Network Flow Based Partitioning
e Min-cut balanced partitioning: Yang and Wong, ICCAD-94. S
— Based on max-flow min-cut theorem.

S0

AN

P2]

e Gate replication for partitioning: Yang and Wong, ICCAD-95.

e Performance-driven multiple-chip partitioning: Yang and Wong, FPGA’'94,
ED&TC-95.

e Multi-way partitioning with area and pin constraints: Liu and Wong,
ISPD-97.

e Multi-resource partitioning: Liu, Zhu, and Wong, FPGA-98.
e Partitioning for time-multiplexed FPGAs: Liu and Wong, ICCAD-98.

pand
Note
Selected in The Best of ICCAD (20 years of Excellence in Computer Aided Design), Kluwer Academic Publishers. 2003

Flow Networks

A flow network G = (V,FE) is a directed graph in which
each edge (u,v) € E has a capacity c(u,v) > 0.

There is exactly one node with no incoming (outgoing) edges,
called the source s (sink t).

A flow f:V xV — R satisfies
— Capacity constraint: f(u,v) < ¢(u,v),Vu,v € V.
— Skew symmetry: f(u,v) = —f(v,u),Vu,v € V.

— Flow conservation: Y oy f(u,v) =0,Vu € V — {s,t}.

The value of a flow f: |f| = Yyey f(5,0) = Yyev f(v,1)

e Maximum-flow problem: Given a flow network G with
source s and sink t, find a flow of maximum value from s
to t.

flow/capacity

max flow [f| =16+ 7 = 2

Max-Flow Min-Cut

e A cut (X, X) of flow network G = (V, E) is a partition of V
into X and X =V — X such that s€ X and t € X.

— Capacity of a cut: cap(X,X) =3, cx e c(u,v). (Count
only forward edges!)

e Max-flow min-cut theorem Ford & Fulkerson, 1956.

— f is a max-flow <= |f| = cap(X,X) for some min-cut
(X, X).

flow/capacity

max flow |f| =16+ 7 =23
cap(X, X)=12+7+4=23

Network Flow Algorithms

e An augmenting path p is a simple path from s to t with the
following properties:

— For every edge (u,v) € E on p in the forward direction (a
forward edge), we have f(u,v) < c(u,v).

— For every edge (u,v) € E on p in the reverse direction (a
backward edge), we have f(u,v) > 0.

e f is a max-flow <= no more augmenting path.

12

16 @@ 20 12/16) LA 12/20 16/16 '12/12 AN 16/20
13 ﬁ ’ 13 ﬁ H 13 ﬂ
4 - 4) 4

& 14 & & ® 4/14
\
16/16 e’ == @ 19/20 16/16 @ = @ 19/20 16/16 e’ = @ 19/20
e O BTG BTG i
3/13 @ vy 7/13 @ Gy s 7/13 2 Gy N

e First algorithm by Ford & Fulkerson in 1959: O(|E||f]|); First
polynomial-time algorithm by Edmonds & Karp in 1969:
O(|E|2|V|); Goldberg & Tarjan in 1985: O(|E||V|1g(|V|?/|E|)),

etc.

Network Flow Based Partitioning

e \Why was the technique not wisely used in partitioning?

— Works on graphs, not hypergraphs.

— Results in unbalanced partitions; repeated min-cut for bal-
ance: |V| max-flows, time-consuming!

e Yang & Wong, ICCAD-94.
— Exact net modeling by flow network.
— Optimal algorithm for min-net-cut bipartition (unbalanced).

— Efficient implementation for repeated min-net-cut: same
asymptotic time as one max-flow computation.

Min-Net-Cut Bipartition

Net modeling by flow network:

A min-net-cut (X, X) in N «—= A min-capacity-cut (X’, X’)
in N'.

Size of flow network: |V'| < 3|V|, |E'| < 2|E| 4+ 3|V].

Time complexity: O(min-net-cut-size) x|E| = O(|V||E|).

pand
Note
In this figure, there are four nodes and three nets. Don't confuse the s and t. They are just regular node names. The three nets are

(r; g, s)
(s; r, t)
(g; t)

pand
Note
This shows the new constructed graph.

Repeated Min-Cut for Balanced Bipartition
(FBB)

e Allow component weights to deviate from (1—¢)W/2 to (1+
e)W/2.

(X3,%3) (X3, %3)

O An un-saturated net @ A saturated net © A node to be collapsed to s or

Incremental Flow

Repeatedly compute max-flow: very time-consuming.

No need to compute max-flow from scratch in each iteration.
Retain the flow function computed in the previous iteration.
Find additional flow in each iteration. Still correct.

FBB time complexity: O(|V||FE|), same as one max-flow.

— At most 2|V| augmenting path computations.

* At each augmenting path computation, either an aug-
menting path is found, or a new cut is found, and at
least 1 node is collapsed to s or t.

x At most |f| < |V| augmenting paths found, since bridg-
ing edges have unit capacity.

— An augmenting path computation: O(|E|) time.

e]

X2) j

(X3,X3)

=

pand
Note
Please refer to the TCAD papers for details

