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Iterative Placement Improvement 
by Network Flow Methods 

Konrad Doll, Frank M. Johannes, and Kurt J. Antreich, Fellow, IEEE 

Abstract-We describe an efficient iterative improvement pro- 
cedure for row-based cell placement with special emphasis on the 
objective function used to model net lengths. Two new net models 
are introduced and we prove theoretically that the net models 
are accurate approximations of the widely used half perimeter 
of a rectangle enclosing all pins of a net. In addition, unlike the 
half perimeter model, our net models allow us to compute costs 
for assigning cells to locations independently for all cells to be 
placed simultaneously. This offers our algorithm an important 
advantage compared to other iterative improvement techniques: 
many cells can be placed simultaneously by formulating place- 
ment as a network flow problem. This makes our algorithm more 
independent from a processing sequence than standard iterative 
improvement techniques. Finally, we compare our method to 
some existing algorithms including TimberWoifSC 5.4. We ran all 
of the algorithms on the SIGDA Benchmark Suite. We found that 
our method produced solutions with up to 23% less layout area 
while using an order of magnitude less running time compared 
to TimberWolfSC 5.4. 

1. INTRODUCTION 
HERE ARE two challenging demands in automated lay- T out synthesis of application specific integrated circuits 

(ASIC’s). Firstly, for a highquality layout the circuit’s per- 
formance should be maximized and the chip area should be 
minimized. Secondly, layout design tools must be able to treat 
circuits with complexities of tens of thousands of cells. These 
two goals will become even more important with the expected 
increased usage of high-level synthesis tools. Either goal can 
only be approached at additional computing cost. For circuits 
of moderate complexities, current methods can satisfy both 
demands. But, for very large high-performance circuits, either 
excessive computation times have to be accepted or layout 
quality must be compromised. 

To support the layout design of very large circuits, we 
have focused our research on placement algorithms, since it 
is during placement that the most crucial design decisions 
must be made. To both ease the placement and the routing 
tasks and allow the use of existing cell libraries, we adopt the 
popular row-oriented layout style with cells of equal heights 
and differing widths. This style is widely used for standard- 
cell circuits and for conventional gate arrays. It has also 
been successfully applied to the sea-of-gates layout style. For 
solving the placement problem, algorithms using constructive 
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and iterative improvement techniques have been proposed [ 11, 
121. 

Constructive algorithms fall into two major classes, the 
partitioning-based algorithms 131, [4] and the analytical algo- 
rithms 151-[7]. Recently, high-quality solutions were obtained 
with algorithms combining both strategies 181-1111. Construc- 
tive algorithms are usually fast and produce good results 
because of their global view of the problem. However, they 
are generally restricted in the choice of objectives and often 
do not yield the global optimum of the placement problem. 

Iterative placement improvement algorithms aim at im- 
proving existing solutions, especially placements obtained 
with constructive algorithms. Typically, in one iterative step 
they select a small and local subproblem to be solved by 
exact or heuristic methods. These algorithms also divide into 
two classes depending upon whether they apply random or 
deterministic techniques. 

Iterative improvement methods based on randomized al- 
gorithms never reject better solutions, but they also accept 
intermediate placements of inferior quality with low probabil- 
ities. Thus, they have the ability to escape local optima and 
to approach the global optimum arbitrarily close if sufficient 
computation time is provided. Since this is not always practi- 
cable, particularly for large circuits, layout quality is compro- 
mised. There are two basic randomized methods-Simulated 
Evolution 1121, [ 131 and Simulated Annealing (SA) [14]-[16]. 

For algorithms applying the SA principle, it has been proved 
that they will provide a solution arbitrarily close to the global 
optimum if enough time is given. The semi-custom placement 
and routing package TimberWolfSC 1161 is the dominant 
application that combines elaborate heuristics with the SA 
principle. 

Deterministic placement improvement methods [ 171 usually 
offer the designer the choice in placement objectives, but they 
can get trapped in a local optimum. Since our research is 
particularly directed towards very large circuits, we concen- 
trate on deterministic methods, which in general are much 
less computationally expensive than randomized methods. 

The application of the exact and computationally efficient 
method of linear assignment has been proposed for solving 
placement problems with iterative techniques. It has been 
used previously to translate a global placement containing 
overlapping cells into an overlap-free final placement by 
minimizing the distance cells are moved away from their 
overlapping positions [ 181. Linear assignment algorithms have 
also been proposed for solving the special placement problem, 
where all the cells have the same size and the possible 
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algorithm DOMINO 
initial-placement; 
while (improvement) 

end 
adjust-row-lengths; 
swap-cells; 

generate-improved-placement; 

end 

Fig. 1. Outline of the algorithm DOMINO. 

locations are specified. In [19] cells of the same size are 
assigned to blocks in order to maximize the number of 
connections within the blocks. If the costs of assigning cells 
to locations are independent of each other, the placement task 
can be performed by iteratively selecting sets of unconnected 
cells and assigning them to locations [20], [21]. However, pre- 
vious research experience with the unconnected sets technique 
indicates limited success [ 11, [ 171, [22] because components 
in highly interconnected groupings (a common occurrence in 
modem circuits) are not moved with respect to each other 
and nets with large numbers of pins tend to limit component 
movement. 

Another linear assignment method [22] deliberately chooses 
a less sophisticated placement measure to avoid these dif- 
ficulties. The number of adjacencies of connected cells is 
maximized by using a two-valued distance measure with the 
value 1 for adjacent connected cells and the value 0 for 
nonadjacent connected cells. In other methods [12], [23] nets 
connecting cells to be placed simultaneously are disregarded. 
Thus, if many cells are placed simultaneously, many nets are 
neglected and the assignment costs do not accurately reflect 
the total net length. 

In this paper we show that the linear assignment method 
combined with an appropriate net model can overcome the 
above difficulties and can be applied successfully to determine 
high-quality placements for the row-based layout style. In 
addition, it can be easily modified for layout styles without 
a row structure. 

Our method starts by applying the GORDIANL procedure 
[ 111. The result is an initial placement with overlapping cells, 
that reflects the global structure of the circuit with high 
accuracy. 

To improve the quality of this placement, we apply an 
iterative placement procedure called DOMINO [24]-[26]. To 
allow for cells of different sizes, the placement problem 
is generalized from the linear assignment problem to the 
transportation problem, which we solve by a network flow 
algorithm. Note that, unlike previous methods, we do not adopt 
the unconnected sets technique or neglect the nets connecting 
cells. Instead, we compute an improved placement for sets 
of cells, which may be connected and which are positioned 
near each other in the existing placement. To determine the 
transportation costs of cells to locations, we propose two 
new net models that are similar to the half perimeter of 
the minimum rectangle enclosing the pins of each net. Both 
models accurately reflect the lengths of nets connecting cells 
to be placed simultaneously. 

Our paper is organized as follows. The next section con- 
tains a global outline of our iterative improvement procedure 
DOMINO. Section I11 describes the new net models used and 
shows the accuracy of these models in comparison to the half 
perimeter. In Section IV, results of benchmark examples are 
presented. Based on the final chip area obtained after final 
routing, comparisons with the simulated annealing method 
TimberWolfSC 5.4 [16], the quadrisection method [4] applied 
in VPNR, and GORDIANL are presented showing excellent 
performance of our placement tool. 

11. OUTLINE OF THE PROCEDURE 

The input to DOMINO consists of a net list, a cell library, 
and a description of the geometry of the chip. The net list 
is described by the sets C and N of the cells and the nets, 
respectively. All cells connected by net v are in the set C,. 
All nets connected to a cell y are in the set N7. The placement 
algorithm DOMINO is shown in Fig. 1. It is composed of four 
main steps to be discussed in the following subsections. 

A. Initial Placement 

In the first step we determine an initial placement using 
the GORDIANL procedure [lo], [ 1 11. GORDIANL has been 
developed to place circuits with tens of thousands of cells. It is 
based on alternating global optimization and partitioning steps, 
thereby treating all cells simultaneously during all steps of 
partitioning. Wire length is minimized during global placement 
by solving a quadratic programming problem that has been 
proved to be efficiently solvable for examples with as many 
as 100,000 cells. The resulting placement will in general 
contain overlapping cells. It is often called point, global or 
relative placement, since the cells are treated as points and 
the placement reflects the optimal cell adjacencies in a global 
view. We use the point coordinates of the cells as an initial 
placement for our iterative improvement process. 

B. Generation of an Improved Placement 

The iterative process produces a sequence of intermediate 
placements. In each iterative step, an improved placement is 
generated from a current placement. After each generation, 
the placement is free of interspersed spaces and overlapping 
cells. The process terminates when after several generations 
no significant improvement is achieved. 

Each generation of an improved placement is performed by 
solving a set of similar local subproblems. For that purpose 
the layout area is covered by an array of overlapping regions 
(Fig. 2). To each region e we assign all cells currently placed 
inside that region. In the special case of the first generation, 
when the current placement is the point placement with 
possibly overlapping cells, we assign the cells to regions 
by recursively bipartitioning the set of cells with alternat- 
ing horizontal and vertical cuts. Thus, even if the initial 
placement is a clustered placement, the cells are spread out 
over all regions. A subproblem consists of rearranging the 
cells currently placed inside a region. Since the cells have 
different widths, their rearrangement may produce overlaps 
and unused spaces. To construct a legal placement, we use 
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Fig. 2. Dividing the layout area into overlapping regions. 
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Fig. 3 .  Generation of an improved placement. 

a simple but effective strategy-our constructed placements 
grow like crystals. A similar strategy has also been applied 
to compaction with success [27]. To preserve our analogy of 
growing the placement like a crystal, throughout the remainder 
of this paper we use a rotated view of the circuit. Thus, we 
take a column-oriented approach and have vertical rather than 
horizontal channels. 

Suppose we are generating an improved placement from a 
current placement as shown in Fig. 3 by traversing through 
the regions from bottom to top. For the lower regions we 
have already produced an improved overlap-free and compact 
placement. The dark jagged line immediately above these 
lower regions is called the border line. The rearrangement 
process takes the cells in the next region e and assigns them so 
that they abut the border line and are overlap free. The process 
is repeated on the remaining regions that are adjacent to the 
border line. Once the cells in all regions that are adjacent to the 
border line have been placed, the border line is moved to be 
immediately above the just-placed cells. The regions adjacent 
to the new border line are similarly processed. This process 
continues until the cells in all regions have been rearranged. 
Once all the regions have been processed, this generation of 
rearrangement is finished. In successive generations, different 
orderings of the regions are used. As the regions overlap each 
other, cells can move from one region to another during the 
rearrangement process. 

algorithm generation 
for all regions e 

get-cells; 
provide-locations; 
solve-transportation-problem; 
move-cells; 

end 
end 

Fig. 4. Outline of the algorithm generution. 

lateral border 
of region e 

location A 
for a subcell 

Fig. 5. Providing locations. 

The pseudocode of the generation algorithm is shown in 
Fig. 4. In each region e the cells are assigned to new positions 
by formulating a transportation problem, where units of cell 
area (subcells) are transported to locations according to a cost 
function approximating wire length. The four major operations 
of the algorithm are described below. 

In each region we first determine the set of cells C, inside 
region e with get-cells. To account for the different cell 
heights, we divide each cell p E C, into scL subcells. Thus, 
the area of a cell is modeled by a suitable number of subcell 
area units. Typically, we choose the subcell size equal to the 
greatest common divisor of the cell sizes. 

Next, we provide locations for all subcells above the border 
line between the vertical borders of region e. Columns are 
filled with locations to form a straight line on top as shown in 
Fig. 5.  The set of the locations is denoted by Le. 

We then simultaneously transport the subcells to locations in 
an overlap-free manner that minimizes the transportation cost. 
The transportation problem can be transformed into a minimal- 
cost maximum flow problem [2] on a network as shown in 
Fig. 6. This network consists of a source node S supplying 
subcells, a set of cell nodes p, a set of location nodes A, and 
a destination node D. The capacities of arcs between node S 
and cell nodes are scL such that cell p can supply at most scL 
subcells. Since each location can hold at most one subcell, all 
capacities of arcs leading from location nodes to node D are set 
to one. The cost of assigning a subcell of cell p to location X is 
cPx. A detailed description and a theoretical analysis of the net 
model used to determine the cost ccLx follows in Section 111. By 
using the flow augmentation method [28], E23 the procedure 
solve-transportationproblem can efficiently assign subcells to 
locations at minimum total transportation cost. 

After solving the transportation problem we have assigned 
all subcells to locations. Since the same transportation cost is 
associated with all subcells of a cell and all subcells of a cell 
are pulled towards the cheapest location by the transportation 
algorithm, all subcells of a cell tend to lie side by side. This 
intuition was confirmed by our experimental results. Therefore, 
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Furthermore, let x = [. . . , L,, . . . IT  and y = [. . . , yy, . . . IT  
denote the vectors with the unknown coordinates of all cells 
y E C,. The coordinates of all cells outside region e are known 
and do not change when processing region e. The vectors x, = 
[. . . ,xy,.. .IT and y, = [. . . , yr, . . .IT contain the unknown 
coordinates of the 1,-cells. Let xu = [. . . ,gy,. . .IT and y, = 
[. . . I g), I . . . I T  denote the vectors with the known coordinates 
(gy,gy) of the 1,-cells from the current placement. The half 
perimeter L, of the minimum rectangle enclosing all pins of 
net v is 

0070 
L, = max{lc,} - min{q} + max{y,} - min{y,}. (1) 

Fig. 6. Transportation network (arcs are labeled with capacity, cost). 7EC" 7EC" 7EC" 7EC" 

A. Transuortution Costs 
in the procedure move-cells we place a cell in the column 
holding most of its subcells. In case of a tie, the cell is 
moved to the column containing the subcell, which causes 
the minimum transportation cost. The center of gravity of the 

Before the transportation problem is solved the cost C ~ , X  of 
assigning a subcell of cell p E C, to location X E Le with the 
coordinates ( x ~ ,  y ~ )  is calculated by 

cpX = r p u ( x p , Y p )  with x p  = x X , y p  = YX, (2 )  subcells determines the y-coordinate of a cell. We skck the 
cells according to these y-coordinates, thus preventing overlap 
and unused space. 

VGN, 

C. Adjustment of Column Lengths 

After the generation process, the column lengths generally 
differ no more than 5% from the average column length. 
The goal of column lengths adjustment is to make sure that 
all columns will have equal lengths after final routing. This 
computation includes an estimation of the feedthroughs for 
the various columns. To get columns of equal lengths as far 
as possible, few cells are exchanged between neighboring 
columns. This usually results in a 1..  .2% increase of the 
estimated wire length. 

D. Swapping of Cells 

In the final step of the iterative improvement process, we 
only perform intra-column swaps limiting region width to 
one column. Since the rearrangement of adjacent cells in a 
column does not produce any overlaps and unused spaces, a 
legal placement is generated after each call of move-cells. To 
construct a highly optimized placement, only rearrangements 
are accepted that result in a decreased estimated wire length. 

111. NEW NET MODELS 
At the beginning of this section, we show how the trans- 

portation costs are computed. For this purpose two new 
net models-net model I and net model 11-are introduced. 
Finally, these two net models are analyzed theoretically. 

For the computation of the transportation costs and the 
description of the new net models, we need some definitions. 

where rp,(zp, y p )  is the wire length estimate of net v. 
The cost c p ~  of the cell p has to be independent from the 

positions of the cells y E C,\{p} (all cells in region e except 
cell p), because their positions are unknown when calculating 
the cost cpx.  This means that rpu has to be independent from 
the positions of the cells y E Z,,\{p} (all cells in region Q 
connected to net v except cell p), i.e. 

r p u b p ,  Yp) # r p u ( x y ,  Yy), 7 E L \ { P } .  (3) 

Since the half perimeter depends on the positions of all 1,- 
cells ( L ,  = L,(x,,y,)), the half perimeter L,(x,,y,) is 
generally not suitable for the computation of I ' p u ( x p ,  yp) .  
Therefore, we approximate the half perimeter with two new 
net models that satisfy ( 3 ) .  Then, the optimal positions of 
the subcells with respect to these net models can easily be 
determined by a transportation algorithm. The accuracy of 
both net models with respect to the half perimeter will be 
discussed in Section 1II.B. 

For the following computation of rpu ( xp, yp) ,  three net 
types will be considered depending on the number of 1,-cells: 

Type A: l1,l = 1 
Type B: 1 < 11,1 < IC,I 
Type C: JZ,( = IC,[ 

Introduction of Net Model I: 
Type A: This type applies to 11,1 = 1, i.e. net v connects 

only one 1,-cell ,LL with some 0,-cells. Then, the wire length 
estimate rpU(zp, y p )  does not depend on the positions of other 
cells in region e and F p u ( x p ,  y p )  can be calculated exactly: 

Let (xy, yy) denote the center coordinates of cell y. To simplify b u ( " c p , Y p )  = LV("ccLI Yp) (4) 
the following discussion, we assume that all nets are connected 
to the center of the cell. Of course, we consider the real pin 
positions in DOMINO. We define the disjoint sets 0, = C,\C, 
and Z, = C, n C, containing all cells connected to net v 
outside and inside region p ,  respectively. The cells in 0, 
and Z, are denoted by U,-cells and 2,-cells, respectively. 

Type B: This type applies to 1 < l1,l < IC,I i.e. net v 
connects more than one Z,-cell with one or more U,-cells. 
This type is illustrated in Fig. 7, where net v connects the 1,- 
cell p with the Z,-cells a and /?, and the 0,-cells E and C. 
Then 1, = { p ,  a ,  p}  and U, = { E ,  C}. 
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Fig. 7. Net Y connecting the cells jt, a,  p, e ,  and C. 

To make the cost values independent, the first net model I 
neglects the interconnection between the Z,-cells and calcu- 
lates the cost values as if each cell was connected only to the 
0,-cells. With the lower and upper bounds for the coordinates 
of the 0,-cells 

the contribution of net v to the cost cpx is 

r p v b p ,  Yp) = max(P, x p )  - min(5, z p )  

+ m=(Y, Yp) - m q y ,  Yp). (6) 

For the net in Fig. 7, the lower and upper bounds Z = 
min(x, ,q) ,  P = max(z,,zc), y = min(y,,yc), y = 
max(y,, yc), are marked on the x- and y-axes. The enclosing 
rectangle calculated by (6) is illustrated by dashed lines. 

Type C: This type applies to lZ,l = IC,[, i.e. net v connects 
only 1,-cells. To prevent net v from being neglected, which 
might increase net length, we introduce a virtual cell 4. All 2, 
-cells are temporarily connected to cell 4, which is positioned 
in the center of gravity of the 1,-cells. The center of gravity 
is calculated with respect to the current placement: 

We obtain the contribution of net v to the cost c p ~  from (5) 
and (6) with 0, = {4 } :  

q & p ,  Yp) = m=(z+, .p) - min(z+, xf i )  

+ max(Y+, Yp) - min(Y+, Yp) (8) 

In Fig. 8 we give an example for this type, i.e. a net v 
connecting the cell p with the cells a and p. The enclosing 
rectangle calculated by (8) is shown by dashed lines. 

To summarize all three net types, we can compute 
r p , ( x p ,  yp) after a suitable choice of 0, for all nets with 

r p U ( x p ,  Yp) = m=(& x p )  - min(j-7 z p )  

+ m=(Y, Yp> - min(Y, Yp). (9) 

region e 
,net model I1 . 1 I ............. I ................................. P 1."" ; I  

$-- net model1 I I I /  

................................... ....... Q. ...................................................... L l  

Fig. 8. Net v connecting the cells jt, cy, and 0. 

Introduction of Net Model II: 
Type A (l1,l = 1): As for net model I, the contribution 

(10) 

rpv (xp, yp) can be calculated exactly: 

~ p v ( z p ,  Yp) = Lv(xpr Yp) 

Type B (1 < lZ,l < IC,l): In contrary to net model I, which 
neglects the interconnection between the 2,-cells (i.e. cells 
p, a, and p in Fig. 7), net model I1 estimates the unknown 
coordinates of the cells y E Z,\{p} at their coordinates 
(gr, yy ) from the current placement. With the lower and upper 
bounds for the estimated coordinates of the cells y E Z,\{p} 

m= { E y } ,  

m= Y }, (11) 

x p  = Zp = min 
yEZ,\(p} { E y ) '  - Y € L \ { P }  

j p  = yE$ep} {yy)l %" = 7 € L \ { P }  {-y 

- 

and the lower and upper bounds for the coordinates of the 
OV-cells (5) the contribution of net v to the cost cpx is 

rpv(xp,yp)  = max(P, ip ,  zp)  - min(2,gp, zp )  

+ m=(Y, - y p ,  Yp) - m i n ( y , g ,  Yp). (12) 

max(:,,:p), j" = min(ya,yp), and gp = max(Y+&) 
In Fig. 7 the lower and upper bounds z p  = min(E,, go), ip = 

are also marked. The enclosing rectangle defined by (12) is 
illustrated by dotted lines. 

Type C (lZ,l = IC,l): Again we introduce the virtual cell 4, 
set 0, = {4 } ,  and estimate the unknown coordinates of the 
cells y E 1,\{p} at their coordinates (g7, yy) from the current 
placement. Then the contribution of net v to the cost cpx is 

qw(.p,Yp) = m=(x+,i?zp) - min(z+,2p,x,) 
+ max(Y+,gp, Yp) - min(Y+,gp, Yp). 

(13) 

The enclosing rectangle calculated by (13) is illustrated by 
dotted lines in Fig. 8. To summarize the three types of net 
model 11, we can compute rp,(zp, yp) after a suitable choice 
of 0, for all nets with 

rpV(zp,yp)  = max(3 , ip ,xp)  - min(Z,gp,xp) 

+ m=(G,gp,Yp) - min(&jp,Yp). (14) 
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Determination of the Cost Functions From the New Net 
Models: For an in-depth analysis of the two new net models 
in the following Section IKB, we need the contribution 
of a single net to the objective function @(x, y) of the 
transportation problem. The objective function is (see (2)) 

With the set Ne = IJP,,,NP of nets connected to cells in 
region e (15) can be wntten as 

In (16) we summarize the terms CPsI, rPV(xP, yP) over all 
nets v E Ne. Each such term can be viewed as the cost function 
e, of net v: 

B. Analysis of the New Net Models 

In this subsection the cost functions &(x,, y,) for the 
net models I and I1 are compared with the half perimeter 
Lv(xv, y,) of a net v. Since the same arguments hold for z- 
and y-coordinates, we consider only x-coordinates. The x-part 
of the half perimeter is (see (1)) 

L,(x,) = max {x7} - min {xy}. 
7EC” 7 E C W  

From (18) and (19) we obtain the x-part of the cost function 
for net model I 

c,(x,) = { m a ( ? ,  xP) - min(2, zP)) (21) 
P E L  

and for net model I1 

t,(x,> = {max(Z,tP,xP) - min(j.,gP,xP)}. (22) 

The half perimeter L,(x,) as well as the cost function l,(x,) 
depends on the unknown coordinates of the 1,-cells. At each 

P E L  

XR 58 

point x, E Rlzul, that means for all possible positions of 
the 2,-cells, we can compute the function values L,(x,) and 
l,(x,). In addition to the function values, we can evaluate the 
gradients of L,(x,) and &(xu), gL(x,) and ge(x,), at each 
point x, E RlzwI, where L,(x,) and l,(x,) are differentiable. 
In the following sections these functions and gradients will be 
theoretically discussed. The important results are: 

1) Net model I has the property that the gradient of the cost 
function gt(x,) has no component pointing opposing 
the gradient of the half perimeter gL(x,). Thus, when 
minimizing the cost function e ,  (x,) by decreasing along 
the axis of the steepest descent, the half perimeter 
L,(x,) is never increased. 

2) For the second net model 11, the gradients of the cost 
function and the half perimeter are equal in the point 
of the current placement, i.e. gL(x, = x,) = gt(x, = 
5,). Therefore, this net model is an accurate approx- 
imation of the half perimeter in the neighborhood of 
the current placement. A similar strategy is also used 
in nonlinear optimization. For example, in each iterative 
step of the steepest descent method [29], a nonlinear 
function is approximated by a linear function whose 
first derivative is equal to the gradient of the nonlinear 
function in the current point. 

Analysis of Net Model I: To illustrate the relation between 
L,(x,) and &(x,), we will first discuss the case l1,l = 2 
and then the general case with arbitrary 12,l. The cost value 
of a net with lZ,l = 1 is calculated exactly (Type A). 

Suppose a net connects two Z,-cells a,P with some 0,- 
cells (Type B). Equations (20) and (21) can be written as 

L,,(x,,zp) =max(P,x,,xp) - min(Z,x,,zp) (23) 
t,(x,, xp) = max(P, 2,) - min(k,z,) 

(24) 

The level contours of both functions are illustrated in Fig. 9, 
where zl and xT are the coordinates of the left and right border 
of region e, respectively. The function values labeling the level 
contours are scaled to ( x T  - 21). 

In the shaded regions of Fig. 9 the difference L,(z,, z p )  - 
&(x,,xp) is constant. This means that the gradients of the 
functions L,(x,,xp) and &,(x,,xp) are equal, if one cell’s 
z-coordinate is smaller than P and the other larger than 2.  
Furthermore, the optimum points (marked black in Fig. 9) of 
the cost function &,(x,,xp) are identical with the optimum 

+ max(P, xp) - min(2, z p ) .  
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X, X, 

0.8 Since x, < . . . < x, < . . < xp we obtain 

max{zy} = z p  and min{x,} = 2,. (29) 
$6 YET" 7 € L  

With (5 )  and (29), (28) can be written as 

X, L,(x,) = L,(z,,xp) = max(xp,P) - min(x,,j:). (30) 

Fig. 10. Net model I: Level contours of L ,  and e ,  for Iz,( = lcvl. 

points of L,(x,, xp). The gradients of the two functions differ 
only outside the shaded regions, where the coordinates of cells 
Q and ,8 are both below j: or both above P. The angle between 
the gradients of both functions is 45' outside the shaded 
regions. Thus, when minimizing C,(x,, xp) by decreasing 
along the direction of the steepest descent of Cu(za, z p )  we 
also reduce L,(x,,xp). If zl > P or xcT < 2, the optimum 
points of both functions are also identical and the angle 
between the gradients is 45". 
For nets connecting only two 1,-cells (Type C) we get 

Lv(xa ,  xp)  = max(x,, x p )  - min(x,, z p )  

&(z,, xp) = m a x ( q ,  x,) - min(z4,xa) 
(25) 

(26) 

from (20) and (21). The virtual cell $ always lies inside the 
region xl 5 x+ 5 2,. Fig. 10 shows the level contours of 

equal in the shaded regions, i.e. the functions are equal, if 
one cell lies on the left-hand side and the other on the right- 
hand side of cell $. Further, the optimum of !,(x,, z p )  is 
contained in the set of optimum points of I,,(%,, z p ) .  For the 
points where Cy(xa, x p )  # Lv(x,, xp), the gradients of both 
functions are orthogonal to each other. 

Now we will discuss the relation between the gradients of 
L,(x,) and C,(x,) in the general case. 

Theorem 1: The scalar product of the gradients of L,(x,) 
and C,(x,), ge(x,) and ge(x,), is always greater or equal 0, i.e. 
&(xu) . ge(x,) 2 0. 

Proof: We will prove this for the Types A, B, C sep- 
arately, by calculating first the two gradients and then the 
scalar product. 

Type A (12, I = 1): For nets with 11, I = 1 the cost function 
l,(xv) and the half perimeter L,(x,) are identical. Thus, the 
gradients are also identical: gL(x,) = ge(x,). For the scalar 
product we get 

+ max(x+, xp)  - min(x+, xp). 

L v ( x a , x ~ p )  and G ( x a , x p ) .  L v ( x , , x p )  and &(xa,xp)  are 

Type B (1 < lZ,l < (C,(): Suppose we are given a net v 
with 2, = { a , .  . . , p,  . . . , ,6} and lZ,l < IC,[. Without loss of 

All other coordinate orderings can be reduced to this case. 
From (20) follows 

generality, we consider the case x, < . . . < x, < . . '  < xp. 

with 

At the points x, = 2 and xp = P the gradient does not exist. 

. . . , gep(zp)lT from (211, we get 
when calculating ge(x,) = [ge,(x,), . . . ,ge,(x,), 

-1 ifx, <j: 

{ 1 i f P < x ,  
ge,(x,) = 0 if j. < x, < P (32) 

for all p E 2,. In the case 5 < x, < xp < P this implies 
that gL = ge = [O,O ,..., O , O I T ,  and the scalar product 
g: . ge = 0. In all other cases simple arithmetic shows that 
gz . ge(x,) = gLa(xa)gea(xa) + gLp(xp)gep(xp) > 0 for 
all x, and z p .  

Type C (lZ,l = [CUI): For nets with 12,( = IC,l, 
g&,) = gL = [aa, 0 , .  . . , 0 ,  a p l T  with ma = -1 
and gLp = 1 follows from (20). From (21) we get 
ge(xu> = [gea(xa), . . . ,gep(xp), . . .gep(xp)lT with 

(33) 

for all p E 1,. In the cases x, < xcp < x+ (all cells lie on the 
left-hand side of cell $) and $6 < x, < xp (all cells lie on the 
right-hand side of cell $) the scalar product gz . ge(xv) = 0, 
where the Euclidean norm of neither gL nor ge(xv) is 0. Thus, 
the gradients are orthogonal to each other. 

In the case x, < z4 < xp (at least one cell lies on the 
left-hand side and one on the right-hand side of cell $) the 
scalar product g: . ge(x,) = 2, and the angle cp between the 
gradients depends on the Euclidean norm of ge and gL(x,). 
Since gLa = -1 and gLp = 1, we obtain the Euclidean norm 
IgLI = a. Because all components of ge are +1 or -1, 
Ige(x,)l = m. The relation between the angle cp and the 
gradients is 

Equation (34) shows that the angle cp lies between 0' for nets 
connecting two cells and 90" for nets connecting an infinite 

Since g;(x,). ge(x,) 2 0, the angle between the gradients 
does not exceed 90". Therefore, we are able to decompose 

number of cells. I7 



Fig. 11 .  Net model 11: Level contours of L ,  and e ,  
lZul = 2 A IZul < [CUI. 

XCl 

for 

the gradient of l,(x,) into two components. One compo- 
nent has the same direction as the gradient of L,(x,), the 
other component is orthogonal to the gradient of L,(x,). 
Thus, minimizing e, (x,) by decreasing along the direction 
of the steepest descent of !,(x,) means that L,(x,) is never 
increased by such a move. 

Analysis of Net Model ZZ: Again, we will first discuss the 
case 11, I = 2. In this case 5" = 2" = gp and Bp = j jp = g,. 

For nets connecting two 1,-cells with some Q,-cells (Type 
B) we obtain 

from (22).  
The level contours of the half perimeter and the cost 

function are illustrated in Fig. 1 1 .  In the shaded regions 
the gradients of the half perimeter and the cost function 
are identical. These regions are smaller than the shaded 
regions of net model I. Outside the shaded regions the angle 
between the gradients is 45" or 90". The optimum points of 
!,(z,, z p )  contain not only the optimum points of Lv(z,, z p ) ,  
but also other points. In these points, &(z,,zp) is not 
further optimized, although there is some potential to de- 
crease the half perimeter L,(z,, $0). At first sight these 
arguments restrict the possibilities of optimizing the half 
perimeter with net model I1 and favor net model I. But 
net model I1 has one important advantage: The gradients of 
L,(z,, z p )  and &,(z,, z p )  are equal at the point of the current 
placement (E,, gp), which is marked with a 0 in Fig. 11. Thus, 
ge(z,, z p )  and gL(z,, z p )  are equal in the neighborhood of 
the current placement. Since the moves of the cells typically 
decrease during the iterative improvement process, net model 
I1 becomes a more and more accurate approximation of the 
half perimeter. 

If a net connects two 2,-cells with no 0,-cells (Type C) ,  
(22) can be written as 

The level contours of the half perimeter and the cost function 
are illustrated in Fig. 12. For this type, the same arguments 
hold as for Type B except that the angle between the gradients 
in the dark shaded regions is 135". This means that the 

X" " P  

Fig. 12. Net model II: Level contours of L, and e ,  for lZvl = ICvI. 

gradients have opposite components, if both cells lie between 
x4 and one of the cell coordinates g,, gp and z, > z p  holds. 
But the gradients of L,(z,, z p )  and Cu(z,, z p )  are again 
equal at the point of the current placement (g,, go). 

Now we will discuss the relation between the gradients of 
Lu(xu)  and l,(x,) in the general case. 

Theorem 2: The scalar product of the gradients g L  (xu) and 
gt(x,) is always greater or equaE 0, if 12,1 < JC,I. 

Proof: Since 12,1 < IC,\, it is sufficient to investigate 
the Types A and B. 

Type A (lZ,( = 1): The same arguments as in the proof of 
Theorem 1 for Type A hold here. Thus, g:(x,) .ge(xv) 2 0. 

Type B (1 < 12,1 < IC,l): Suppose a net v with 2, = 
{a ,  . . . , p, . . . , p}. Without loss of generality we consider the 
case z, < ... < xp < ... < xp. All other coordinate 
orderings can be reduced to this case. gL(x,) = gL(z,,zp) 
has already been calculated in the proof of Theorem 1 (see 
(31)). 

When calculating ge(xv) = [ge,(z:,), . . . , gep(zp) ,  . . ., 
gep(zp)lT from (221, we get 

-1 if zp < min(*,2p) 
0 if min(*,Zp) < x p  < max(?,$') (37) 
1 if rnax(?,ip) < zp 

for all p E 2,. Simple arithmetic shows for all 5,: gLa(za) . 
ge,(za) 2 0 and for all z p :  gLp(zp)  . gep(zp)  2 0. Thus, 

0 
Theorem 3: The gradients gL (xu) and ge (xu) are equal at the 

point x, of the current placement, i.e. gL(x, = IC,) = ge(x, = 

Proof: Again, we will prove this for the Types A,B, and 
C separately. 

Type A(lZ,l = 1): Since for this type the gradients gL(x,) 
and ge(x,) are identical at all points xu ,  this holds also at the 
point zU, i.e.gL(x, = E,) = gg(x, = x,). 

Type B(l < l1,l < IC,l): Suppose we are given a net 
v with Z, = { a , .  . . , p, . . . , p }  and IT,( < JC,I. As in the 

. . .  < go. From (31) follows gL(x, = x,) = [gLa(z, = 

gZ(z,, z p )  . g e b u )  2 0. 

5, 1. 

proof of Theorem 2 we consider the case g, < ... Ep < 

:,), 0, * * * , 0, s L p ( z p  = :p)lT with 
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circuit #cells #pads 
primaryl 752 81 
struct 1888 64 
primary2 2907 107 
biomed 6417 97 
industry2 12142 495 
industry3 15032 68 
auq.smal1 21854 64 
avq.Zarge 25114 64 

1197 

#nets 
904 

1920 
3029 
5742 

13419 
21924 
22120 
25378 

Now, we calculate ge(x, = x,) = [gea($, = 
Zm), . . . ,ge,(zp = :,), . . . , gep(zp = gp)lT. From (37) 
we get 

primaryl 
struct 
primary2 
biomed 

-1 if :, < rnin(5,gp) 
O 
1 if rnax(2,kp) < 2, 

ge,(z, = :,) = if rnin(5,ZP) < E, < rnax(2,kP) 

(39) 
{ 

for all p E 1,. Equation (39) can also be written as: 

, .  . sc 5.4 DOMINOI DOMINOII 
area CPU area CPU area CPU area CPU area CPU 

20.31 794 23.37 99 20.76 81 19.96 151 20.03 168 
6.56 2875 8.23 174 6.48 167 6.38 245 6.20 253 

78.16 5316 95.33 580 78.85 496 78.58 838 78.11 922 
48.22 14631 53.55 5567 45.93 1639 40.43 2742 39.99 2640 

Since ga < . . . < :, < . . . < gp, it follows 

auq.small 
aq.large 
average 

With these inequalities we obtain the components of the 
gradient ge(x, = 5,) from (40): 

161.05 92959 n.a. 129.39 14488 123.57 15963 122.28 17444 
168.07 96564 n.a. 141.38 18537 130.10 20549 129.27 21086 

1.00 1.00 1.18 0.21 0.95 0.13 0.90 0.18 0.89 0.18 

and ge,(z, = 2,) = 0 for all p E Z,\(a,P}. 
After comparing the components of ge(x, = x,) and 
gL(x, = E,) ,  we see that gt(x, = x,) = gL(x, = 5,). 

Type C(lZ,I = IC,l): For nets of this type (20) yields: 
= xu> = [gLa(Za = :A 0 , .  . . ,o ,  gLp(zp = :p)lT 

with gLa(z, = :,) = -1 and gLp(zp  = gp) = 1. 
When calculating ge(x, = z,) = [gea(za = 

x-1 ,... ,ge,(z, = :,) ,..., gep(z:p = gp)lT we set 
2 = Z = z+ in (40). This yields: 

Since the virtual cell q5 is positioned in the center of gravity 
of all &,-cells connected by a net, we get 

With this inequality and the inequalities in (41), (43) yields: 
ge,(z, = E,) = -1, ge,(z, = g,) = 0 for all p E 
Z,\{a,P}, and gep(zp = = 1. When comparing again 
the components of the gradients, we get gL(x, = 5,) = 

0 ge(x, = x,) = [ - l , O , .  . . ,o ,  1]T. 

TABLE I 
CHARACTERISTICS OF BENCHMARK EXAMPLES 

#pins #rows GTG 
21040 
48404 
68290 

TABLE I1 
RESULTS (AREA IN mm2,  CPU TIME IN SECONDS) 

I circuit I1 Timberwolf II VPNR (cprt) 11 GORDIANL 11 GORDIANL& 11 GORDIANL& I 

industry2 219.52 37521 272.40 16399 233.59 7550 215.61 9835 214.25 9587 
~industrvl(l /658.01/65652~~755.07/11571//598.42~ 845811586.92/10257//575.54 1103491 

IV. EXPERIMENTAL RESULTS 

DOMINO results for net models I and I1 are compared with 
the placement results of several well-known tools that were 
made available to us. We tested TimberWolfSC 5.4 [16], the 
VPNR cplrt (combined place and route) algorithm [4], and 
GORDIANL [ l l ]  on the basis of the benchmark examples 
from [30]. Timberwolf is the best known placement algorithm 
and it is still further improved. The characteristics of the 
benchmark circuits containing approximately 800 to 25,000 
cells are summarized in Table I. The placement methods are 
compared based on layout areas after final routing given in 
Table 11. All routing areas have been determined with the 
Timberwolf global router [31] and the VPNR final routing 
package [32]. For each method the computation times required 
for placement are also included. The DOMINO times include 
the times required for the GORDIANL initial placement. The 
experiments were conducted using a DECstation 5000/200 
with 128 MB of main memory. 

The results show that Timberwolf produces placements 
better in quality than the VPNR cplrt algorithm. Timberwolf 
obtained 18% smaller layout areas taking five times the 
computation time on the average. GORDIANL produces place- 
ments better in quality than TimberWolfSC 5.4. GORDIANL 
obtained 5% smaller layout areas taking about eight times 
less computation time on the average. The areas obtained by 
DOMINO with net model I1 are always smaller compared to net 
model I except for circuit primaryl. DOMINO with net model 
I1 yields the best results with 11% smaller layout areas than 
Timberwolf on the average. 

These results can be obtained with less computation time 
than Timberwolf. For example, the circuit avq. large with 
25,000 cells has been placed in 5.8 hours. The additional 
computation time needed for the iterative DOMINO procedure is 
only moderate with respect to the initial placement procedure 
GORDIANL. 
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TimberWolfSC 

- wire length 
circuit: biomed 

2.20 + CPU time GORDIANL & 
DOMINOI 

I2400 

circuit 
TirnberWolfHunt 

----t wire length 
circuit: biomed 

2.20, - CPU time 

#cells I #pads I #nets mea CPU area CPU 

13770 I 76 I 16642 13.28 53044 13.21 10391 
1.00 1.00 0.99 0.19 

800 

I I I I I I I I I I I  

0 50 100 

#cells/region 

Fig. 13. Net model I: Impact of #cells/regions. 

At the 1992 MCNC International Workshop on Layout Syn- 
thesis the most recent placement contest, called Timberwolf 
Hunt, was held. Timberwolf and GORDIAN L & DOMINOI were 
compared on a real design of 13,770 cells and 16,642 nets. The 
example was not revealed to the participants before the contest 
so that circuit specific tuning was prohibited. The quality of 
the placement solution of GORDIANL & DOMINO I was slightly 
better using one fifth the cpu-time to execute (see Table LII). 

For the very large circuit golem [33] with about 100,000 
cells the length of the minimum spanning trees of the place- 
ment obtained with GORDIANL & DOMINOII is 22% smaller 
compared to Timberwolf (see Table IV). 

For all benchmark circuits, the number of generations is 
between 2 and 10 where the number increases with circuit 
size. 

We conducted an experiment to identify the optimal region 
size of the DOMINO procedure. The circuit biomed was used 
for this experiment. Figs. 13 and 14 show the impact of the 
number of cells per region on the CPU time and the wire length 
for net model I and net model 11, respectively. The wire length 
is measured by the half perimeter. 

The CPU time increases along with the #cells/region be- 
cause of the cubic time complexity of the transportation 
algorithm. The larger CPU time with 5 celldregion than with 
20 cells/region results from the larger number of generations 
needed by the iterative process to converge with 5 celldregion. 

With a small #cells/region the cells were moved only 
small distances, and the wire length of the placement obtained 
with DOMINO is high. The wire length decreases along with 
an increasing #cells/region, because more cells are placed 
simultaneously. In Fig. 13 the half perimeter increases for 
large regions, since the number of nets of Type C increases. 

TABLE IV 
GOLEM CIRCUIT (MINIMUM SPANNING TREES 
(MST) IN UNITS, CPU TIME IN SECONDS) 

I II II TimberWolfSC5.4 11 GORDIANL & I 

2.15 1 1  
I !  

12400 

w I T  I I  

[ml 2.00 1 \ 
I I I I I I I I I I I  
0 50 100 

#cells/region 

Fig. 14. Net model 11: Impact of #cells/regions. 

This results in an increasing angle cp between the gradients 
of the half perimeter and the cost function (see (34)) and, 
therefore, in a less accurate approximation of the half perimeter 
by the cost function. For net model I1 (Fig. 14) nearly the 
same results are obtained for 20 and more cells per region. It 
should be noted that wire length does not increase, because 
the gradients of the half perimeter and the cost function are 
equal in the point of the current placement. This property does 
not depend on the number of cells per region. The curves in 
Figs. 13 and 14 show that a #cells/region of about 20 to 30 
yields good layout quality as well as short cpu-time. 

These results indicate that the transportation algorithm com- 
bined with the presented net models is an appropriate and 
efficient method for cell placement. 

V. CONCLUSION 

We have described an effective and efficient interative 
improvement method for the placement of cells. In each 
iterative step the rearrangement of cells of different sizes 
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is formulated as a transportation problem that is solved by 
a network flow algorithm. To determine the transportation 
costs, two new net models were introduced. The relations 
between the new net models and the half perimeter have been 
theoretically analyzed. This explains why DOMINO’S results 
are superior to other placement methods. 
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