
A New Approach to the Rectilinear Steiner Tree Problem

Jan-ming Ho
Department of EECS

Northwestern University
Evanston, Illinois

Gopalakrishnan Vijayan and C. K. Wong
IBM Research Division

Thomas J. Watson Research Center
York town Heights, New York

ABSTRACT: We discuss a new approach to constructing
the rectilinear Steiner tree (RST) of a given set of points in
the plane, starting from a minimum spanning tree (MST).
The main idea in our approach is to determine L-shaped
layouts for the edges of the MST, so as to maximize the
overlaps between the layouts, thus minimizing the cost (i.e..
wire length) of the resulting RST. We describe a linear time
algorithm for constructing a RST from a a MST, such that
the RST is optimal under the restriction that the layout of
each edge of the MST is an L-shape. The RST’s produced
by this algorithm have 8-33% lower cost than the MST, with
the average cost improvement, over a large number of ran-
dom point sets, being about 9%. The running time of the
algorithm on an IBM 3090 processor is under 0.01 seconds
for point sets with cardinality 10. We also discuss a property
of RST’s called stability under rerouting, and show how to
stabilize the RST’s derived from our approach. Stability is
a desirable property in VLSI global routing applications.

1. Introduction
Given a set of points on the plane, the Rectilinear Steiner
Tree (RST) problem is to fmd the rectilinear tree in the
plane, of minimum total length, which connects the given set
of points. Rectilinear Steiner Trees have many applications
in VLSI physical design. They have been used to determine
global routes for nets during the global routing phase [IO].
Timing considerations make it desirable to minimize the cost
(wire length) of the Steiner trees used for global routing of
nets. Rectilinear Steiner trees have also been used in other
VLSI physical design applications, such as estimating the
wire length of nets during the placement phase of physical
design [2,3].

The problem of constructing the minimum cost RST has
been shown to be NP-complete [43. The RST problem has
been studied extensively and many heuristic algorithms have
been proposed. Hwang [7] has shown that the ratio of the

Permission to copy without fee all or pm of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish. requires a fee
and/or specific permission.

cost of a rectilinear MST to that of an optimal RST is no
greater than 3/2. Therefore, the rectilinear MST is a suitable
starting point for deriving good RST’s. Many heuristic al-
gorithms [5,6,9,10] take this approach. They start with a
sequence of the input points and edges as given by a
rectilinear MST algorithm, and insert points and edges from
this sequence into a growing RST. Local optimization, such
as fmding the shortest path from the new point to the partial
RST, is performed while inserting a new edge from the
rectilinear MST sequence.

We introduce a global approach, in which the rectilinear
MST is transformed into a RST, which is optimal under the
condition that the layout in the RST of each edge of the
MST is an L-shape.

Figure 1. A MST and two L-RST’s of the MST

Consider a rectilinear MST T of a set S of n points. An edge
e = (in) is said to be nondegenerafe if the two points i and j
do not lie on the same horizontal or vertical tine. Each such
nondegenerate edge has two distinct L-shaped layouts, which
are frips of each other. Suppose we select a L-shaped layout
for each MST edge, and merge the resulting overlaps among
the layouts. The resulting structure is a RST, and since it is
obtained using L-shapes for the MST edges, we define it to
be a L-RST. Figure 1 shows an example of a rectilinear
MST and two different L-RST’s derived from it, as a result
of selecting din’erent sets of L-shaped layouts for the edges
of the MST.

26th ACM/IEEE Design Automation Conference@
Paper 11.2

0 1989 ACM O-89791 -310-8/89/0006/0161 $1.50 161

The main idea behind our approach is to select that set of
L-shaped layouts for the nondegenerate edges that maxi-
mizes the overlaps between the layouts, thus minimizing the
cost of the resulting L-RST. Note that there are Zm
L-RST’s, where m is the number of nondegenerate edges of
tbe MST. The RST algorithm described in [lo], uses a
similar approach by heuristically trying to maximize the
overlaps among the layouts of the MST edges. Our ap-
proach is more global and yields optimal RST’s uncJer the
restriction of L-shaped layouts. Given an input MST, our
minimum cost L-RST algorithm runs in O(n) time. We de-
scribe this algorilhm and analyze its time complexity in sec-
tion 4.

The input MST to our L-RST algorithm must have a ,speciaJ
property called separability. We describe this interesting
property in section 2. and show that it is possible to construct
a separable MST by only a slight modiJication of Kruskal’s
MST algorithm. In section 3, we prove that any given point
in a rectilinear MST can have at most 8 neigbors, and that
at most 6 of these neighbors form nondegenerate edges with
the given point. This degree-boundedness property is used
to derive the O(n) time bound of the L-RST algorithm.
Separbility and degree-boundedness are interesting proper-
ties in their own right, and may have other useful applica-
tions. In section 5, we discuss a useful property of RST’s

called stability under rerouting, and briefly describe how to
stabilize an L-RST. We discuss experimental results in sec-
tion 6.

2. Separability of Rectilinear MST’s
Given any edge e = (i,i) of a rectilinear MST, the rectangle
with the points i and j on its opposite corners is defined as
the enclosing box of the edge e. A rectilinear MST is said
to be separable if the enclosing boxes of any two nonadja-
cent edges do not intersect or overlap. As a consequence
of this defmition, in a separable MST, the L-shaped layouts
of two edges which do not share a common point of the
MST cannot intersect or overlap. The removal of an edge
from a separable MST results in two separated subtrees, in
the sense, that an edge of one subtree cannot overlap or
intersect an edge of the other subtree, no matter which L-
shaped layouts are used for the edges. This property allows
us to design a dynamic programming algorithm for con-
structing a minimum cost L-RST. It is also used in the sta-
bilization algorithm of section 5.

Not all rectilinear MST’s are separable. In Figure 2. we
show a nonseparable and a separable MST of the sarne set
of points. The first MST shown in the Jigure is nonseparable
because the enclosing boxes of the two nonadjacent edges
el and e2 intersect each other.

We give below a simple algorithm for contructing a separa-
ble rectilinear MST of a given point set S. We use x(19 and

~(4 to denote the x - and y-coordinates of a point i. We
denote Lhe rectilinear distance between two points i and j as

W(i)-

Figure 2. A Nonseparable MST and a Separable
MST

Algorithm SMST:

1. Construct the complete graph Gc of the point set S.

2. For each edge (ij) of G,, construct 4tuple(ij) = (D(ij),

- Iv(i) -Y(i)l* - md.Wvb9). - max(x(i). x0’)))
Assign 4&p/e(Q) as the weight of the edge (ii).

3. Run Prim’s MST algorithm [l] on the graph Gc, using
the 4-tuples as tJte weights, to generate a minimum
spanning tree T,

Note that in comparing two 4-tuples:

(al, b,, cl dl) c (9, b2,cz 4) , if and only if, (~1, b,, cl dl)
precedes ia,, b2, q,d2) in Aondecreasing lexicographic order.
The last 3 elements of the 4-tuple weights are used only to
break ties between two edges of the same rectilinear length.
Therefore the following Jemma is obvious.

Lemma 1: The rectilinear spanning tree T, generated by AJ-
gorithm SMST is a minimum spanning tree.

It remains to show that Ts is separable.

Theorem I: The rectilinear MST T, generated by Algorithm
SMST is separable.

Proof: The proof is by contradiction. Suppose there exists
nonadjacent edges (i,,j,) and (izJ2) in Ts whose enclosing
boxes Rt and B2 respectively have a nonempty intersection.
Since T, is a tree, the edges ($,jt) and (it,j2) of tJte complete
graph are not present in Ts. Let us examine the diRerent
intersection patterns between the boxes B, and 82. Since the

tree Ts is connected, assume without loss of generality that
the points it and iZ have a path between them in Ts which
does not contain the edges (it,&) or (il,j$.

To eliminate some of the patterns, note tiat the points i2 and
j2 cannot lie either on the boundary or in the interior of B,,
and that the points il and jt cannot lie either on the bound-
ary or in the interior of Bz. Suppose i2 is on the boundary
or interior of BI. Then replacing the edge (it .jt) by the edge

Paper 11.2

162

(~2.~1~ 9 results in a rectilinear spanning tree whose cost is
strictly less than that of T,. This is a contradiction that Ts
is a MST. A similar argument holds for the other cases.

Assume that y(il) > y(i2). The case y(it) 5 y(5) is symmet-
rical. It now suffices to consider the five intersection patterns
shown in Figure 3.

n2 2 at + a + /I, which in turn implies that at = a2 = a, and
(L = /3 = 0. Therefore cases (a) and (b) of Figure 3 reduce
respectively to cases (a) and (b) of Figure 4. Similarly it is
easy to show that in case (c) of Figure 3, we must have
a, = a2 = a and B = 0 . In cases (d) and (e), we have only
al = a2 = ,z . These five cases of Figure 3 thus reduce to the
corresponding five cases of Figure 4. In all five cases, we
now have !I(4 J2) = II , and D($.jl) = D(i, ,il) .

Consider case (a) of Figure 4. Compare the 4-tuple weights
of the two edges (it, j2) and (i2, j2) of G,. We have

D(ilJ2) = D(j2,i2) , - IN,) - v(iz) 1 = - iu(5) - vci$l but

- madAil), ~03) < - maxbW v(iz)) Hence,
4tupfe(it l j-J < 4rupfe(i2,j2) . Replacing the edge (i2j2) by
the edge (il, j2) , we get a spanning tree of G, of lesser 4-tuple
weight than T,, which is a contradiction. A similar argu-
ment holds for the remaining cases (b) - (e) of Figure 4. This
completes the proof of the theorem. =

The time complexity of Algorithm SMST is the same as that
of running Prim’s Algorithm on the complete graph G,,
which is O(n2). We note here that, it is possible to derive a
O(n log n) algorithm for constructing separable MST’s, using
the notion of L, Voronoi diagrams [g]. However, the
O(n2) algorithm presented in this paper, is more practical for
point sets of cardinality 5 100.

Figure 3. Five Intersection Patterns of Enclosing
Boxes - I

3. Degree-Boundedness of MST’s
We now show that the degree of any point in a rectilinear
MST is bounded by a constant.

(a) (b)

(d)

Figure 4. Five Inlersection Patterns of Enclosing
Boxes - II

The symbols a,& a and /? are used to denote the rectilinear
lengths marked in the figure. Since T, is a MST, it must be
that D(it, jz) 2 D(iz. j2) , and D(iz. jt) 2 D(i,, j,) . in cases
(a) and (b) of Figure 3, simple arithmetic shows that these
Iwo inequalities imply that nt 1u2+a+D, and

Figure 5. Proof of Lemma 2

Lemma 2: Let v be a point in a rectilinear MST T. Consider
the 4 regions defined by the two f 45” lines passing through
the point. There can be at.most one neighbor of v (in the
MST r) located in the interior of each of these regions.

Proof: Suppose there are two neighbors a and t, of the point
v in the interior of the same region, say the region shown in
Figure 5. Note that the interior does not include the two
+ 45” lines. Without loss of generality, let the x-coordinate
of the point a be 1 the x-coordinate of the point b, as shown
in Figure 5. Consider the two distances d, and d2 marked n
the figure. Clearly 4 < d,, and thus D(u,b) < D(a,v) . This

Paper 11.2

163

means that if we remove the edge (up) from the tree T and For a nonroot nonleaf point v, @Jv) can be computed
add the edge (a&), we will get a new spanning tree of the recursively as ~follows: Let wf: i = I ,2, . . . ,n be the o! children
same set of points, which has a smaller total cost than T. of the point v in the rooted tree T,. Recursively compute the
But this contradicts that T is a MST. 9 minimum cost L-RST’S am”, and @,(&Vi) OC the subtrecs

Theorem 2: (I) There can be at most 8 neighbors for any
point v in a rectilinear MST T. (2) AC most G of these
neighbors can form nondegenerate edges with v.

Proofz From the previous lemma there can be at most 4
neighbors of v located in the interiors of the four regions
defined by the f 45” lines. In addition, neighbors can be lo-
cated on the + 45” lines. Suppose u and b are two neighbors
of v located on the same side of v on one of the two + 45”
lines, with 6 being the closer point to v. Then
D(&) < D(a.v), which contradicts Chat (a,~) is an edge of the
MST. Therefore at most one neighbor of v can be located
on each of Che 4 segments of the f 45” lines. Thins v can
have at most 8 neighbors. We skip the proof of the second
part of the lemma, Chat at most 6 neighbors can form
nondegenerate edges with v. m

Theorem 2 essentially says Chat any point in a rectilinear
MST has constant degree. This result is used in bounding
the time complexity of the L-RST algorithm described in the

7;ti ’ i = 1,2. . . . d. Suppose we arbitrarily select either
@,,(wJ or OXwi) for each 7& i= 1,2, . . . ,d. We ftx the lay-
outs of the edges e,,,i = (v, wi) to be upper L-shapes or the
lower L-shapes as given by the selection of the L-RST’s.
We also ftx the layout of e, to be iCs upper L-shape. The
result is a L-RST of Che subtree v, in which the layout of
e, is constrained Co be its upper L-shape. Since the input
MST T has the separability property, the selected L-RST’s
of the subtrees 7$,., i = I ,2, . . . d, do not overlap or intersect
each other. Therefore the total amount ofoverlap occurring
in the resulting L-RST of 7$ is the sum of the following:

1. the amount of overlap in the star TF,

2. for i = 1,2, . . . J, the amount of overlap in the selected
L-RST @Xwi) or @,(wi).

The cost of the resulting L,-RST of r;’ is simply Che sum of
the rectilinear IengChs of Che edges of the tree minus lhe total
amount of overlap. Therefore @Jv) can be computed by
fixing the layout of e,, to be i(s upper L-shape, and enumer-
sting Che 2d dilferent combinations of selecting one of
Qu(wi) or @I(wJ for each subtree 7zj. Each combination
corresponds to a L-RST of ‘I$, in which the layout of eY is
constrained to be its upper L-shape. Select @Jv) Co be Che
minimum cost L-RST among these 2d enumerated L-RST’s
of 7$. a,(v) is similarly computed.

next section.

4. Algorithm for Mimimum Cost L-RST
We now present our linear time algorithm for oburining a
minimum cost L-RST from a given separabIe MST T of a
point set S. The algorithm has to select for each
nondegenerate edge one of its two possible L-shaped layouks,
so as to maximize Che Cotat amount of overlap, thus mini-
miring the total cost of the L-RST Chat results from merging
the overlaps.

The procedure is similar at the root r, except there is no in-
coming edge, and therefore there is only one constrained
L-RST to compute at the root, which we denote as Q(r). The
algorithm outputs Q(r) as the minimum cost L-RST of the
separable MST T.

Suppose we root the input separable MST Tat any point r,
resulting in the rooted tree Tr For each point v E S, denote
the subtree rooted at v as TV, and the subtree (a star) induced
by v and its neighbors as TT. For a nonroot point v., we de-
note the edge incident from its parent on v as e,.

For each nonroot point v. we let 7$ denote the subtree
T,, (J e,. If e,, is nondegenerate, then we let @Jv) denote the
L-RST of the subtree 7$, which has the minimum cosf
among alI L-RST’s of v, in which rhe kzyout of the edge
e, L constrained to be the upper L-shape of rhe enclosing box
of e,,. Similarly, let @Xv) d enote the constrained minimum
COSI L-RST of Che subtree v, in which the layout of e, is
constrained lo be the lower L-shape of Che enclosing box.
If ev is degenerate, or if v is the root r (in which case Chere
is no incoming edge), we let @dv) = Ot,(v) = Q(v).

We now show how to recursively compute @a(v) and @I(v).

For a leaf point v, at,(v) is simply the Che upper L-s’hape of
ev, and QAv) is the lower L-shape of e,

The following procedure computes the minimum cost
L-RST Ox(v) , where x is either the upper L-shape u or the
lower L-shape 1.

Procedure MinCost-L-RST (U),(v)):

I. If v is a leaf in T,, return Qx(v) as the x L-shape of er.

2 . If u is not a leaf and not the root, then fix the layout
of eY to be Che x L-shape.

3. Recursively compute $(wi) and @XN$ for the children
wi,i=1,2 ,... Jofv.

4. For each of the 2d dimerent ways of selecting either the
L-RST @Jwi) or a/(wi)t compute the total amount of
overlap in Lhe resulting L-RST of 7$, as the sum of
the overlaps in the star T; and Lhe amount of overlaps
in Che selected L-RST’s of the children. Return au(v)

Co be that L-RST that maximizes the toCal amount of
overlap.

Paper 11.2

164

Q(r) computed at the root yields the minimum cost L-RST
of the separable MST T. An inductive proof of correctness
can be easily established using the observation about the
sum of overlaps, which itself is a consequence of the
separability of the tree T. From Theorem 2, the degree of
any point in the MST T is at most 8. and at most 6 of the
incident edges are nondegenerate. Therefore the total num-
ber of combinations enumerated in the computations of
@I(v) and 0,,(v) together is at most 26 which is a constant.
Note that this observation is true even if we use the degree
bound of 8 from part 1 of Theorem 2, instead of the degree
bound of 6 from part 2. Summing this constant over all the
points of the MST T, we conclude that the time complexity
of the algorithm is O(n).

Theorem 3: Procedure MinCost-L-RST (@(I)) computes
the minimum cost L-RST of the separable MST T in linear
time.

5. Stability under Rerouting
A RST is said to be stable under rerouting, if there is no pair
of degenerate or non-degenerate L-shaped segments, whose
enclosing boxes intersect or overlap, except touching at a
common end point (if any) of the two segments.

l -LLjs -L
Figure 6. An Unstable L-RST and a Stable L-RST

In Figure 6, we show a RST of the MST of Figure 1, which
is unstable because the enclosing boxes of non-degenerate
L-shape Lt and the degenerate L-shape h overlap, How-
ever, if we flip the L-shape L, and merge the resulting
overlap, the resuft is the second RST shown in the figure,
which is stable.

No matter how we reroute a L-shaped segment, in a stable
RST, within its enclosing box, no overlaps or crossings will
occur, and the RST will essentially remain unchanged. A
stable RST corresponds to a local minimum under the re-
routing operation. Stability is a useful property to have in

many applications. In [lo], the switchable property of a
non-degenerate L-shaped segment is used to explore alter-
nate global routes for L-shaped segments of nets. Ilere, it
would be very useful to have a stable RST for two reasons.
First, a stable RST is locally optimal under rerouting. Sec-
ond, a stable RST guarantees no further crossings or over-
laps, when exploring the alternate routes for an L-shaped
segment, within its enclosing box. This avoids complications
in the rerouting phase of the global router.

A RST may be stabilized by repeatedly picking pairs of L-
shapes which can be made to cross or overlap by flipping
either or both of them, and by eliminating the crossing or the
overlap. When a crossing is eliminated or an overlap is
merged, the two old L-shapes get replaced by new L-shapes,
and it is not obvious whether this process will eventually
converge to result in a stable RST. Even if it does, the se-
quence of pairs of L-shapes that we may have to process,
may be very long. We briefly describe an alternative proce-
dure that can, in linear time, stabilize a L-RST. The key
ideas used by the algorithm are again the separability and
bounded degree properties of the original MST.

The stabilization algorithm processes the neighborhood of
each original MST point in the L-RST. When processing a
point, we examine all the non-degenerate L-shaped segments
on the paths from this point to all its neighbors in the
rectilinear MST. Note that there may be several Steiner
points along these paths to the neighbors. For example, in
the first RST of Figure 6, the neighborhood of point Y con-
tains the Steiner points, the non-degenerate L-shape Z.t , the
degenerate L-shape 4, and the two neighbors v1 and v2.
Using part (1) of Theorem 2, it is possible to show that there
are at most 6 non-degenerate L-shaped segments in the
neighborhood of a point v. We locally stabilize this neigh-
borhood, by case analysis on the interactions among these
L-shaped segments. For example, the neighborhood of point
v in the first RST of Figure 6, can be stabilized by simply
flipping the L-shaped segment L,, and merging the resulting
overlap. In general, we have to perform a case analysis on
at most a constant number of L-shaped segments, and
therefore the local stabilization step can be carried out in
constant time. We omit the details of the case analysis.

We execute the local stabilization step separately on the L-
shapes in the neighborhood of each point of the original
MST. Since our rectilinear MST has the separability prop-
erty, we know that two L-shapes in direrent neighborhoods
cannot overlap or cross each other. Thus, local stabilization
of the neighborhood of each point of the MST implies sta-
bilization of the entire L-RST. Each local stabilization step
takes only constant time, therefore the stabilization algo-
rithm runs in O(n) time.

Paper 11.2

165

6. Experimental Results:
Our overall RST algorithm can be summarized as follows:
(I) Construct a separable rectilinear MST of the given set
of points, (2) compute the minimum cost L-RST,. and (3)
derive a stable RST from the L-RST. We have implemented
this RST algorithm as a C program in a VM system running
on an IBM 3090 processor.

Ex. 1 #Pts 1 MST Cost 1 LRST Cost 1 Stab C
-

:ost

3
4
5
6
I
8
9
10
II
12
13
14
15
16

5 371 294
5 318 278
10 352 291
IO 593 494
15 676 563
15 619 543
20 807 702
20 660 559
25 1400 1226
25 1225 1090
30 1374 1215
30 1349 1225
50 1794 1642
50 1796 1603
100 8411 7585
100 893 I 793 1

281
256
291
487
556
524
677
556
1193
1063
1203
1199
1621
1582
7498
7869

Impr

24%
20%
17%
la%
18%
15%
16%
16%
15%
13%
12%
1 1%
10%
12%
1 1 %
12%

Figure 7. Table of Examples

Figure 8. Hwang’s 213 Example and its Mincost
L-RST

The table in Figure 7 lists examples ranging from 5 input
points to 100 input points. The last column shows the im-
provement in the cost of the stabilized minimum cost L-RST
over the cost of Ihe MST. We ran our algorithm on 500
randomly selected sets of points, for number of points

ranging from 5 to 100. Interestingly, the average improve-
ment in the cost of the stabilized minimum cost L-RST over
the rectilinear MST, was seen to be about 9. I % for each one
of these dimcrent cardinalities. Our algorithm produces op-
timal RST’s for each member of the class, of point sets which
have the maximum possible improvement of 2/3 [73. One
such example is illustrated in Figure 8. Our method takes
about 0.01 seconds on an [BM 3090 processor, to produce
the stabilized minimum cost L-RST of 10 input points.
Therefore it is suitable for applications such as global rout-
ing.

Acknowledgements
We wish to thank Kai-Win Lee and Majid Sarrafzadeh for
several discussions about this work.

References:
1.

2.

3.

4.

5.

6.

7.

8.

9.

IO.

A. V. Aho, J. E. Hopcrofl, and 1. D. Ullman, Dara
Sfruclures and Algorithms, Addison -Wesley Publishing
Company, 1983.

M. A. Breuer, “Min-Cut Placement,” Design Auto-
mation and Fault-Talerant Computing, Vol. I, 1977,
pp 343-362.

A. E. Dunlop, and B. W. Kernighan, “A Procedure for
Placement of Standard-Cell VLSI Circuits,” IEEE
Transactions on Computer-Aided Design, Vol. CAD-4,
1985, pp 92-98.

M. R. Garey, and D. S. Johnson, “The Rectilinear
Steiner Tree Problem is NP-complete,” SIAM Journal
;{-sQpiied Mathematics, Vol. 32, No. 4. 1977. pp

F. K. Hwang,. “An 0(n log r~) Algorithm for
Rectilinear Minimal Spanning Trees,” Journal of the
Association for Computing Machine#ry, Vol 26, No. 2,
April 1979, pp 177-182.

F. K. Ilwang, ‘An 0(n log n) Algorithm for Subopti-
ma1 Rectilinear Steiner Trees,” IEEE Transactions on
Circuits and Systems, Vol. CAS-26, No. 1, January
1979, pp 75-77.

F. K. Ilwang, ‘On Steiner Minimal Trees with
Rectilinear Distance,” SIAM Journal of Applied
r4t:t;ytics. Vol. 30, No. 1, January 1976, pp

- .

D. T. Lee and C. K. Wong, “Voronoi Diagrams in
Lt. Lp Metrics with 2-Dimensional Storage Applica-
tions, SIAM Journal of Computing, Vol. 9, No. 1,
February 1980, pp 200-211.

J. H. Lee, N. K. Bose, F. K. flwang, “Use of Steiner’s
problem in sub-optimal routing in rectilinear metric,”
IEEE Transactions on Circuits and Systems, Vol.
CAS-23. July 1976, pp 470-476.
K-W. Lee, and C. Sechen. “A New Global Router for
Row-Based Layout,” Proceedings elf IEEE Interna-
tional Conference on Computer-Aided Design, Santa
Clara, November 1988, pp 180-183.

Paper 11.2

166

