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ABSTRACT: We discuss a new approach to constructing 
the rectilinear Steiner tree (RST) of a given set of points in 
the plane, starting from a minimum spanning tree (MST). 
The main idea in our approach is to determine L-shaped 
layouts for the edges of the MST, so as to maximize the 
overlaps between the layouts, thus minimizing the cost (i.e.. 
wire length) of the resulting RST. We describe a linear time 
algorithm for constructing a RST from a a MST, such that 
the RST is optimal under the restriction that the layout of 
each edge of the MST is an L-shape. The RST’s produced 
by this algorithm have 8-33% lower cost than the MST, with 
the average cost improvement, over a large number of ran- 
dom point sets, being about 9%. The running time of the 
algorithm on an IBM 3090 processor is under 0.01 seconds 
for point sets with cardinality 10. We also discuss a property 
of RST’s called stability under rerouting, and show how to 
stabilize the RST’s derived from our approach. Stability is 
a desirable property in VLSI global routing applications. 

1. Introduction 
Given a set of points on the plane, the Rectilinear Steiner 
Tree (RST) problem is to fmd the rectilinear tree in the 
plane, of minimum total length, which connects the given set 
of points. Rectilinear Steiner Trees have many applications 
in VLSI physical design. They have been used to determine 
global routes for nets during the global routing phase [IO]. 
Timing considerations make it desirable to minimize the cost 
(wire length) of the Steiner trees used for global routing of 
nets. Rectilinear Steiner trees have also been used in other 
VLSI physical design applications, such as estimating the 
wire length of nets during the placement phase of physical 
design [2,3]. 

The problem of constructing the minimum cost RST has 
been shown to be NP-complete [43. The RST problem has 
been studied extensively and many heuristic algorithms have 
been proposed. Hwang [7] has shown that the ratio of the 
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cost of a rectilinear MST to that of an optimal RST is no 
greater than 3/2. Therefore, the rectilinear MST is a suitable 
starting point for deriving good RST’s. Many heuristic al- 
gorithms [5,6,9,10] take this approach. They start with a 
sequence of the input points and edges as given by a 
rectilinear MST algorithm, and insert points and edges from 
this sequence into a growing RST. Local optimization, such 
as fmding the shortest path from the new point to the partial 
RST, is performed while inserting a new edge from the 
rectilinear MST sequence. 

We introduce a global approach, in which the rectilinear 
MST is transformed into a RST, which is optimal under the 
condition that the layout in the RST of each edge of the 
MST is an L-shape. 

Figure 1. A MST and two L-RST’s of the MST 

Consider a rectilinear MST T of a set S of n points. An edge 
e = (in) is said to be nondegenerafe if the two points i and j 
do not lie on the same horizontal or vertical tine. Each such 
nondegenerate edge has two distinct L-shaped layouts, which 
are frips of each other. Suppose we select a L-shaped layout 
for each MST edge, and merge the resulting overlaps among 
the layouts. The resulting structure is a RST, and since it is 
obtained using L-shapes for the MST edges, we define it to 
be a L-RST. Figure 1 shows an example of a rectilinear 
MST and two different L-RST’s derived from it, as a result 
of selecting din’erent sets of L-shaped layouts for the edges 
of the MST. 
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The main idea behind our approach is to select that set of 
L-shaped layouts for the nondegenerate edges that maxi- 
mizes the overlaps between the layouts, thus minimizing the 
cost of the resulting L-RST. Note that there are Zm 
L-RST’s, where m is the number of nondegenerate edges of 
tbe MST. The RST algorithm described in [lo], uses a 
similar approach by heuristically trying to maximize the 
overlaps among the layouts of the MST edges. Our ap- 
proach is more global and yields optimal RST’s uncJer the 
restriction of L-shaped layouts. Given an input MST, our 
minimum cost L-RST algorithm runs in O(n) time. We de- 
scribe this algorilhm and analyze its time complexity in sec- 
tion 4. 

The input MST to our L-RST algorithm must have a ,speciaJ 
property called separability. We describe this interesting 
property in section 2. and show that it is possible to construct 
a separable MST by only a slight modiJication of Kruskal’s 
MST algorithm. In section 3, we prove that any given point 
in a rectilinear MST can have at most 8 neigbors, and that 
at most 6 of these neighbors form nondegenerate edges with 
the given point. This degree-boundedness property is used 
to derive the O(n) time bound of the L-RST algorithm. 
Separbility and degree-boundedness are interesting proper- 
ties in their own right, and may have other useful applica- 
tions. In section 5, we discuss a useful property of RST’s 

called stability under rerouting, and briefly describe how to 
stabilize an L-RST. We discuss experimental results in sec- 
tion 6. 

2. Separability of Rectilinear MST’s 
Given any edge e = (i,i) of a rectilinear MST, the rectangle 
with the points i and j on its opposite corners is defined as 
the enclosing box of the edge e. A rectilinear MST is said 
to be separable if the enclosing boxes of any two nonadja- 
cent edges do not intersect or overlap. As a consequence 
of this defmition, in a separable MST, the L-shaped layouts 
of two edges which do not share a common point of the 
MST cannot intersect or overlap. The removal of an edge 
from a separable MST results in two separated subtrees, in 
the sense, that an edge of one subtree cannot overlap or 
intersect an edge of the other subtree, no matter which L- 
shaped layouts are used for the edges. This property allows 
us to design a dynamic programming algorithm for con- 
structing a minimum cost L-RST. It is also used in the sta- 
bilization algorithm of section 5. 

Not all rectilinear MST’s are separable. In Figure 2. we 
show a nonseparable and a separable MST of the sarne set 
of points. The first MST shown in the Jigure is nonseparable 
because the enclosing boxes of the two nonadjacent edges 
el and e2 intersect each other. 

We give below a simple algorithm for contructing a separa- 
ble rectilinear MST of a given point set S. We use x(19 and 

~(4 to denote the x - and y-coordinates of a point i. We 
denote Lhe rectilinear distance between two points i and j as 

W(i)- 

Figure 2. A Nonseparable MST and a Separable 
MST 

Algorithm SMST: 

1. Construct the complete graph Gc of the point set S. 

2. For each edge (ij) of G,, construct 4tuple(ij) = (D(ij), 

- Iv(i) -Y(i)l* - md.Wvb9). - max(x(i). x0’))) 
Assign 4&p/e(Q) as the weight of the edge (ii). 

3. Run Prim’s MST algorithm [l] on the graph Gc, using 
the 4-tuples as tJte weights, to generate a minimum 
spanning tree T, 

Note that in comparing two 4-tuples: 

(al, b,, cl dl) c (9, b2,cz 4) , if and only if, (~1, b,, cl dl) 
precedes ia,, b2, q,d2) in Aondecreasing lexicographic order. 
The last 3 elements of the 4-tuple weights are used only to 
break ties between two edges of the same rectilinear length. 
Therefore the following Jemma is obvious. 

Lemma 1: The rectilinear spanning tree T, generated by AJ- 
gorithm SMST is a minimum spanning tree. 

It remains to show that Ts is separable. 

Theorem I: The rectilinear MST T, generated by Algorithm 
SMST is separable. 

Proof: The proof is by contradiction. Suppose there exists 
nonadjacent edges (i,,j,) and (izJ2) in Ts whose enclosing 
boxes Rt and B2 respectively have a nonempty intersection. 
Since T, is a tree, the edges ($,jt) and (it,j2) of tJte complete 
graph are not present in Ts. Let us examine the diRerent 
intersection patterns between the boxes B, and 82. Since the 

tree Ts is connected, assume without loss of generality that 
the points it and iZ have a path between them in Ts which 
does not contain the edges (it,&) or (il,j$. 

To eliminate some of the patterns, note tiat the points i2 and 
j2 cannot lie either on the boundary or in the interior of B,, 
and that the points il and jt cannot lie either on the bound- 
ary or in the interior of Bz. Suppose i2 is on the boundary 
or interior of BI. Then replacing the edge (it .jt) by the edge 
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(~2.~1~ 9 results in a rectilinear spanning tree whose cost is 
strictly less than that of T,. This is a contradiction that Ts 
is a MST. A similar argument holds for the other cases. 

Assume that y(il) > y(i2). The case y(it) 5 y(5) is symmet- 
rical. It now suffices to consider the five intersection patterns 
shown in Figure 3. 

n2 2 at + a + /I, which in turn implies that at = a2 = a, and 
(L = /3 = 0. Therefore cases (a) and (b) of Figure 3 reduce 
respectively to cases (a) and (b) of Figure 4. Similarly it is 
easy to show that in case (c) of Figure 3, we must have 
a, = a2 = a and B = 0 . In cases (d) and (e), we have only 
al = a2 = ,z . These five cases of Figure 3 thus reduce to the 
corresponding five cases of Figure 4. In all five cases, we 
now have !I(4 J2) = II , and D($.jl ) = D(i, ,il) . 

Consider case (a) of Figure 4. Compare the 4-tuple weights 
of the two edges (it, j2) and (i2, j2) of G,. We have 

D(ilJ2) = D(j2,i2) , - IN,) - v(iz) 1 = - iu(5) - vci$l but 

- madAil), ~03) < - maxbW v(iz)) Hence, 
4tupfe(it l j-J < 4rupfe(i2,j2) . Replacing the edge (i2j2) by 
the edge (il, j2) , we get a spanning tree of G, of lesser 4-tuple 
weight than T,, which is a contradiction. A similar argu- 
ment holds for the remaining cases (b) - (e) of Figure 4. This 
completes the proof of the theorem. = 

The time complexity of Algorithm SMST is the same as that 
of running Prim’s Algorithm on the complete graph G,, 
which is O(n2). We note here that, it is possible to derive a 
O(n log n) algorithm for constructing separable MST’s, using 
the notion of L, Voronoi diagrams [g]. However, the 
O(n2) algorithm presented in this paper, is more practical for 
point sets of cardinality 5 100. 

Figure 3. Five Intersection Patterns of Enclosing 
Boxes - I 

3. Degree-Boundedness of MST’s 
We now show that the degree of any point in a rectilinear 
MST is bounded by a constant. 

(a) (b) 

(d) 

Figure 4. Five Inlersection Patterns of Enclosing 
Boxes - II 

The symbols a,& a and /? are used to denote the rectilinear 
lengths marked in the figure. Since T, is a MST, it must be 
that D(it, jz) 2 D(iz. j2) , and D(iz. jt) 2 D(i,, j,) . in cases 
(a) and (b) of Figure 3, simple arithmetic shows that these 
Iwo inequalities imply that nt 1u2+a+D, and 

Figure 5. Proof of Lemma 2 

Lemma 2: Let v be a point in a rectilinear MST T. Consider 
the 4 regions defined by the two f 45” lines passing through 
the point. There can be at.most one neighbor of v (in the 
MST r) located in the interior of each of these regions. 

Proof: Suppose there are two neighbors a and t, of the point 
v in the interior of the same region, say the region shown in 
Figure 5. Note that the interior does not include the two 
+ 45” lines. Without loss of generality, let the x-coordinate 
of the point a be 1 the x-coordinate of the point b, as shown 
in Figure 5. Consider the two distances d, and d2 marked n 
the figure. Clearly 4 < d,, and thus D(u,b) < D(a,v) . This 
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means that if we remove the edge (up) from the tree T and For a nonroot nonleaf point v, @Jv) can be computed 
add the edge (a&), we will get a new spanning tree of the recursively as ~follows: Let wf: i = I ,2, . . . ,n be the o! children 
same set of points, which has a smaller total cost than T. of the point v in the rooted tree T,. Recursively compute the 
But this contradicts that T is a MST. 9 minimum cost L-RST’S am”, and @,(&Vi) OC the subtrecs 

Theorem 2: (I) There can be at most 8 neighbors for any 
point v in a rectilinear MST T. (2) AC most G of these 
neighbors can form nondegenerate edges with v. 

Proofz From the previous lemma there can be at most 4 
neighbors of v located in the interiors of the four regions 
defined by the f 45” lines. In addition, neighbors can be lo- 
cated on the + 45” lines. Suppose u and b are two neighbors 
of v located on the same side of v on one of the two + 45” 
lines, with 6 being the closer point to v. Then 
D(&) < D(a.v), which contradicts Chat (a,~) is an edge of the 
MST. Therefore at most one neighbor of v can be located 
on each of Che 4 segments of the f 45” lines. Thins v can 
have at most 8 neighbors. We skip the proof of the second 
part of the lemma, Chat at most 6 neighbors can form 
nondegenerate edges with v. m 

Theorem 2 essentially says Chat any point in a rectilinear 
MST has constant degree. This result is used in bounding 
the time complexity of the L-RST algorithm described in the 

7;ti ’ i = 1,2. . . . d. Suppose we arbitrarily select either 
@,,(wJ or OXwi) for each 7& i= 1,2, . . . ,d. We ftx the lay- 
outs of the edges e,,,i = (v, wi) to be upper L-shapes or the 
lower L-shapes as given by the selection of the L-RST’s. 
We also ftx the layout of e, to be iCs upper L-shape. The 
result is a L-RST of Che subtree v, in which the layout of 
e, is constrained Co be its upper L-shape. Since the input 
MST T has the separability property, the selected L-RST’s 
of the subtrees 7$,., i = I ,2, . . . d, do not overlap or intersect 
each other. Therefore the total amount ofoverlap occurring 
in the resulting L-RST of 7$ is the sum of the following: 

1. the amount of overlap in the star TF, 

2. for i = 1,2, . . . J, the amount of overlap in the selected 
L-RST @Xwi) or @,(wi). 

The cost of the resulting L,-RST of r;’ is simply Che sum of 
the rectilinear IengChs of Che edges of the tree minus lhe total 
amount of overlap. Therefore @Jv) can be computed by 
fixing the layout of e,, to be i(s upper L-shape, and enumer- 
sting Che 2d dilferent combinations of selecting one of 
Qu(wi) or @I(wJ for each subtree 7zj. Each combination 
corresponds to a L-RST of ‘I$, in which the layout of eY is 
constrained to be its upper L-shape. Select @Jv) Co be Che 
minimum cost L-RST among these 2d enumerated L-RST’s 
of 7$. a,(v) is similarly computed. 

next section. 

4. Algorithm for Mimimum Cost L-RST 
We now present our linear time algorithm for oburining a 
minimum cost L-RST from a given separabIe MST T of a 
point set S. The algorithm has to select for each 
nondegenerate edge one of its two possible L-shaped layouks, 
so as to maximize Che Cotat amount of overlap, thus mini- 
miring the total cost of the L-RST Chat results from merging 
the overlaps. 

The procedure is similar at the root r, except there is no in- 
coming edge, and therefore there is only one constrained 
L-RST to compute at the root, which we denote as Q(r). The 
algorithm outputs Q(r) as the minimum cost L-RST of the 
separable MST T. 

Suppose we root the input separable MST Tat any point r, 
resulting in the rooted tree Tr For each point v E S, denote 
the subtree rooted at v as TV, and the subtree (a star) induced 
by v and its neighbors as TT. For a nonroot point v., we de- 
note the edge incident from its parent on v as e,. 

For each nonroot point v. we let 7$ denote the subtree 
T,, (J e,. If e,, is nondegenerate, then we let @Jv) denote the 
L-RST of the subtree 7$, which has the minimum cosf 
among alI L-RST’s of v, in which rhe kzyout of the edge 
e, L constrained to be the upper L-shape of rhe enclosing box 
of e,,. Similarly, let @Xv) d enote the constrained minimum 
COSI L-RST of Che subtree v, in which the layout of e, is 
constrained lo be the lower L-shape of Che enclosing box. 
If ev is degenerate, or if v is the root r (in which case Chere 
is no incoming edge), we let @dv) = Ot,(v) = Q(v). 

We now show how to recursively compute @a(v) and @I(v). 

For a leaf point v, at,(v) is simply the Che upper L-s’hape of 
ev, and QAv) is the lower L-shape of e, 

The following procedure computes the minimum cost 
L-RST Ox(v) , where x is either the upper L-shape u or the 
lower L-shape 1. 

Procedure MinCost-L-RST ( U),(v) ): 

I. If v is a leaf in T,, return Qx(v) as the x L-shape of er. 

2 . If u is not a leaf and not the root, then fix the layout 
of eY to be Che x L-shape. 

3. Recursively compute $(wi) and @XN$ for the children 
wi,i=1,2 ,... Jofv. 

4. For each of the 2d dimerent ways of selecting either the 
L-RST @Jwi) or a/(wi)t compute the total amount of 
overlap in Lhe resulting L-RST of 7$ , as the sum of 
the overlaps in the star T; and Lhe amount of overlaps 
in Che selected L-RST’s of the children. Return au(v) 

Co be that L-RST that maximizes the toCal amount of 
overlap. 
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Q(r) computed at the root yields the minimum cost L-RST 
of the separable MST T. An inductive proof of correctness 
can be easily established using the observation about the 
sum of overlaps, which itself is a consequence of the 
separability of the tree T. From Theorem 2, the degree of 
any point in the MST T is at most 8. and at most 6 of the 
incident edges are nondegenerate. Therefore the total num- 
ber of combinations enumerated in the computations of 
@I(v) and 0,,(v) together is at most 26 which is a constant. 
Note that this observation is true even if we use the degree 
bound of 8 from part 1 of Theorem 2, instead of the degree 
bound of 6 from part 2. Summing this constant over all the 
points of the MST T, we conclude that the time complexity 
of the algorithm is O(n). 

Theorem 3: Procedure MinCost-L-RST ( @(I) ) computes 
the minimum cost L-RST of the separable MST T in linear 
time. 

5. Stability under Rerouting 
A RST is said to be stable under rerouting, if there is no pair 
of degenerate or non-degenerate L-shaped segments, whose 
enclosing boxes intersect or overlap, except touching at a 
common end point (if any) of the two segments. 

l -LLjs -L 
Figure 6. An Unstable L-RST and a Stable L-RST 

In Figure 6, we show a RST of the MST of Figure 1, which 
is unstable because the enclosing boxes of non-degenerate 
L-shape Lt and the degenerate L-shape h overlap, How- 
ever, if we flip the L-shape L, and merge the resulting 
overlap, the resuft is the second RST shown in the figure, 
which is stable. 

No matter how we reroute a L-shaped segment, in a stable 
RST, within its enclosing box, no overlaps or crossings will 
occur, and the RST will essentially remain unchanged. A 
stable RST corresponds to a local minimum under the re- 
routing operation. Stability is a useful property to have in 

many applications. In [lo], the switchable property of a 
non-degenerate L-shaped segment is used to explore alter- 
nate global routes for L-shaped segments of nets. Ilere, it 
would be very useful to have a stable RST for two reasons. 
First, a stable RST is locally optimal under rerouting. Sec- 
ond, a stable RST guarantees no further crossings or over- 
laps, when exploring the alternate routes for an L-shaped 
segment, within its enclosing box. This avoids complications 
in the rerouting phase of the global router. 

A RST may be stabilized by repeatedly picking pairs of L- 
shapes which can be made to cross or overlap by flipping 
either or both of them, and by eliminating the crossing or the 
overlap. When a crossing is eliminated or an overlap is 
merged, the two old L-shapes get replaced by new L-shapes, 
and it is not obvious whether this process will eventually 
converge to result in a stable RST. Even if it does, the se- 
quence of pairs of L-shapes that we may have to process, 
may be very long. We briefly describe an alternative proce- 
dure that can, in linear time, stabilize a L-RST. The key 
ideas used by the algorithm are again the separability and 
bounded degree properties of the original MST. 

The stabilization algorithm processes the neighborhood of 
each original MST point in the L-RST. When processing a 
point, we examine all the non-degenerate L-shaped segments 
on the paths from this point to all its neighbors in the 
rectilinear MST. Note that there may be several Steiner 
points along these paths to the neighbors. For example, in 
the first RST of Figure 6, the neighborhood of point Y con- 
tains the Steiner points, the non-degenerate L-shape Z.t , the 
degenerate L-shape 4, and the two neighbors v1 and v2. 
Using part (1) of Theorem 2, it is possible to show that there 
are at most 6 non-degenerate L-shaped segments in the 
neighborhood of a point v. We locally stabilize this neigh- 
borhood, by case analysis on the interactions among these 
L-shaped segments. For example, the neighborhood of point 
v in the first RST of Figure 6, can be stabilized by simply 
flipping the L-shaped segment L,, and merging the resulting 
overlap. In general, we have to perform a case analysis on 
at most a constant number of L-shaped segments, and 
therefore the local stabilization step can be carried out in 
constant time. We omit the details of the case analysis. 

We execute the local stabilization step separately on the L- 
shapes in the neighborhood of each point of the original 
MST. Since our rectilinear MST has the separability prop- 
erty, we know that two L-shapes in direrent neighborhoods 
cannot overlap or cross each other. Thus, local stabilization 
of the neighborhood of each point of the MST implies sta- 
bilization of the entire L-RST. Each local stabilization step 
takes only constant time, therefore the stabilization algo- 
rithm runs in O(n) time. 
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6. Experimental Results: 
Our overall RST algorithm can be summarized as follows: 
(I) Construct a separable rectilinear MST of the given set 
of points, (2) compute the minimum cost L-RST,. and (3) 
derive a stable RST from the L-RST. We have implemented 
this RST algorithm as a C program in a VM system running 
on an IBM 3090 processor. 

Ex. 1 #Pts 1 MST Cost 1 LRST Cost 1 Stab C 
- 

:ost 

3 
4 
5 
6 
I 
8 
9 
10 
II 
12 
13 
14 
15 
16 

5 371 294 
5 318 278 
10 352 291 
IO 593 494 
15 676 563 
15 619 543 
20 807 702 
20 660 559 
25 1400 1226 
25 1225 1090 
30 1374 1215 
30 1349 1225 
50 1794 1642 
50 1796 1603 
100 8411 7585 
100 893 I 793 1 

281 
256 
291 
487 
556 
524 
677 
556 
1193 
1063 
1203 
1199 
1621 
1582 
7498 
7869 

Impr 

24% 
20% 
17% 
la% 
18% 
15% 
16% 
16% 
15% 
13% 
12% 
1 1% 
10% 
12% 
1 1 % 
12% 

Figure 7. Table of Examples 

Figure 8. Hwang’s 213 Example and its Mincost 
L-RST 

The table in Figure 7 lists examples ranging from 5 input 
points to 100 input points. The last column shows the im- 
provement in the cost of the stabilized minimum cost L-RST 
over the cost of Ihe MST. We ran our algorithm on 500 
randomly selected sets of points, for number of points 

ranging from 5 to 100. Interestingly, the average improve- 
ment in the cost of the stabilized minimum cost L-RST over 
the rectilinear MST, was seen to be about 9. I % for each one 
of these dimcrent cardinalities. Our algorithm produces op- 
timal RST’s for each member of the class, of point sets which 
have the maximum possible improvement of 2/3 [73. One 
such example is illustrated in Figure 8. Our method takes 
about 0.01 seconds on an [BM 3090 processor, to produce 
the stabilized minimum cost L-RST of 10 input points. 
Therefore it is suitable for applications such as global rout- 
ing. 
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