}=+0+2(0-1)=-2 \\
& D_{6}^{\prime}=D_{6}+2 c_{61}-2 c_{64}=+0+2(0-1)=-2
\end{aligned}
$$

Example - contd

To repeat Step 3, we assign $D_{i}=D_{i}^{\prime}$ and then recompute the gains:

$$
\begin{aligned}
& g_{25}=D_{2}+D_{5}-2 c_{25}=(-1)+(-2)-2(0)=-3 \\
& g_{26}=D_{2}+D_{6}-2 c_{26}=(-1)+(-2)-2(0)=-3 \\
& g_{35}=D_{3}+D_{5}-2 c_{35}=(-1)+(-2)-2(0)=-3 \\
& g_{36}=D_{3}+D_{6}-2 c_{36}=(-1)+(-2)-2(0)=-3
\end{aligned}
$$

- All the g values are equal, so we arbitrarily choose g_{36}, and hence the pair $\left(a_{2}, b_{2}\right)$ is $(3,6)$,

$$
\begin{aligned}
& g_{36}=g_{2}=-3, \\
& A^{\prime}=A^{\prime}-\{3\}=\{2\}, \\
& B^{\prime}=B^{\prime}-\{6\}=\{5\} .
\end{aligned}
$$

Example - contd

The new D-values are:

$$
\begin{aligned}
& D_{2}^{\prime}=D_{2}+2 c_{23}-2 c_{26}=-1+2(1-0)=1 \\
& D_{5}^{\prime}=D_{5}+2 c_{56}-2 c_{53}=-2+2(1-0)=0
\end{aligned}
$$

- The corresponding new gain is:
$g_{25}=D_{2}+D_{5}-2 c_{52}=(+1)+(0)-2(0)=+1$
- Therefore the last pair $\left(a_{3}, b_{3}\right)$ is $(2,5)$ and the corresponding gain is $g_{25}=g_{3}=+1$.

Example - contd

Step 5: Determine k.
We see that $g_{1}=+2, g_{1}+g_{2}=-1$, and
$g_{1}+g_{2}+g_{3}=0$.

- The value of k that results in maximum G is 1 .
- Therefore, $X=\left\{a_{1}\right\}=\{4\}$ and $Y=\left\{b_{1}\right\}=\{1\}$.
- The new partition that results from moving X to B and Y to A is, $A=\{1,2,3\}$ and $B=\{4,5,6\}$.
- The entire procedure is repeated again with this new partition as the initial partition.
- Verify that the second iteration of the algorithm is also the last, and that the best solution obtained is $A=\{1,2,3\}$ and $B=\{4,5,6\}$.

Time Complexity

Computation of the D-values requires $O\left(n^{2}\right)$ time ($(O(n)$ for each node).

- It takes constant time to update any D-value. We update as many as $(2 n-2 i) D$-values after swapping the pair $\left(a_{i}, b_{i}\right)$.
- Therefore the total time spent in updating the D-values can be

$$
\sum_{i=1}^{n}(2 n-2 i)=O\left(n^{2}\right)
$$

- The pair selection procedure is the most expensive step in the Kernighan-Lin algorithm. If we want to pick $\left(a_{i}, b_{i}\right)$, there are as many as $(n-i+1)^{2}$ pairs to choose from leading to an overall complexity of $O\left(n^{3}\right)$.

Time Complexity - contd

To avoid looking at all pairs, one can proceed as follows.

- Recall that, while selecting $\left(a_{i}, b_{i}\right)$, we want to maximize $g_{i}=D_{a_{i}}+D_{b_{i}}-2 c_{a_{i} b_{i}}$.
- Suppose that we sort the D-values in a decreasing order of their magnitudes. Thus, for elements of Block A,

$$
D_{a_{1}} \geq D_{a_{2}} \geq \cdots \geq D_{a_{(n-i+1)}}
$$

- Similarly, for elements of Block B,

$$
D_{b_{1}} \geq D_{b_{2}} \geq \cdots \geq D_{b_{(n-i+1)}}
$$

Time Complexity - contd

Sorting requires $O(n \log n)$.

- Next, we begin examining $D_{a_{i}}$ and $D_{b_{j}}$ pairwise.
- If we come across a pair $\left(D_{a_{k}}, D_{b_{l}}\right)$ such that $\left(D_{a_{k}}+D_{b_{l}}\right)$ is less than the gain seen so far in this improvement phase, then we do not have to examine any more pairs.
- Hence, if $D_{a_{k}}+D_{b_{l}}<g_{i j}$ for some i, j then $g_{k l}<g_{i j}$.
- Since it is almost never required to examine all the pairs ($D_{a_{i}}, D_{b_{j}}$), the overall complexity of selecting a pair $\left(a_{i}, b_{i}\right)$ is $O(n \log n)$.
- Since n exchange pairs are selected in one pass, the complexity of Step 3 is $O\left(n^{2} \log n\right)$.

Time Complexity - contd

Step 5 takes only linear time.
The complexity of the Kernighan-Lin algorithm is $O\left(p n^{2} \log n\right)$, where p is the number of iterations of the improvement procedure.

- Experiments on large practical circuits have indicated that p does not increase with n.
- The time complexity of the pair selection step can be improved by scanning the unsorted list of D-values and selecting a and b which maximize D_{a} and D_{b}. Since this can be done in linear time, the algorithm's time complexity reduces to $O\left(n^{2}\right)$.
- This scheme is suited for sparse matrices where the probability of $c_{a b}>0$ is small. Of course, this is an approximation of the greedy selection procedure, and may generate a different solution as compared to greedy selection.

