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Placement is one of the most important steps in the RTL-to-GDSII synthesis process, as it directly
defines the interconnects, which have become the bottleneck in circuit and system performance
in deep submicron technologies. The placement problem has been studied extensively in the past
30 years. However, recent studies show that existing placement solutions are surprisingly far from
optimal. The first part of this tutorial summarizes results from recent optimality and scalability
studies of existing placement tools. These studies show that the results of leading placement tools
from both industry and academia may be up to 50% to 150% away from optimal in total wirelength. If
such a gap can be closed, the corresponding performance improvement will be equivalent to several
technology-generation advancements. The second part of the tutorial highlights the recent progress
on large-scale circuit placement, including techniques for wirelength minimization, routability
optimization, and performance optimization.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids—Placement and
routing; G.4 [Mathematical Software]: Algorithm design and analysis; J.6 [Computer-Aided
Engineering]: Computer-aided design (CAD)
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1. INTRODUCTION

The exponential growth of on-chip complexity has dramatically increased the
demand for scalable optimization algorithms for large-scale physical design.
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Although complex logic functions can be composed in a hierarchical fashion
following the logical hierarchy, recent studies [Cong 2001] show the importance
of building a good physical hierarchy from a flattened or nearly flattened logi-
cal netlist for performance optimization. Because a logical hierarchy is usually
conceived with little or no consideration of the layout and interconnect infor-
mation, it may not map well to a two-dimensional layout solution. Therefore,
large-scale global placement on a nearly flattened netlist is needed for phys-
ical hierarchy generation to achieve the best performance. This approach is
even more important in today’s nanometer designs, where the interconnect has
become the performance bottleneck.

This tutorial highlights state-of-the-art placement optimization techniques.
Section 2 presents recent studies on the quality and scalability of existing
placement algorithms on a set of benchmarks with known optimal solutions.
Section 3 reviews scalable paradigms for large-scale wirelength minimization.
Timing optimization and routability optimization are discussed in Sections 4
and 5, respectively. Conclusions are given in Section 6.

2. GAP ANALYSIS OF EXISTING PLACEMENT ALGORITHMS

Placement algorithms have been actively studied for the past 30 years. How-
ever, there is little understanding of how far solutions are from optimal. It is
also not known how much the deviation from optimality is likely to grow with
respect to problem size. Recently, significant progress was made using cleverly
constructed placement examples with known optimal wirelength [Hagen et al.
1995; Chang et al. 2003b]. In this section, we summarize the results of these
studies.

2.1 Placement Examples with Known Optima

Recently, four suites of placement examples with known optimal wirelength
(PEKO) were constructed [Hagen et al. 1995; Chang et al. 2003b]. The con-
struction method takes as input an integer n and a net-profile vector of integers
D. It then generates a placement example P with n placeable modules such
that (i) the number of nets of degree i equals D(i), and (ii) P has a known glob-
ally optimal half-perimeter wirelength. The values of n and D used to construct
PEKO either were directly extracted from the netlists of the ISPD98 suite orig-
inally from IBM [Alpert 1998] or were taken as those values scaled by a factor
of 10. The PEKO suite is given in both GSRC BookShelf format and LEF/DEF
format and is available online [Cong et al. 2004].

All the nets in PEKO are local, that is, the wirelength of every net has the
minimum possible value. However, in real circuits, there may also be global
connections that span a significant portion of the chip, even when they are
optimally placed. Additional benchmark circuits were therefore constructed to
study the impact of global nets [Cong et al. 2003b]. Circuits in the G-PEKU suite
consist only of global nets connecting either an entire row or an entire column.
For such circuits, an obvious upper bound on optimal wirelength is the sum of
the lengths of the rows and columns. Circuits in the PEKU suite (Placement
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Fig. 1. Average solution quality vs percentage of non-local nets, from PEKO (0% non-local nets)
through PEKU (0.25% to 10% of nonlocal nets) to G-PEKU (100% non-local nets). Each data point
is an average quality ratio for a given placer over all circuits in the given suite.

Examples with Known Upper bounds on wirelength) consist of both PEKO-style
local nets and additional, randomly generated nonlocal nets. An upper bound
on the optimal wirelength is derived simply by adding the wirelengths of
nonlocal nets to the known total wirelength of the local nets. In the study [Cong
et al. 2003b], the percentage of nonlocal nets was gradually increased from
0.25% to 10%. The G-PEKU and PEKU suites are also available online [Cong
et al. 2004].

2.2 Gap Analysis Results

Four state-of-the-art placers from academia and one industrial placer were
studied for optimality and scalability: Dragon v.2.20 [Wang et al. 2000], Capo
v.8.5 [Caldwell et al. 2000b], mPL v.2.0 [Chan et al. 2003b], mPG v.1.0 [Chang
et al. 2003a], and QPlace v.5.1.55 [Cadence Design Systems, Inc. 1999]. Exper-
iments with Dragon, mPL, mPG and QPlace were performed on a SUN Blade
750 MHz running SunOs 5.8 with 4GB of memory. The experiments with Capo
were performed on a Pentium IV 2.20GHz running RedHat 8.0 with 2GB of
memory. To measure how close the placement results are to optimal, the ratio
of a placement’s wirelength to the optimal wirelength (on PEKO) or its upper
bound (on G-PEKU and PEKU) was computed. This ratio is called the “quality
ratio.” An upper limit of 24 hours was placed on the run time; any process
exceeding this limit was terminated.

The results are summarized in Figure 1 and Figure 2. Figure 1 shows how
the average quality ratios of these tools change with the percentage of nonlocal
nets. Figure 2 shows how the run times of these tools changes with increase in
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Fig. 2. Run time vs. cell number for several algorithms on the PEKO suite.

cell number. We make the following observations:

(i) None of the placers from the 2003 study achieves a quality ratio close
to one.1 On PEKO, the wirelengths produced by these tools range from
1.41 to 2.09 times the optimal on average (see Figure 1) and 1.66 to 2.50
times the optimal in the worst case (not shown). On G-PEKU, the gap
between their solutions and the upper bound varies between 79% and
102% in the worst case. Some placers may try to improve routability by
sacrificing wirelength. However, given the gap between their wirelengths
and the optimal value, there remains significant room for improvement in
existing placement algorithms.

(ii) The quality ratio from the same placer can vary significantly for designs
of similar sizes but different characteristics. None of them produces con-
sistently better results than another. On PEKO, mPL gives the shortest
wirelength. However, its quality ratio shows an increase of more than 40%
with a small increase of nonlocal nets. On G-PEKU, Capo gives the closest
solution to the upper bound in most cases. On PEKU, Dragon’s wirelength
gradually becomes the closest to the upper bound. This seems to suggest
that more scalable and stable hybrid techniques may be needed for future
generations of placement tools.

(iii) Different placers displayed different scalability in run time and solution
quality. None of them can successfully finish all the circuits of PEKO, be-
cause of either the run-time limit (e.g., Dragon), or memory consumption
(e.g., Capo, mPL, mPG, QPlace). For those circuits they successfully placed,
an average solution quality deterioration from 4% (on QPlace) to 25% (on
mPL) can be observed when the problem size is increased by a factor of 10.

1However, recently improved versions of mPL and Feng Shui (not included in the 2003 study)
have consistently obtained average quality ratios below 1.3, and other placers have also reported
significant gains.
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It is not known whether the gaps on real circuits are similar to those observed
on the benchmarks discussed above. A recent study [Wang et al. 2005] computes
lower bounds for the optimal half-perimeter wire lengths of some widely used
FGPA benchmarks and observes ratio gaps between 1.14 and 4.09 for place-
ments computed by VPR [Betz and Rose 1997]. The construction of placement
examples that resemble real circuits more closely, including examples optimized
for timing [Cong et al. 2003a] or routability, is an active area of research.

3. SCALABLE PARADIGMS

Scalability typically derives from some hierarchical form of computation. The
use of hierarchy may be subtle or indirect but is rarely completely absent. In
this article, we use the word “scalability” in the practical, operational sense and
therefore consider not just O(N ) algorithms but rather any framework likely
to have applicability lasting for several technology generations and circuit-size
ranges.

Wirelength, performance, power consumption, and routability are the typical
objectives of VLSI placement. Of these, weighted total wirelength is a useful
single representative, as (i) it can be optimized efficiently, and (ii) strategic,
iterative net reweighting can be used to optimize other objectives, such as per-
formance and routability.

Our discussion is centered on methods for wirelength-driven global place-
ment. The goal here is only an approximately uniform distribution of cells with
as little total wirelength as possible. The problem of transforming a global place-
ment to an overlap-free configuration is left to the detailed placement phase.

The most promising large-scale approaches to wirelength-driven global
placement can be broadly categorized by (i) the manner in which their hier-
archies are constructed and traversed, (ii) the kinds of intralevel optimizations
used and the manner in which they are incorporated into the hierarchy and
coordinated with each other. At the highest level, we classify algorithms as
top-down, multilevel, or flat; in practice, however, these categories overlap in
interesting ways. Top-down algorithms (Section 3.1) use variants of recursive
partitioning. Multilevel approaches (Section 3.2) compute placements of aggre-
gates at several distinct levels of aggregation. These levels are most commonly
formed by recursive clustering but may be defined instead by top-down par-
titioning. Flat approaches (Section 3.3), if scalable, use hierarchy for internal
iterative computation while maintaining a consistent non-hierarchical view of
the placement problem.

3.1 Recursive Top-Down Partitioning

Among academic placement tools, all the leading top-down methods rely on vari-
ants of recursive circuit partitioning in some way. Seminal work on partitioning-
based placement was done by Breuer [1977] and Dunlop and Kernighan
[1985]. Most contemporary methods, including Capo [Caldwell et al. 2000b]
and Feng Shui [Yildiz and Madden 2001a], have exploited further advances in
fast algorithms for hypergraph partitioning to push these frameworks beyond
their original capabilities. Fast, high-quality O(N ) partitioning algorithms give
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Fig. 3. Cutsize-driven partitioning-based placement. Rectangles represent movable cells, line seg-
ments represent cutlines, and ellipses and other closed curves represent nets. The recursive bipar-
titioning attempts to minimize the number of nets containing cells in more than one subregion.

top-down partitioning attractive O(N log N ) scalability overall. The asymptotic
is O(N log N ) and not O(N ), because partitioning is always applied to cells, not
to aggregates.

3.1.1 Cutsize Minimization. Simple and traditional recursive bisection
with a cutsize objective can be used quite effectively with simple Fiduccia-
Matheysses-style iterations. At a given level, each region is considered sepa-
rately from the others in some arbitrary order. A spatial cutline for the region,
either horizontal or vertical, can be carefully chosen. Given some initial parti-
tion, subsets of cells are moved across the cutline in a way that reduces the to-
tal weight of hyperedges cut without violating a given area-balance constraint.
This constraint can be set loosely initially and then gradually tightened. As the
recursion proceeds, cell subsets become smaller, and the cell-area distribution
over the placement region becomes more uniform. Base cases of the bipartition-
ing recursion are reached when cell subsets become small enough that special
end-case placers can be applied [Caldwell et al. 2000d]. A small example is
illustrated after 3 levels of bipartitioning in Figure 3.

Connections between subregions can be modeled by terminal propagation
[Dunlop and Kernighan 1985], in which the usual cutsize objective is aug-
mented by terms incorporating the effect of connections to external subregions.
Other techniques for organizing local partitioning subproblems use Rent’s
rule to relate cutsize to wirelength estimation [Wang et al. 2000; Yildiz and
Madden 2001b]. Careful consideration of the order and manner in which sub-
regions are selected for partitioning can be significant. For example, a dynamic-
programming approach to cutline selection can improve overall results by 5% or
more [Yildiz and Madden 2001b]. In the multiway partitioning framework, in-
termediate results from the partitioning of each subregion are used to influence
the final partitioning of others. Explicit use of multiway partitioning at each
stage can in some cases bring the configuration closer to a global optimum than
is possible by recursive bisection alone [Yildiz and Madden 2001a]. Cell replica-
tion and iterative deletion have been used for this purpose. Rather than attempt
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to find the best subregion in which to place a cell, we can replicate the cell
enough times to place it in once in every subregion, then iteratively delete only
the worst choices. These iterations may continue until only one choice remains,
or they may be terminated earlier, allowing a small pool of candidates to be
propagated to and replicated at finer levels, By postponing further deletion de-
cisions until better information becomes available, spurious effects from locally
optimal subregion partitions can be diminished and the global result improved.

Example: CAPO. To provide a concrete example of an implementation of
fixed-die placement by top-down, cutsize-driven recursive bipartitioning, we
briefly describe the CAPO package [Caldwell et al. 2000b] and a few of its ex-
tensions. The stated goals of CAPO are simplicity and automatic routability. In
addition, the top-down flow and the use of leading multilevel hypergraph parti-
tioner MLpart [Caldwell et al. 2000a] give CAPO superior speed and scalability.
For simplicity, no explicit congestion management is used. Instead, decisions
affecting the flow of the top-down recursive bipartitioning are carefully consid-
ered for their impact on routability.

In CAPO, recursive cutsize-driven hypergraph-netlist bipartitioning is
enhanced to support its ultimate goal of wirelength-driven circuit placement.
Key considerations include nonuniformity of vertex weights, assignment
of partition blocks to rectangular placement subregions, efficient solution
of partitioning subproblems with small balance tolerances, and connections
between cells in the subregion currently being partitioned and other, “external”
subregions (terminal propagation). Movable cells in the circuit correspond
to vertices in the partitioning instance. Vertex weights are determined by
corresponding cell areas.

Given a hypergraph netlist and a placement region or subregion, the mul-
tilevel partitioner MLpart [Caldwell et al. 2000a] is used to divide the set of
movable cells into two subsets of nearly equal total areas, when the number
of cells exceeds 200. For fewer than 200 cells, enhanced Fiduccia-Matheysses
(FM) partitioning [Fiduccia and Mattheyses 1982; Caldwell et al. 2000c] is used
directly (MLpart is also based on this enhanced version of FM). The region must
then be split, either vertically or horizontally, so that the resulting subregions
hold the partition blocks, and whitespace is distributed as evenly as possible.
CAPO uses a horizontal cut if the number of standard-cell rows contained in the
subregion exceeds M/15, where M is the number of movable cells in the sub-
region. Otherwise, it chooses cut direction in order to make the aspect ratios of
the resulting subregions as close to one as possible. For a vertical cut, whites-
pace can be distributed perfectly evenly, but horizontal cuts are constrained to
lie between uniform-height rows of the standard-cell layout. Respecting stan-
dard cell row boundaries in this fashion greatly facilitates legalization of the
final global placement. However, a recent study shows that this restriction oc-
casionally overconstrains end cases and increases wirelength [Agnihotri et al.
2003]. The authors of this study show that Feng Shui’s “fractional-cut” relax-
ation of row boundaries during the partitioning can considerably improve re-
sults, when it is followed by careful displacement-minimizing legalization, such
as dynamic-programming based row-assignment.
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Once the number of cells to be placed in any subregion decreases below 35,
CAPO employs time-limited branch-and-bound heuristics to obtain an opti-
mal or nearly optimal end-case solution [Caldwell et al. 2000d]. Finally, greedy
refinement of cell orientations further improves wirelength and routability.

Much of CAPO’s performance derives from its placement-driven enhance-
ments to its core FM partitioner. These enhancements are concerned mainly
with (i) avoiding the “corking effect,” as described below, caused by improper
handling of large variations in movable cell areas and/or tight area-balance
constraints, and (ii) terminal propagation.

Given any initial partition, FM considers sequences of single, maximum-gain
cell moves from one partition block to the other. It maintains a list of “buckets”
for each partition block, where the kth bucket in each list holds the vertices
which, when moved to the opposite block, will reduce the total number of nets
cut by k. However, a cell will not be moved if the move violates the vertex-weight
balance constraint. The original version of FM [Fiduccia and Mattheyses 1982]
is focused primarily on hypergraph instances with all vertex weights equal. It
does not specify any ordering for vertex weights are not ordered within buckets.
According to the partitioning studies on which Capo is based [Caldwell et al.
2000c], many leading implementations of FM-based partitioning, in order to
reduce run time, simply terminate searches in gain buckets when the first
vertex in the kth bucket cannot be moved without violating the vertex-weight
balance constraint. This short-cut has dire consequences, however, when cell
sizes vary widely. If a cell too large to be moved occurs at the front of a bucket,
it prevents any of the other moves in the bucket from being examined.

By avoiding this “corking” effect, CAPO significantly improves its re-
sults [Hagen et al. 1997]. CAPO prevents corking in two different ways. First,
gain buckets are maintained as last-in, first-out (LIFO) stacks. Second and
most importantly, it starts each bipartitioning subproblem with a relaxed area-
balance constraint and gradually tightens the constraint as partitioning iter-
ations proceed. Initially, the maximum allowed area imbalance is set to 20%
of total area, or three times the area of the largest movable cell, whichever is
greater. As the balance tolerance decreases below the area of any cell, that cell
is locked in its current partition block. The final subproblem balance tolerance
is selected so that, given an initial whitespace budget, enough relative whites-
pace in endcase subproblems is ensured that overlap-free configurations can
typically be found.

In CAPO’s original implementation, terminal propagation is simple. A given
subproblem consists of (i) a pair of adjacent rectangular subregions, say, A and
B, (ii) a collection of movable cells S to be divided between A and B, and (iii) a
list of nets, each of which contains cells in S and, possibly, other external cells
in other subregions as well. A hyperedge which contains some external cells in
subregions closer to A and also other external cells in subregions closer to B
will necessarily be cut and is therefore ignored. A hyperedge whose external
cells (those not in S) are all closer to A than to B is treated as if its external
cells are all fixed at A’s center. Similarly, a hyperedge whose external cells are
all closer to B than to A is treated as if its external cells are all fixed at B’s
center. Although this simple strategy is effective, recent studies [Yildiz and
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Madden 2001a; Kahng and Reda 2004] demonstrate significant improvement
by iterative refinement. Initially many nets contain ambiguous terminals, that
is, external cells whose locations are not yet known precisely enough to deter-
mine which of subregions A and B they are closer to. However, after a complete
sweep of bipartitioning, many of these ambiguous terminals become unambigu-
ous relative to given subproblems. Repartitioning such subproblems with the
improved terminal propagation leads to improved average results—for exam-
ple, 5% cutsize reduction after 3 complete sweeps at each level [Kahng and
Reda 2004].

3.1.2 Incorporating Advances in Floorplanning. Recent improvements
to Capo include the incorporation of fixed outline floorplanning to improve
handling of large macro blocks in mixed-size placement [Adya et al. 2004].
Min-cut placement proceeds as described above until certain ad-hoc tests
suggest that legalization of a subset of blocks and cells within their assigned
subregion may be difficult. At that point, the cells in that subregion are
aggregated into soft clusters, and annealing-based fixed outline floorplanning
is applied to the given subproblem [Adya and Markov 2002]. If it succeeds,
the macro locations in its solution are fixed. If it fails, it must be merged
with its sibling subproblem, and the merged parent subproblem must then be
floorplanned. This step therefore initiates a recursive backtracking through
ever larger ancestor subproblems. The backtracking terminates as soon as one
of these ancestor subproblems is successfully floorplanned. The ad-hoc tests
are chosen to prevent long backtracking sequences on most test cases, as the
floorplanner does not scale well to large subproblems. Adya et al. [2004] observe
that it is typically possible to define the ad-hoc tests so that the transition from
min-cut partitioning to fixed-outline floorplanning does not impair scalability.
However, as the algorithm cannot ensure the legalizability of the subproblems
it generates by min-cut partitioning, it cannot prevent the possibility of a
long backtracking sequence or a failure, especially on difficult low-whitespace
instances.

The general challenge of ensuring the legalizability of subproblems within a
min-cut-partitioning-based floorplanning or placement has been addressed by
Patoma [Cong et al. 2005a, 2005b]. Beginning with the given instance itself,
Patoma employs fast and scalable area-driven floorplanning before cutsize-
driven partitioning in order to confirm that the problem can be legalized as
given. This area-driven “pre-legalization” ignores wirelength but serves as a
guarantor of the legalizability of subsequent steps. It is extremely robust; no
failure on any known public-domain benchmark circuit has been observed.
Given the guarantor legalization at a given level, cutsize-driven partitioning
proceeds at that level. The flow then proceeds recursively on the subproblems
generated by the cutsize-driven partitioning, each subproblem being legalized
before it is solved. When prelegalization fails, the failed subproblem is merged
with its sibling, and the previously computed legal guarantor solution to this
parent subproblem is improved to reduce wirelength. The flow thus guaran-
tees the computation of a legal placement or floorplan, under the very modest
assumption that the initial attempt to prelegalize the given instance succeeds.
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Experiments with this flow demonstrate significantly more robust performance
on mixed-size benchmarks with white space between 1 and 10%.

3.1.3 Partitions Guided by Analytical Placements. An oft-cited disadvan-
tage of recursive bisection is its alleged tendency to ignore the global objective
as it pursues locally optimal partitions. Approximating wirelength by cutsize
in the objective may also degrade the quality of the final placement. A radically
different approach, first introduced in Proud [Cheng and Kuh 1984; Tsay et al.
1988] and subsequently refined by Gordian [Kleinhans et al. 1991], is to use con-
tinuous, iteratively-constrained quadratic star-model wirelength minimization
over the entire circuit to guide partitioning decisions. The choice of a quadratic-
wirelength objective helps avoid long wires and facilitates the construction of
efficient numerical linear-system solvers for the optimality conditions, for ex-
ample, preconditioned conjugate gradients. I/O pads prevent the cells from sim-
ply collapsing to a single point. Linear wirelength can still be asymptotically
approximated by iterative adjustments to the net weights [Sigl et al. 1991].
Following this “analytical” placement, each region is then quadrisected, and
cells are partitioned to subregions in order to further reduce overlap and area
congestion. In Gordian, carefully chosen cutlines and FM-based cutsize-driven
partitioning and repartitioning are used. Cell-to-subregion assignments are
loosely enforced by imposing and maintaining a single center-of-mass equality
constraint for each subregion. As constraints accumulate geometrically, degrees
of freedom in cell movement are eliminated, and the quadratic minimization at
each step moves cells less and less.

Example: BonnPlace. BonnPlace [Vygen 1997; Brenner and Rohe 2002] is
the leading contemporary variation of placement by top-down recursive par-
titioning guided by analytical quadratic wirelength minimization. Global un-
constrained minimization of quadratic wirelength (cf. (2) below) determines a
starting configuration; the presence of fixed I/O pads, typically along the circuit
boundary, prevents the movable cells from collapsing to a single point. The cells
are then partitioned into four disjoint subregions, in linear time, in a manner
that essentially minimizes the sum of their rectilinear displacements from their
starting positions [Vygen 2000]. BonnPlace does not explicitly impose equality
constraints into the subseqent analytical minimization to preserve these parti-
tioning assignments, as Gordian does. Instead, it directly alters the quadratic-
wirelength objective to minimize the sum of all cells’ displacements from their
assigned subregions. The following four steps are then repeated until subre-
gions become small enough that legalization and detailed placement by local
perturbations can be applied [Brenner et al. 2004].

(1) For each pair of connected cells (clique model) not in the same subregion,
express their contributions to the global objective as squared Manhattan
distances to their respective subregion boundaries, in the direction of the
segment joining them.

(2) Minimize this quadratic objective over the entire chip simultaneously.
(Don’t minimize over subregions separately in sequence.) By moving all cells
in all regions at the same time, a higher quality solution can be obtained.
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(3) Quadrisect each subregion by displacement-minimizing partitioning.
(4) Suppose there are now n2 = n × n subregions.

FOR EACH of the (n − 1)2 (overlapping) 2 × 2 windows of subregions,
(4.1) Perform quadratic WL minimization separately over just the cells

in the current 2 × 2 window, allowing these cells to move anywhere
within this window but not into other windows.

(4.2) IF the center of mass of the result of 4.1 can be maintained by some
overlap-free placement of cells within the current window
THEN Repartition the cells in the current window into the four
contained subregions.
ELSE Redo 4.1 subject to a center-of-mass equality constraint, then
repartition.

(4.3) Do QP minimization over the current window with an updated
objective respecting the partitioning assignments from 4.2.

END FOR

3.1.4 Iterative Ref inement. Following the initial partitioning at a given
level, various means of further improving the result at that level can be used.
In BonnPlace (Section 3.1.3), unconstrained quadratic wirelength minimiza-
tion over 2×2 windows of subregions is followed by a repartitioning of the cells
in these windows. Windows can be selected based on routing-congestion esti-
mates. Capo [Caldwell et al. 2000b] greedily selects cell orientations in order
to reduce wirelength and improve routability. Feng Shui [Yildiz and Madden
2001a] follows k-way partitioning by localized repartitioning of each subregion.
Some leading partitioning-based placers also employ time-limited branch-and-
bound-based enumeration at the finest levels [Caldwell et al. 2000d].

In Dragon [Wang et al. 2000; Sarrafzadeh et al. 2002], an initial cutsize-
minimizing quadrisection is followed by a bin-swapping-based refinement, in
which entire partition blocks at that level are interchanged in an effort to re-
duce total wirelength. At all levels except the last, low-temperature simulated
annealing is used; at the finest level, a more detailed and greedy strategy is
employed. Because the refinement is performed on aggregates of cells rather
than on cells from the original netlist, Dragon may also be grouped with the
multilevel methods discussed next.

3.2 Multilevel Methods

Placement algorithms in the multilevel paradigm have only recently drawn
attention [Sankar and Rose 1999; Chan et al. 2000; Chang et al. 2003a; Chan
et al. 2003a, 2003b]. These methods are based on coarsening, relaxation, and
interpolation, defined as follows.

(i) Coarsening. Hierarchies are built either from the bottom up by recursive
aggregation or from the top down by recursive partitioning.

(ii) Relaxation. Localized optimizations are performed at every aggregation
level.

(iii) Interpolation. Intermediate solutions are transferred from each aggrega-
tion level to its adjacent finer level.
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Additionally, the order in which the various problems at the various levels
are solved can be important. The simplest and most common approach is
simply to proceed top down, from the coarsest to the finest level, once the
aggregation hierarchy has been constructed [Sankar and Rose 1999; Chan
et al. 2000; Sarrafzadeh et al. 2002; Kahng and Wang 2004]. When the hi-
erarchy is defined by recursive bottom-up clustering, the combined flow of
recursive clustering followed by recursive top-down optimization and inter-
polation is traditionally referred to as a “V-cycle” (Figure 5; the bottom of
the ’V’ corresponds to the coarsest or “top” level of the hierarchy). However,
studies show considerable improvement is possible by repeated traversals and
reconstructions of the hierarchy in various orderings [Brandt and Ron 2002;
Chan et al. 2003b], as in traditional multiscale methods for PDEs [Briggs
et al. 2000]. We refer to the organization of these traversals as iteration
flow.

The scalability of the multilevel approach is straightforward to obtain and
understand. Provided relaxation at each level has order linear in the number
Na of aggregates at that level, and the number of aggregates per level decreases
by factor r < 1 at each level of coarsening, say Na(i) = ri N at level i, the total
order of a multilevel method is at most cN (1+r +r2 +· · ·) = cN/(1−r). Higher-
order (nonlinear) relaxations can still be used, if their use is limited to subsets
of bounded size, e.g., by sweeps over overlapping windows of contiguous clusters
at the current aggregation level.

3.2.1 Coarsening. A hierarchy of problem formulations can be defined ei-
ther from the bottom up by recursive aggregation or from the top down by
recursive aggregation. Traditional multiscale algorithms form their hierar-
chies by recursive clustering or generalizations thereof. However, the impor-
tance of limiting cutsize makes partitioning attractive in the placement context
[Sarrafzadeh et al. 2002; Kahng and Wang 2004].

Typically, clustering algorithms merge tightly connected cells in a way that
eliminates as many nets at the adjacent coarser level as possible while re-
specting some area-balance constraints. Experiments to date suggest that rel-
atively simple, graph-based greedy strategies like First-Choice vertex match-
ing [Karypis 1999, 2003] may be more effective than more sophisticated ideas
like edge-separability clustering (ESC) [Cong and Lim 2000] that attempt to
incorporate estimates of global connectivity information. How best to define
coarse-level hyperedges without explosive growth in the number and degree
of coarsened hyperedges relative to coarsened vertices remains an important
open question [Hu and Marek-Sadowska 2004].

First-Choice clustering is the method currently used by mPL [Chan et al.
2000, 2003a, 2003b] and mPG [Chang et al. 2003a]. A graph is defined on
the netlist vertices with each edge weighted by the “affinity” of the given two
vertices. The affinity may represent some weighted combination of complex
objectives, such as hypergraph connectivity, spatial proximity, timing delay,
area balance, coarse-level hyperedge elimination, etc. Each vertex is paired with
some other vertex for which it has its highest affinity. This maximum-affinity
pairing is not symmetric and is independent of the order in which vertices
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Fig. 4. First-Choice Clustering on an affinity graph. Darkened edges in the original graph are of
maximal weight for at least one of their vertices. Note that vertex d has maximal affinity for vertex
b, but vertex b has maximal affinity for vertex f .

are considered (see Figure 4). The corresponding maximum-affinity edges are
marked and define a subgraph of the affinity graph; connected components
of this subgraph are clustered and thus define vertices at the next coarser
level.

A common objection to clustering is that its associations may be incorrect and
therefore lead subsequent iterations to the wrong part of the solution space. To
reduce the likelihood of poorly chosen clusters, the notion of a cluster can be
generalized by weighted aggregation. Rather than assign each cell to just one
cluster, we can break it into a small number of weighted fragments and as-
sign the fragments to different coarse-level vertices; these are no longer simple
clusters and are instead called aggregates. During interpolation, a cell’s initial,
inherited position is then typically determined by that of several aggregates
as a weighted average [Chan et al. 2003b]. Clustering, also called strict ag-
gregation, is a special case of weighted aggregation. Both are associated with
algebraic multigrid (AMG) methods [Brandt 1986; Briggs et al. 2000] for the
hierarchical, numerical solution of PDE’s over unstructured discretizations.

3.2.2 Initial Placement at Coarsest Level. A placement at the coarsest ag-
gregate level may be derived in various ways. Because the initial placement may
have a large influence at subsequent iterations, and because the coarsest-level
problem is relatively small, the placement at this level is typically performed
with great care, to the highest quality possible. mPL [Chan et al. 2000, 2003a,
2003b] uses nonlinear programming (Section 3.2 below); mPG uses simulated
annealing [Chang et al. 2003a]. How to judge the coarse-level placement qual-
ity is not necesssarily obvious, however, as the coarse-level objective may not
correlate strictly with the ultimate fine-level objectives. For this reason, multi-
ple iterations over the entire hierarchical flow are important [Brandt and Ron
2002; Chan et al. 2003b].

3.2.3 Relaxations. Relaxations at a given level are fast and relatively lo-
calized. The global view comes from the multilevel hierarchy, not from the in-
tralevel relaxations. Almost any algorithm can be used, provided that it can
support (i) incorporation of complex constraints (ii) restriction to subsets of
movable objects. Relaxation in mPG and Ultrafast VPR is by fast annealing.
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The mPG framework employs a fixed set of hierarchical bin-density constraints
to monitor area and routing congestion. In mPL, relaxation at intermediate
levels proceeds both by (i) quadratic wirelength minimization on small sub-
sets followed by path-based area-congestion relief [Hur and Lillis 2000] and
(ii) randomized, greedy, and discrete Goto-based cell swapping [Goto 1981].

3.2.4 Interpolation. Simple declustering and linear assignment can be ef-
fective [Chan et al. 2000]. With this approach, each component cluster is ini-
tially placed at the center of its parent’s location. If an overlap-free configuration
is needed, a uniform bin grid can be laid down, and clusters can be assigned
to nearby bins or sets of bins. The complexity of this assignment can be re-
duced by first partitioning clusters into smaller windows, for example, of 500
clusters each. If clusters can be assumed to have uniform size, then fast linear
assignment can be used. Otherwise, approximation heuristics are needed.

Under AMG-style weighted disaggregation, interpolation proceeds by
weighted averaging: each finer-level cluster is initially placed at the weighted
average of the positions of all coarser-level clusters with which its connection
is sufficiently strong [Chan et al. 2003b]. Finer-level connections can also be
used: once a finer-level cluster is placed, it can be treated as a fixed, coarser-
level cluster for the purpose of placing subsequent finer-level clusters. Weighted
disaggregation is described further in Section 3.2 below.

A constructive approach, as in Ultrafast VPR [Sankar and Rose 1999], can
also lead to extremely fast and scalable algorithms. At each level, clusters are
initially placed in the following sequence: (i) clusters directly connected to out-
put pads, (ii) clusters directly connected to input pads, (iii) other clusters.

Example: mPL. To provide a concrete example of an implementation of
placement by multilevel optimization, we briefly describe the mPL pack-
age [Chan et al. 2000, 2003a, 2003b]. mPL began as an attempt at scalable place-
ment by efficient nonlinear-programming. Early experiments, however, showed
that requiring descent at each iteration forced step sizes to be prohibitively
small on problems with more than a few hundred variables. The complexity
of the O(N 2) nonconvex nonoverlap constraints rendered pointwise approxi-
mations useful only in microscopic neighborhoods of their evaluation points.
Multiscale optimization was used to overcome this complexity barrier. An early
fast and scalable formulation was produced relatively easily, at some cost in
wirelength compared to leading methods. Subsequent work has made mPL
competitive in both run-time and quality of result, without loss of scalability.

Coarsening. mPL builds its hierarchy of problem scales by recursive first-
choice clustering [Karypis 1999]. The mPL-FC affinity that vertex i has for
vertex j is

ri j =
∑

{e∈E | i, j∈e}

w(e)
(|e| − 1)area(e)

, (1)

where w(e) is the weight assigned to hyperedge e, area(e) denotes the sum of the
areas of the vertices in e, and |e| denotes the number of vertices in hyperedge e,
viz., the degree of e. Dividing by |e| helps eliminate small hyperedges at coarser
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levels, making coarse-level netlists sparser and hence easier to place [Karypis
1999; Sankar and Rose 1999; Hu and Marek-Sadowska 2003]. Dividing by
area(e) gives greater affinity to smaller cells and thus helps keep cluster
areas commensurate. A relatively uniform cluster-area distribution improves
the performance of the nonlinear-programming and slot-assignment modules
discussed below. Given a vertex i at the finer level, the vertex j assigned to it
has least hyperedge degree among those vertices within 10% of i’s maximum
FC affinity. When this choice is not unique, a least-area vertex is selected
from the least-degree candidates. Hyperedges are defined at the coarser level
simply by replacing the elements of the finer-level hyperedge e = {e1, . . . , ek} by
their corresponding clusters: ē = {c(e1), . . . , c(ek)}, where duplicate clusters are
of course removed. Hence, hyperedge degrees decrease during coarsening, and
many hyperedges eventually become singletons at some level, where they are
ignored.

Relaxation. A customized nonlinear-programming solver is used at mPL’s
coarsest level—500 cells or fewer, by default—to obtain an initial solution. Re-
laxation at all other levels is restricted to sweeps of local refinements on subsets.
All relaxations are combined or alternated with techniques for spreading cells
out to obtain a sufficiently uniform cell-area distribution at each level.

The nonlinear-programming (NLP) formulation employs simplified,
smoothed objective and constraint functions. At the coarsest level, clusters
vi and vj are modeled as disks. Let x and y denote vectors containing the
respective x and y coordinates of all cells and pads (assume pin locations are at
cell centers). Pairwise nonoverlap constraints ci j (x, y) are directly expressed
in terms of disk radii ρi and ρ j ;

ci j (x, y) = (xi − x j )2 + ( yi − y j )2 − (ρi + ρ j ) ≥ 0 for all i < j .

Quadratic wirelength over a clique-model graph netlist approximation,

q(x, y) =
∑
i, j

γi j ((xi − x j )2 + ( yi − y j )2), (2)

is minimized subject to the pairwise nonoverlap constraints (for efficiency, large
nets are modeled as chains rather than cliques). The NLP solver is a customized
interior-point method. In order that overlap can be removed gradually, a slack
variable ξ is added to both the objective and the constraints, as follows:

min
x, y ,ξ

f (x, y) + αξ

subject to ci j (x, y) + ξ ≥ 0.

The penalty weight factor α is gradually increased to remove overlap.
After nonlinear programming and the QRS local-relaxation sweeps described

below, bin-area densities are balanced by displacement-minimizing linear as-
signment of clusters to bin locations. Discrete Goto-based swaps are then em-
ployed as described below to further reduce wirelength prior to interpolation to
the next level.

For scalability, global relaxations (in which all variables are simultaneously
modified) are avoided at all levels except the coarsest. Instead, two separate
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sweeps of iterative improvement over small subsets of vertices are performed.
A uniform grid is used to monitor the area-density distribution.

The first of these local-relaxation sweeps is called quadratic relaxation on
subsets (QRS). Traversing the netlist in simple depth-first search (DFS) or-
der, it selects movable vertices in small batches. For each batch, the quadratic
wirelength of all nets containing at least one movable vertex, viewed as a con-
tinuous function of the movable vertex locations, is minimized without regard
to overlap. Each such relocation typically introduces additional area congestion
and is therefore followed directly by a clean-up step to keep the area-density
distribution consistent. For this purpose, the “ripple-move” algorithm [Hur and
Lillis 2000] is applied to any overfull bins after QRS on each batch. Ripple-move
computes a max-gain monotone path of vertex swaps along a chain of bins lead-
ing from an overfull bin to an underfull bin. To facilitate the area-congestion
control, only very small batches of movable cells are used in QRS; the batch
size is set to three in the reported experiments.

After the entire sweep of QRS+ripple-move, a sweep of discrete, Goto-style
permutations [Goto 1981] further reduces total wirelength. Vertices are visited
one at a time in netlist order. The optimal “Goto” location of a given vertex
a is computed by minimizing the sum of the bounding-box lengths of all nets
containing a while holding all neighbors of a fixed. If a’s Goto location is occupied
by b, say, then b’s optimal Goto location is similarly computed along with the
optimal Goto locations of all of b’s nearest neighbors. The computations are
repeated at each of these target locations and their nearest neighbors up to a
predetermined limit (3–5). Chains of swaps are examined by moving a to some
location in the Manhattan unit-disk centered at b, and moving the vertex at
that location to some location in the Manhattan unit disk centered at its Goto
location, and so on. The last vertex in the chain is then forced into a’s original
location. If the best such chain of swaps reduces wirelength, it is accepted;
otherwise, the search begins anew at another vertex. To prevent corruption of
a given cell-area distribution, swapping a large cell with a much smaller cell is
explicitly disallowed.

Smoothing the distribution of cell area in the presence of widely varying
cell or cluster sizes has particular importance. Interestingly, mPL ignores area
variations among clusters at all coarser levels. That is, at every level except
the finest, each cluster’s area is set to the average of all cluster areas at that
level. The reasons for this assumption’s effectiveness are not completely un-
derstood. It is not used at the finest level, however, where larger-than-average
cells are chopped into average-size fragments. After linear assignment of the
cells and cell fragments to finest-level bins, fragments of the same cell are ex-
plicitly reunited. Any resulting area overflow is then removed by ripple-move
cell propagation as described above.

Interpolation. mPL employs AMG-based weighted disaggregation in inter-
polating solutions from level to level. For each cluster at the coarser level, a
single, “C-point” representative component is selected from it for use as a fixed
anchor. C-points are selected for maximal netlist degree and large area (area is
used only if the maximum-degree vertex is not unique). C-points are locked in
place at their parent clusters’ centers. The remaining “F-point” vertices in the
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Fig. 5. Some iteration flows for multilevel optimization.

cluster are ordered by nonincreasing weighted hyperedge degree. Following this
order, they are then placed one by one at the weighted averages of their strong
C-point neighbors and strong F-point neighbors already placed. This F-point
repositioning is iterated a few times, but the C-points are held fixed throughout.

Iteration Flow. The idea behind the F-cycle shown in Figure 5 is that the
accuracy of a coarse-level solution can be enhanced by recursively applying the
multilevel flow to it before interpolation. Although the F-cycle flow does not com-
promise scalabilty, assuming linear-order relaxations, it may increase run time
considerably. In mPL, two backtracking V-cycles are used as a compromise—
instead of descending all the way back to the coarsest level after each inter-
polation, mPL backtracks just one level before continuing toward finer levels.
The first backtracking V-cycle follows the connectivity-based FC clustering hi-
erarchy described in the coarsening section above. The second backtracking
V-cycle follows a different FC-cluster hierarchy, in which both connectivity and
proximity are used to calculate vertex affinities:

ri j =
∑

{e∈E | i, j∈e}

w(e)
(|e| − 1)area(e)||(xi, yi) − (x j , y j )|| .

During this second pass of clustering, vertex positions calculated in the first
backtracking V-cycle are preserved by placing clusters at the weighted aver-
ages of their component vertices’ positions. In the interpolation phase, however,
the new clustering supports exploration of new territory in the solution space,
enabling the flow to improve the result.

3.3 Embedded Multilevel Optimization

Leading algorithms owe their performance not only to their basic, outer struc-
ture but also to sophisticated and hierarchical iterative internal calculation. In
particular, all leading contemporary partitioning-based methods as described
in Section 3.1.1, including Capo [Caldwell et al. 2000b], Dragon [Sarrafzadeh
et al. 2002], and Feng Shui [Yildiz and Madden 2001a; Agnihotri et al. 2003;
Khatkhate et al. 2004], rely heavily on multilevel algorithms for netlist parti-
tioning. Although each partitioning is, as a component of the placement algo-
rithm, performed on individual cells rather than on aggregates of cells, the par-
titioning algorithm itself is multilevel. That is, a hierarchy of aggregates of cells
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is formed by recursive clustering, each of the resulting levels is partitioned by
FM, starting with the coarsest level, proceeding in sequence to the finest level,
the solution at each level defining a starting point for iterative improvement at
the next. Although no explicit use is made of the multilevel cluster hierarchy
once partitioning is completed, it seems clear that the multilevel partitioners
play an enabling role in these methods.

In fact, a placement problem of order 106 cells and nets can still be solved
“flat,” i.e., without any explicit aggregation or partitioning, provided that suffi-
ciently fast and scalable numerical solvers are available for the given formula-
tion. Two clear demonstrations of this approach are found in recent adaptations
of force-directed methods [Quinn and Breuer 1979].

An AMG-Accelerated Force-Directed Method. Seminal work by Eisenmann
and Johannes [1998] formulated placement as a sequence of unconstrained
quadratic minimizations. The objective function

q(x, y) = 1
2

(xT Qx + yT Q y) + bT
x x + bT

y y + f T
x x + f T

y y

captures both netlist connectivity and area congestion by a graph approxima-
tion and force-field calculation, as follows. Cell-to-cell connections determine
the off-diagonal entries and part of the diagonal entries in the fixed graph
Laplacian matrix Q by means of a quadratic star-wirelength model [Kleinhans
et al. 1991]. Cell-to-pad connections contribute to the diagonal elements of Q,
rendering it positive definite, and determine the linear-term coefficients in the
right-hand-side vector b = (bx , by ). Viewing this vector b as external spring-
like forces following Hooke’s law, the circuit connectivity is represented by the
(constant) symmetric-positive-definite matrix Q and the vector b. The pertur-
bation vector f = ( f x , f y ) represents global area-distribution forces analogous
to electrostatic repulsion, with cell area playing the role of electric charge. At
each iteration, vector f is recalculated from the current cell positions by means
of a fast Poisson-equation solver. Since Q does not change from one iteration
to the next unless nets are reweighted, a hierarchical set of approximations to
Q can typically be reused over several iterations. We refer to this approach as
Poisson-based.

Recently, a customized AMG-based linear-system solver was derived for iter-
ated force-directed quadratic-wirelength minimization [Chen et al. 2003]. The
motivation is simply to improve the scalability of the Poisson-based approach,
the run time of which is dominated by linear-system solves. The AMG approach
to linear systems proceeds by repeatedly applying a simple relaxation update
to the approximate solution at each level of an aggregation hierarchy. The re-
laxation is typically componentwise (Jacobi, Gauss-Seidel, SOR, etc.): the kth
equation of the system

∑
j ai j x j = bi, i = 1, . . . , n is used to express the kth

coordinate xk of the solution in terms of the others, xi, i �= k, which are tem-
porarily held fixed.2 Coordinates are updated in turn, one at a time, in a sweep
across the equations (for example, Golub and Van Loan [1989]). With a well

2Since the system matrix for the force-directed approach is positive definite, its diagonal elements
are strictly positive, and the expression xk = (bk − ∑

j �=k ai j x j )/akk is well defined.
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constructed hierarchy, solution of the optimality conditions

Qx = −(bx + f x) and Q y = −(by + f y ) (3)

can be done in this way in linear or nearly linear amortized time. In the work of
Chen et al. [2003], the hierarchy is derived by strict aggregation from four sep-
arate preliminary layouts. Several iterations of the SOR variant of coordinate-
wise relaxation are applied to the flat, unconstrained (i.e., ignoring overlap)
quadratic over four separate trials. In each trial, the cells are initially placed
all at the same point: one of the four corners of the placement region. Clusters
are selected according to cells’ average final proximity over the results of all
four trials. Although this iterative, empirical approach to clustering requires
significant run time, it is a fixed initial cost that can be amortized over the
cost of subsequent iterations. Numerical results confirm the scalability of this
approach.

3.4 Advances in Analytical Placement

As the size and complexity of placement instances continue to increase, con-
tinuous approximation becomes ever more effective. The impact of algorithm
enhancements also becomes more noticeable at larger scales. Several recent
papers have introduced novel and intriguing variations of basic analyti-
cal frameworks that consistently improve performance. Three of them are
summarized here.

3.4.1 FastPlace. Recent work of Chu and Viswanathan [2004] demon-
strates that placements comparable in total wirelength to those of leading
available academic tools can be computed in orders of magnitude less run
time. Experiments comparing FastPlace to CAPO [Caldwell et al. 2000b] and
Dragon [Sarrafzadeh et al. 2002] demonstrate speed-up factors of 20×—100×
and relative differences in total wirelengths within 1–10%. The FastPlace flow
combines simple, local and global heuristics in a way that supports fast com-
putation and convergence. It repeats the following four steps until the movable
cells are distributed evenly enough that legalization and detailed placement
can be applied.

(1) Minimize unconstrained modified quadratic wirelength.
(2) Shift cells locally to relieve high-density regions.
(3) Move cells one by one to reduce linear half-perimeter wirelength (HPWL).
(4) Calculate displacement forces corresponding to the displacements in steps

(2) and (3) and impose them cell by cell, by means of pseudo-nets connected
to pseudo-pads, modifying the quadratic objective accordingly.

As the initial unconstrained quadratic tends to clump cells in the center of the
region, cells flow generally from the center toward the boundary over the 20–30
iterations needed to converge.

Local cell shifting proceeds as follows: A uniform bin grid is laid over the
region. The grid is sized so that the average number of cells in a bin is about 4.
Bins are expanded or contracted independently in the horizontal and vertical
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directions in proportion to their cell-area content (the resulting bins are no
longer disjoint). Cells are moved with their bins during the bin resizing in
proportion to the stretch or shrink. Local HPWL refinement proceeds greedily,
cell by cell.

In contrast to the force-directed methods described in Section 3.3, FastPlace
computes the forces needed to generate cell displacements already computed by
other, local means. It imposes the forces only after making the displacements,
incorporating them into the global quadratic objective as 2-pin pseudo-nets
connecting cells directly to pseudo-pads placed along the chip boundary in the
direction of the desired forces. These artificial forces prevent cells from collaps-
ing back to their previous positions at the next iteration. The total number of
iterations and the displacement per iteration are thus tightly controlled.

Interestingly, no hierarchy is used in FastPlace as originally published; all
linear-systems are solved by preconditioned conjugate gradients (PCG) with
generic ILU preconditioning [Saad 1996]. Technically this approach, as pub-
lished, is not scalable, due to the larger number of iterations of PCG needed to
solve (3) at the early placement iterations. As iterations proceed, however, the
artificial-pad forces accelerate the convergence of the PCG iterations. The force
associated with each cell displacement is imposed by connecting the cell to an
artificial pad on the placement region boundary and weighting the connection to
generate the displacement. Derivation of the linear system coefficients shows
that this technique adds positive numbers to matrix diagonal elements. Be-
cause the quadratic wirelength model simulates a Hooke’s-Law spring system,
forces at later iterations must be stronger than at earlier iterations. Hence, the
diagonal elements of the linear system (3) increase, making the system easier
to accurately precondition, making the ILU preconditioner more effective, and
reducing the number of iterations necessary for PCG to converge. Scalability
can be obtained simply by applying an AMG-based solver at earlier iterations,
as described above in the previous section.

3.4.2 Grid Warping. Following Proud [Tsay et al. 1988], most analytical
placers, including Gordian [Kleinhans et al. 1991; Sigl et al. 1991] and FastPlace
(Section 3.4.1 above), start from the premise that an unconstrained solution,
that is, one obtained by minimizing wirelength without regard to nonoverlap
or any other constraints, provides a high-quality relative ordering of the place-
able objects. Although connections to fixed terminals generally make the opti-
mal unconstrained cells locations distinct, the unconstrained solution is still,
typically, extremely nonuniform and is not easily legalized in any way that ap-
proximately preserves the cells’ relative orderings. What most distinguishes
different analytical approaches is the manner in which they spread the cells
from an initially highly nonuniform distribution to one uniform enough to be
legalized without major perturbations. The novelty of grid warping [Xiu et al.
2004] is that, rather than directly move cells based on their distribution, it
uses the cells to deform or warp the region in which they lie, in an analogy with
gravity as described by Einstein’s general relativity. The inverse of the defor-
mation is then used to carry cells from their original locations to a more uniform
distribution.
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Fig. 6. Prewarping. The gridlines of a uniform bin grid (a) are translated so as to capture roughly
equal numbers of cells in each row and column (b). The inverse translation is applied to cells as
well as gridlines, giving a more even distribution of the cells over the region (c).

Fig. 7. Warping. Each bin of a uniform bin grid (a) is mapped to a corresponding quadrilateral
in an oblique but slicing bin structure (b) so as to capture roughly equal numbers of cells in each
quadrilateral. The inverse bin maps are applied to the cells in order to spread them out (c).

Two variants of the basic concept are shown in Figures 6 and 7. In Figure 6,
a nonuniform rectilinear grid is defined so that each of its rows and columns
contains approximately the same amount of total cell area. This simplified form
of grid modification, in which all gridlines remain parallel to coordinate axes,
is called “prewarping” by Xiu et al., because they find it useful as a fast, first
step in the spreading process.

Figure 7 illustrates the more general approach. As shown, oblique grid lines
are used, and although a slicing structure with alternating cutline directions
and quadrilateral bins is maintained, gridlines not necessary to the slicing pat-
tern are broken at points where they intersect other gridlines. This weakening
of the grid structure allows close neighbors in the original unconstrained place-
ment to be separated a relatively large distance by the warping. The warp is
defined as a collection of bilinear maps, one from each of the bins in the original,
uniform grid to the corresponding quadrilateral in the warped grid. To invert
the warp and move the cells, the inverse of each such bilinear map is applied to
the coordinates of all the cells in its quadrilateral bin. A block-scanline approx-
imation algorithm is used for fast determination of which cells are contained
in which quadrilateral.

The grid points of the warped grid are determined simultaneously by a
derivative-free method of nonlinear optimization of Brent and Powell. The
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required top-down slicing grid structure is maintained by (a) fixing the
alternating cutline direction order a priori, by deciding whether to orient the
first cut from top to bottom or from side to side, and (b) expressing each cut-
line after the first in terms of 2 variables, one for where it intersects its parent
cutline, and another for where it intersects the opposite boundary or cutline. A
penalty function f is used as the objective:

f = wirelength + ρ ·
∑
bins

βi j ,

where βi j is approximately the square of the difference between the total cell
area in bin (i, j ) and the target cell area κ = κ(i, j ) for each bin. Wirelength is
the total weighted half-perimeter wirelength obtained after the inverse warp.
Although evaluating the objective is fairly costly, the number of variables in
the optimization is low—only 6 for a 2 × 2 grid or 30 for a 4 × 4 grid—and
convergence is fast.

To obtain an effective and scalable placement algorithm, this basic spreading
operation must still be incorporated within some hierarchical framework, for
example, top-down partitioning or multilevel optimization. Xiu et al. [2004] use
top-down partitioning, with the partitions defined by grid warping. That is, each
step of grid warping defines a partition of both cells and space. Cutsize-driven
partitioning is used to separate cells lying on grid boundaries. Prewarping and
warping recurs on the subregions defined by the grids. The overall flow is sum-
marized below.

(1) Unconstrained quadratic-wirelength placement.
(2) Redistribute cells by prewarping (e.g., with an 8 × 8 grid).
(3) Redistribute cells by linear-wirelength optimizing grid warping (e.g., with

a 4 × 4 grid).
(4) Assign cells to grid bins, using cut-size driven partitioning only on cells

near bin boundaries.
(5) Propagating terminals to bin boundaries, recur prewarping, warping, and

cell partitioning separately on the cells in each bin, until the overall cell
distribution is even enough for legalization.

3.4.3 Multilevel Generalized Force-Directed Placement. While the force-
directed framework described in Section 3.3 has broad appeal for its generality
and scalability, considerable effort is needed to produce a fast and stable imple-
mentation [Vorwerk et al. 2004]. Recently, this framework has been generalized
to a more rigorous mathematical formulation and adapted to a multilevel im-
plementation in mPL5 [Chan et al. 2005]. An overview of the mPL5 formulation
is given here.

Placement objectives and constraints at each level of a cluster hierar-
chy (Section 3.2) are approximated by smooth functions. A bounding-box
weighted wirelength objective is approximated by the log-sum-exp model
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[Naylor et al. 2001; Kahng and Wang 2004]

W (x, y) = γ
∑

nets e∈E
(log

∑
nodes vk∈e

exp(xk/γ ) + log
∑

vk∈e
exp(−xk/γ )

+ log
∑

vk∈e
exp( yk/γ ) + log

∑
vk∈e

exp(− yk/γ )),
(4)

where x and y denote vectors of cell x- and y-coordinates. The smaller the
parameter γ , the more accurate the approximation. Letting Dij denote the cell-
area density of bin Bij and K the total cell area divided by the total placement
area, the area-density constraints are initially expressed simply as Dij = K
over all bins Bij . Viewing the Dij as a discretization of the smooth density
function d (x, y), these constraints are smoothed by approximating d by the
solution ψ to the Helmholtz equation{

�ψ(x, y) − εψ(x, y) = d (x, y), (x, y) ∈ R
∂ψ

∂ν
= 0, (x, y) ∈ ∂ R

(5)

where ε > 0, ν is the outer unit normal, ∂ R is the boundary of the placement
region R, d (x, y) is the continuous density function at a point (x, y) ∈ R, and
� is the Laplacian operator � ≡ ∂2

∂x2 + ∂2

∂ y2 . The smoothing operator �−1
ε d (x, y)

defined by solving (5) is well defined, because (5) has a unique solution for any
ε > 0. Since the solution of (5) has two more derivatives [Evans 2002] than
d (x, y), ψ is a smoothed version of d . Discretized versions of (5) can be solved
rapidly by fast numerical multilevel methods. Recasting the density constraints
as a discretization of ψ gives the nonlinear programming problem

min W ( x, y)
s.t. ψi j = −K /ε, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (6)

where the ψi j are obtained by solving (5) with the discretization defined by
the given bin grid. Interpolation from the adjacent coarser level (Section 3.2)
defines a starting point. This nonlinear-programming problem is solved by the
Uzawa iterative algorithm [Arrow et al. 1958], which does not require second
derivatives or large linear-system solves:

∇W (xk+1,yk+1) + ∑
i, j

λk
i j ∇ψi j = 0

λk+1
i j = λk

i j + α(ψi j + K̄ /ε)
(7)

where λ is the Lagrange multiplier, λ0 = 0, α is a parameter to control the rate
of convergence, and gradients of ψi j are approximated by simple forward finite
differences ∇xk ψi j = ψi, j+1−ψi, j

hx
, ∇ yk ψi j = ψi+1, j −ψi, j

hy
when the center of cell vk is

inside Bij and are set to zero otherwise. The nonlinear equation for (xk+1, yk+1)
is recast as an ordinary differential equation and solved by an explicit Euler
method [Morton and Mayers 1994].

Multiscaling the generalized force-directed algorithm renders it much more
scalable. Enabling efficient, global analytical relaxations in the multilevel
framework dramatically improves placement quality. Compared with other
leading academic tools Dragon 3.01, Capo 8.8, Feng-Shui 2.6 and FastPlace
1.0 on standard IBM-ISPD98 benchmark circuits, mPL5’s average wirelength
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is the shortest—1% shorter than Dragon’s, 10% shorter than Capo’s, 4% shorter
than Feng-Shui’s, and 11% shorter than FastPlace’s. The run time of mPL5 is
also very competitive: 9× faster than Dragon’s, about the same as Capo’s, 2×
faster than Feng-Shui’s, and 8× slower than FastPlace’s. A fast mode of mPL5
gives wirelength roughly between that of Feng-Shui and Capo with run time
only 2× longer than that of FastPlace.

3.5 Legalization and Detailed Placement

While most research in placement is still directed at global placement, some
recent work on the PEKO benchmarks (Section 2) suggests that existing global-
placement algorithms already place nearly every cell within a few cell-widths
of its globally optimal location [Ono and Madden 2005]. This observation has
renewed interest in improved methods for legalization [Li and Koh 2003;
Agnihotri et al. 2003; Khatkhate et al. 2004] and detailed placement [Bren-
ner et al. 2004; Ramachandaran et al. 2005]. Nevertheless, progress in global
placement still continues to be made. The search for the most effective means
of legalizing and refining a good global placement plays a critical role in current
efforts to further reduce the gap between achievable and optimal placements.

4. TIMING OPTIMIZATION

Extensive research on timing-driven placement has been done in the past two
decades and continues today. The performance of a circuit is determined by its
longest path delay, but timing constraints are extremely complex. The number
of paths present grows exponentially with circuit size. Even a circuit of modest
size can have a huge number of paths. For example, Chang et al. [1994] esti-
mated the number of path constraints in a 5K-cell design to be around 245K,
requiring roughly 243Mb memory space if stored explicitly. Moreover, users may
have different requirements for different paths. For example, a circuit may have
different tsu (input to register), tco (register to clock output), r2r (register to
register) or i2o (input to output) requirements for individual nodes, or paths.
The existence of multiple clock domains and multiple cycle paths makes the
problem even more complicated.

Existing timing-driven placement algorithms can be broadly classified into
two categories: path-based and net-based.

4.1 Path-based Algorithms

Path-based algorithms try to directly minimize the longest path delay. Popular
approaches in this category include mathematical programming and iterative
critical path estimation.

Formulation of the problem as a linear or nonlinear programming prob-
lem typically introduces auxiliary variables (i.e., arrival times) at circuit
nodes [Jackson and Kuh 1989; Srinivasan et al. 1991; Hamada et al. 1993].
Different mathematical programming techniques can then be used to solve the
problem. For example, in terms of arrival time a(i) at pin i, timing constraints
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may be expressed as follows.

a( j ) ≥ a(i) + d (i, j ) ∀(i, j ) ∈ G
a( j ) ≤ T ∀ j ∈ P O
a(i) = 0 ∀i ∈ P I,

where

G denotes the timing graph.
P I denotes the set of starting points of any timing path, including

primary input pins and output pins of memory elements.
P O denotes the set of ending points of any timing path, including

primary output pins and data input pins of memory elements.
d (i, j ) denotes the delay of timing arc (i, j ), which is either a constant

(for cell internal delay) or a function of cell locations.
T denotes the longest path-delay target.

Here we assume that the arrival time at all P I pins is zero, and that all P O
pins have the same delay targets. Simple changes can be made to the formula
to accomodate more complex situations.

Explicitly minimizing the sum of the lengths of the paths in some set of
critical paths is a popular approach. This set of critical paths can be pre-
computed in a static manner or dynamically adjusted from iteration to iteration.
TimberWolf [Swartz and Sechen 1995] used simulated annealing to minimize
a set of pre-specified timing-critical paths, while mathematical programming
techniques [Burstein and Youssef 1985; Marek-Sadowska and Lin 1989] have
also been employed.

The advantage of path-based algorithms is their accurate timing view dur-
ing the optimization procedure. However, the drawback is that they usually
require substantial computation resources due to the exponential number of
paths which need to be simultaneously minimized. Moreover, in certain place-
ment frameworks, for example, top-down partitioning, it is very difficult or
infeasible to maintain an accurate global timing view.

4.2 Net-based Algorithms

Net-based algorithms [Dunlop et al. 1984; Nair et al. 1989; Tsay and Koehl
1991; Eisenmann and Johannes 1998], on the contrary, do not directly enforce
path-based constraints. Instead, timing constraints or requirements on paths
are transformed into either net-length constraints or net weights. This informa-
tion is then fed to a weighted-wirelength-minimization-based placement engine
to obtain a new placement with better timing. This new placement is then an-
alyzed by a static analyzer, thus generating a new set of timing information to
guide the next placement iteration. Usually this process must be repeated for
a few iterations until no improvement can be made or until a certain iteration
limit has been reached.

The process of generating net-length constraints or net-delay constraints is
called delay budgeting Hauge et al. 1987; Gao et al. 1991; Luk 1991; Youssef
et al. 1992; Tellez et al. 1996; Sarrafzadeh et al. 1997a, 1997b; Chen et al.
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2000]. The main idea is to distribute slacks at the endpoints of each path (POs
or inputs of memory elements) to constituent nets in the path such that a zero-
slack solution is obtained [Nair et al. 1989; Youssef and Shragowitz 1990; Chen
et al. 2000]. The original zero-slack algorithm (ZSA) [Nair et al. 1989] assigns
slacks based mainly on fanout factors. Subsequently, researchers considered a
more general framework [Sarrafzadeh et al. 1997b] in which delay budgeting
is formulated as follows.3

max
∑

(i, j )∈G Cij (si j )
such that

si j = a( j ) − a(i) − d (i, j ) ∀(i, j ) ∈ G
a( j ) ≤ T ∀ j ∈ P O
a(i) = 0 ∀i ∈ P I

Here si j is slack for edge (i, j ), and Cij (si j ) is a flexibility function4 of edge (i, j ).
The intuition is that, since delay budgeting will generate a set of constraints
for the placement, these constraints are stated as weakly as possible, in order
to minimize their impact on solution quality.

A serious drawback of this class of algorithms is that delay budgeting is
usually done in the circuit’s structural domain, without consideration of phys-
ical placement feasibility. There is no generally conceived good flexibility func-
tion. As a result, it may severely overconstrain the placement problem. Re-
cently, some attempts have been made to unify delay budgeting and placement
[Sarrafzadeh et al. 1997a; Yang et al. 2002a; Halpin et al. 2001], where a com-
plete or coarse [Yang et al. 2002a; Halpin et al. 2001] placement solution is used
to guide the delay budgeting step. However, it is generally difficult to find an
efficient or scalable algorithm for such unification.

To overcome these problems, approaches based on net weighting use dif-
ferent means. Instead of assigning a delay budget to each individual net or
edge, net-weighting-based approaches assign weights to nets based on their
timing criticality. Compared with delay-budgeting approaches, these methods
will not suffer from the overconstraining problem. Net-weighting-based algo-
rithms are generally very flexible. They can be integrated naturally into an
existing wirelength-minimization-based placement framework. They also have
a relatively low complexity. As circuit sizes continue to increase and practical
timing constraints become increasingly complex, these advantages make the
net-weighting-based approaches more and more attractive.

Consider the following simple example. Suppose one circuit contains only one
timing path P , which consists of the following two-pin connections: e1, e2, . . . , en.
Let d (ei) denote the delay of edge ei . Using a net-weighting approach, we assign
the weight of each edge the same value, say 1 (as all edges are in the same
path, they have the same criticality). We can transform the path minimization

3The formulation has been modified to fit the context here.
4This concept is not explicitly used in the original paper.
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problem exactly into the following problem:

min
n∑

i=1

d (ei).

However, under a delay-budgeting approach, we first need to find a delay budget
b(ei) for each edge, then solve the following constrained optimization problem:

min f (x)
such that d (ei) ≤ b(ei), ∀1 ≤ i ≤ n

The objective function f (x) is usually wirelength; timing has been relegated to
the constraints. It is obvious that this method suffers from the overconstraining
problem: if we use a nonoptimal delay budget, there is no guarantee we can find
a solution as good as that obtained under a net-weighting approach. An optimal
delay budget is very difficult to compute without solving the placement problem.
Even if an optimal delay budget can be obtained, there may exist many optimal
delay budgets whose resulted timing constraint sets may differ wildly. Some
may be very tight, others may be very loose, and predicting which are tight or
loose may be very difficult.

Unfortunately, despite its advantages, net weighting is usually done in an
ad-hoc, intuitive manner. The main principle used in most algorithms is that a
timing-critical net should receive a heavy weight. For example, VPR [Marquardt
et al. 2000] used the following formula to assign weight to an edge e:

w(e) = (1 − slack(e)/T )α

where T is the current longest path delay and α is a constant.
These methods ignored another important principle – path sharing. In gen-

eral, an edge with many paths passing through it should receive a heavy weight
as well. Path counting is a method developed to take path-sharing effects into
consideration by computing the number of paths passing through each edge
in the circuit. These numbers can then be used as edge weights. Unfortu-
nately, the naive approach suffers from a severe drawback: it cannot distin-
guish timing-critical paths from non-critical paths. The variant ε-network path
counting [Senn et al. 2002] suffers from the same problem [Kong 2002].

A nice solution has recently been proposed [Kong 2002]. The algorithm,
named PATH, can properly scale the impact of all paths by their relative timing
criticalities (measured by their slacks) respectively, instead of counting criti-
cal paths and non-critical paths with equal weight. It is shown [Kong 2002]
that for certain discount functions, this method is equivalent to enumerating
all the paths in the circuit, counting their weights, and then distributing the
weights to all edges in the circuit. Such computation can be carried out very
efficiently in linear time, and experimental results have confirmed its effective-
ness. Compared with VPR [Marquardt et al. 2000] under the same placement
framework, PATH reduces the longest path delay by 15.6% on average with no
runtime overhead and only a 4.1% increase in total wirelength.

Like a standard static timing-analysis algorithm, the PATH algorithm works
in two phases. In the first, forward phase, a forward partial counting is con-
ducted, while in the second, backward phase, a backward partial counting is
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Table I. The PATH Algorithm Accurately Computes
the Impact of All Paths Passing Through Each Edge

1. set F (p) = B(p) = 0 for each pin p;
2. for each P I pin p, set F (p) = 1;
3. traverse pins t in topological order
4. for each input pin s of t
5. Fs(s, t) = a(t) − a(s) − d (s, t);
6. compute discount = D(Fs(s, t), T );
7. F (t) + = discount × F (s);
10.
11. for each P O pin p, set B(p) = 1;
12. traverse pins s in reverse topological order
13. for each output pin t of s
14. Bs(s, t) = r(t) − d (s, t) − r(s);
15. compute discount = D(Bs(s, t), T );
16. B(s) + = discount × B(t);
19.
20. for each edge (s, t), compute
21. AP(s, t) = F (s) × B(t) × D(slack(s, t), T );

Here r(t) represents the required arrival time at pin t, D(x)
represents the weighting function (called the discount function).

performed. PATH maintains two counters for each pin p: F (p), the forward
partial counter, and B(p), the backward partial counter. For each edge (s, t),
PATH also maintains a counter AP (s, t) for the total number of weighted paths
passing through it. A brief description of the algorithm is listed in Table I.

It is interesting to note that if we use a trivial discount function D(x) = 1,
we will get the total number of paths passing through each edge in the timing
graph.

A potential problem in net-based approaches is the so-called oscillation prob-
lem. Usually net weights or budgets are assigned by performing timing analysis
for some given placement solution Pn at the nth iteration. More critical nets
receive higher weights. Thus, in the next placement solution Pn+1, the lengths
of critical nets in Pn will be reduced, while the lengths of other noncritical nets
are potentially increased, resulting in changes in net criticalities, and, thus, in
net weights. If a net alternates between critical and noncritical, its length may
alternately increase and decrease, impeding convergence. Certain path-based
approaches suffer from similar problems, for example, a need to dynamically
adjust the set of paths being optimized [Swartz and Sechen 1995].

Two ways to eliminate the oscillation problem appear widely in the literature.
The first approach is to perform timing analysis and recompute net weighting
periodically. VPR [Marquardt et al. 2000] and PATH [Kong 2002] follow this
approach. Based on simulated annealing, both methods perform timing analy-
sis and net re-weighting once per temperature. The second approach is to make
use of historic information [Eisenmann and Johannes 1998], that is, to combine
weights in previous iterations with criticality information in the current place-
ment to derive the current weights. Intuitively, if a net is always critical during
all placement iterations, we want to gradually increase its weight; while if it
is never critical, we will gradually decrease its weight. As a typical example,
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we consider the approach used by Eisenmann and Johannes [1998]. At each
iteration m, each net e has criticality cm(e), initialized to zero and updated as
follows:

cm(e) =
{

(cm−1(e) + 1)/2 if e is among 3% most critical
cm−1(e)/2 otherwise.

Weight wm(e) is initialized to one and updated as

wm(e) = wm−1(e)(1 + cm(e)).

The general approaches described above can be viewed as iteratively target-
ing the worst negative slack (WNS). Rather than focus only on the most critical
path, it is possible to consider the sum of all slacks over all paths. In this ap-
proach, different paths have different delay targets and thus different required
arrival times. The timing constraints for a given path are satisfied at a point i
if the slack at i is sufficiently positive. More recently, a sensitivity-guided net-
weighting strategy based on minimizing total slack over all paths have been
proposed [Ren et al. 2004]. In this approach, nets are targeted for their impact
on the global objective and not necessarily for their criticality.

5. ROUTABILITY OPTIMIZATION

Routing congestion is one of the fundamental issues in VLSI physical de-
sign. Because an aggressive wirelength-driven placement may not be routable,
routability is best considered directly during the placement phase. Routability-
driven placement involves mainly (i) routability modeling and (ii) optimization
techniques for routability control. Usually optimization for routability control
is performed based on the estimated routing congestion of a placement config-
uration. We discuss these two issues in the following subsections.

5.1 Routability Modeling

Routability is usually modeled on an X ×Y global-routing grid in the chip’s core
region. Routing supply and demand are modeled for each bin and/or each bound-
ary of the routing grid structure. There are two major categories on routabil-
ity modeling: topology-free (TP-free), where no explicit routing is done, and
topology-based (TP-based), where routing trees are explicitly constructed on
some routing grid.

5.1.1 Topology-free Modeling. TP-free modeling is faster in general. Exam-
ples of this class include bounding-box (BBOX)-based modeling [Cheng 1994],
probabilistic analysis-based modeling [Lou et al. 2002; Westra et al. 2004],
Rent’s rule-based modeling [Yang et al. 2002b], and pin density-based model-
ing [Brenner and Rohe 2003].

In RISA modeling [Cheng 1994], the routing supply for each bin in the routing
grid structure is modeled according to how the existing wiring of power or clock
nets, regular cells, and macros (macros are referred to as “mega cells” [Cheng
1994]) are placed, and the routing demand of a net is modeled by its weighted
BBOX length. Let Tv and Th denote the total number of full tracks available in
both vertical and horizontal directions over the core area including all metal
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Fig. 8. RISA modeling for routing supply of each bin with existing wiring (a), regular cell (b), and
macro(c).

layers. Given a global-routing bin structure of X × Y bins, the initial routing
supply of a bin (i, j ) is

Sv
ij = Tv

X
, Sh

ij = Th

Y
.

Existing wiring of power and clock nets, regular cells, and macros are considered
to an obstacle to routing; thus, the routing resource supply decreases when any
of these elements is found in a bin. Given a bin (i, j ) of width W and length
L, when existing wiring on layer m is found in it as shown in Figure 8(a),
the routing supply of the bin decreases by w × l/L, where w is the width of the
wiring, expressed as a number of routing tracks. A regular cell normally creates
a blockage as large as its outline at the first metal layer and a few smaller
blockages in the second metal layer. Therefore, the routing supply decrease due
to a regular cell of width w and length l in a bin, as shown in Figure 8(b), is

T1 × l × w
L × W

(metal layer 1—horizontal)

c/s × T2 × l × w
L × W

, (metal layer 2—vertical)

where T1 and T2 are numbers of tracks on the first and second metal layers of
the bin, respectively, s is the cell width in units of the vertical tracks (assuming
the routing tracks on the second metal layer are vertical), and c is the number
of vertical tracks occupied by the blockages of the cell on the second metal
layer as well as blockages caused by connection to pins in metal layer 1. In
multilayer designs, macros usually fully block the first two metal layers over
the macros’ outlines. When a macro is placed over a bin as shown in Figure 8(c),
the routing supply decreases by (T1, T2)× (l×w)

(L×W ) in the respective horizontal and
vertical directions, where w and l are the width and length of the rectangular
intersection of the macro and the bin, respectively.

Although an optimal Steiner tree is not used for estimating the routing de-
mand of a net, the probability of having a wire at location (x, y) within a net’s
BBOX is approximated by adding up and normalizing K optimal Steiner trees
of K sets of M randomly located pins each (e.g., K = 10, 000). A wiring distri-
bution map (WDM) is obtained for each pin-count case in each direction. It is
incorporated into the wirelength objective by adjustment of net weights. The
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Fig. 9. RISA modeling for routing demand.

Fig. 10. Partition net BBOX (NBB) into sub-BBOX (SBB) to model the detour due to macro block-
age.

new net weights are calculated by finding the mean values of track usage over
the WDMs for each of the different pin counts. The net weight q represents
the expected number of wires crossing a cut line through the net bounding box
when a net of a high pin count is routed, no matter whether the cut line is
vertical or horizontal or where it is. Given a net BBOX overlapping with a bin
(i, j ) as shown in Figure 9 and the net weight q in the unit of routing tracks,
the routing demand of the bin increases by q × ( w×l

Y ×W , w×l
X ×L ).

When a net BBOX overlaps with macros, which usually block the first and
second metal layers completely, the above model is revised such that possi-
ble detours due to macro blockage can be considered during the estimation.
The revision is based on partitioning the net boundary box (NBB) into a set
of sub-bounding boxes (SBB) efficiently. Given a net BBOX and the overlap-
ping macros, SBBs are obtained by extending each boundary of each macro
such that it cuts through the NBB, as shown in Figure 10(a). The SBB set
also forms a coarse global routing grid on which a multilayer routing is per-
formed to find a Steiner tree that connects all the SBBs where pins are lo-
cated. If such a Steiner tree does not exist, expand the NBB by 2X and search
again, repeating until the NBB covers the full core area. For each edge of the
Steiner tree, if it passes through any boundary of any SBB, place a pseudo-pin
at the center of the boundary of that SBB. For each SBB which covers the real
pins and pseudo-pins, resize it to contain both real pins and pseudo-pins as
shown in Figure 10(b) and estimate routing demand using the weighted BBOX
model.

The probabilistic analysis-based modeling generally assumes that (i) all
nets are optimally routed with the shortest length, (ii) at most one change in
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direction per grid, and (iii) no change if direction in grid with pin, unless more
than one pin in the same grid. A net-based stochastic model for 2-pin nets is
presented to compute expected horizontal and vertical track usage with consid-
eration of routing blockage [Lou et al. 2002]. It is further extended based on the
experimental evidence that shows only a negligible number of nets will have
detours and the number of nets with many bends can be ignored [Westra et al.
2004]. Peak routing demand and regional routing demand are estimated using
Rent’s rule [Yang et al. 2002b]. Hu and Marek-Sadowska propose a Rent’s-
Rule-based implicit white-space allocation method to catch the congestion pic-
ture and to weight the BBOX length of the nets based on the pin locations [Hu
and Marek-Sadowska 2002]. Its implicit modeling helps to combine estimation
and optimization in one step. Pin density per bin can be used as a metric for
intrabin routing congestion, but it cannot model the interbin boundary conges-
tion. Therefore, it is combined with probabilistic analysis-based modeling for
completeness [Brenner and Rohe 2003].

5.1.2 Topology-based Modeling. In a TP-based modeling method, for each
net, a Steiner tree topology is generated on the given routing grid. Because these
routing topologies usually have a fairly strong correlation with the topologies
a global router generates, TP-based modeling can be quite accurate. At least,
it generates a global routing solution, that is, it provides an upper bound for
routability estimation. If a TP-based modeling method uses a topology similar
to what the after-placement-router does, the fidelity of the model can be guaran-
teed. However, topology generation is often of high complexity; therefore, most
research focuses mainly on efficiency.

In one approach [Mayrhofer and Lauther 1990], a precomputed Steiner tree
topology on a few grid structures is used for wiring-demand estimation. This
approach is tailored for recursive partition-based placement. In another ap-
proach [Chang et al. 2003a], two algorithms of logarithmic complexity were
recently proposed: a fast congestion-avoidance two-bend routing algorithm,
LZ-router, for two-pin nets, and IncA-tree algorithm, which can support in-
cremental updates for building a rectilinear Steiner arborescence tree (A-tree)
for a multi-pin net. The LZ-router uses auxiliary data structures (similar to a
segment-tree data structure) to find good quality routes by performing a binary
search of the possible routes for a two-pin net. The wire density of a bin/region
is defined as the wire usage of the bin/region divided by its area. For a net con-
necting two pins, P1 and P2, which are bounded by a rectangle bounding box B
(Figure 11(a)), if the maximum of the wire density of the vertical (horizontal)
boundary bins of B on the vertical (horizontal) layer is W DV

Bb
(W DH

Bb
), the wire

density of region B on the horizontal (vertical) layer is W DH
Br

(W DV
Br

), then
the possible maximum wire density of VHV (HVH) routing is the maximum
of W DV

Bb
(W DH

Bb
) and W DH

Br
(W DV

Br
). The VHV routing pattern (Figure 11(b))

will be chosen if its possible maximum wire density is smaller than that of
HVH, otherwise, the HVH routing pattern (Figure 11(c)) is chosen. Assuming
the VHV routing is used, the LZ-router recursively makes a horizontal cut on
B and selects the one with a smaller wire density to route. It stops when the
choice narrows to a single row. Given a gx × g y bin structure, the complexity
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Fig. 11. An illustration of HVH and VHV routing selection of LZ-router.

Fig. 12. An illustration of IncA-tree algorithm.

for the LZ-router to route two pins with coordinates (i, j ) and (i + x, j + y) is
O(log (| x | + | y |)log (gx + g y )).

The incremental A-tree (IncA-tree) algorithm is developed to efficiently up-
date the routing topology for each pin location change. Given a grid structure
consisting of (2m +1)× (2m +1) grids on the first quadrant, it can be recursively
quadri-partitioned until each partition becomes the unit grid. For example, the
grid structure in Figure 12 is first quadri-partitioned by the cut lines x = 4
and y = 4 to form four partitions. If there are some pins located inside a
partition (including locations on the bottom and left boundaries, but exclud-
ing the locations on the right and top boundaries), the lower-left corner of the
partition is the root for a subtree connecting all the pins inside this partition.
For example, (4, 4) is the root for any pin at location (x, y) with 4 ≤ x < 8
and 4 ≤ y < 8. For a partition with some pins located inside, its root has an
edge connecting to the lower-left corner of the previous level quadri-partition.
In the above example, (4, 4) has an edge connecting to (0, 0). By recursively
performing such quadri-partition, an A-tree can be built such that each pin
at location (x, y) can connect to the origin (0, 0) with max(log x, log y) edges.
Any pin insertion (deletion) to location (x, y) only incurs, at most, log(x + y)
edge insertions (deletions). Therefore, each operation of moving a pin from
(x1, y1) to (x2, y2) incurs, at most, log(x1 + y1) + log(x2 + y2) edge changes.
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With the fast two-pin routing and incremental A-tree routing, for an n-pin
net with bounding box length L on a gx × g y bin structure, the complexity
of updating a non-root pin move is O(log L) times the complexity of LZ-routes
O(log L log(gx + g y )), which is O((log L)2 log(gx + g y )). For moving the root,
the complexity is O(n(log L)2 log(gx + g y )). While providing superior guidance
for congestion optimization during the coarse placement, the runtime overhead
of this congestion cost updating grows slowly due to the low logarithmic com-
plexity. It is obvious that the IncA-tree may generate routes with longer wire
length than the A-tree does and using it may overestimate the congestion. How-
ever, it is never intended to be used as the final measurement of the placement
congestion. Instead, it is used to guide the placement optimization.

5.2 Optimization Techniques

After routability is modeled, a routing-congestion picture is obtained on the
global-routing grid structure. Basically, there are two ways to apply the mod-
eling results to the placement optimization process: net weighting and cell
weighting (cell inflation).

Net weighting directly transfers a congestion picture into net weights and op-
timizes weighted wirelength. It can easily be incorporated into iterative place-
ment algorithms such as simulated-annealing-based methods [Hu and Marek-
Sadowska 2002; Chang et al. 2003a].

Cell weighting (a.k.a cell inflation) inflates cell sizes based on congestion
estimation, so that cells in congested bins can be moved out of the bins after
being inflated. It is more suitable for incorporation into constructive placement
techniques, such as analytical placers [Parakh et al. 1998], quadrisection-based
placers [Brenner and Rohe 2003], as well as iterative placement techniques,
such as simulated annealing-based placers [Yang et al. 2003].

Example: Routability Control in mPL-R

As a concrete example of routability optimization in global placement, tech-
niques recently developed for mPL (Section 3.2) are described [Li et al. 2004].
This work consists of both demand-driven congestion reduction and supply-
driven white-space allocation. Both of these components are defined in terms
of the estimated routing overflow of each bin of a uniform rectilinear grid; that
is, the amount by which routing demand exceeds routing supply in that bin
(Section 5.1.2).

Demand-Based Congestion Control via Topology-Based Weighted Wirelength.
To reduce routing demand, the wirelength-driven placement of each subset of
cells is supplemented by a routability-driven step. Immediately after the cells
in a given subset are placed to minimize wirelength, they are moved again
so as to reduce estimated routing congestion in the subregions they occupy.
The changes in congestion are computed by explicit updates to the estimated
routing topology. A secondary objective during this process is still to reduce the
wirelength. Candidate cells for re-placement are selected based on the routing
topology of nets incident on them. Nets are sorted in descending order according
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Fig. 13. Congestion driven cell re-placement. The legend corresponds to the congestion in different
routing regions. (a) Original placement of cell c in the optimal location for half-perimeter wirelength
gives a weighted wirelength of 8.8. (b) Re-placement of c in a neighboring region gives a weighted
wirelength of 6.2.

to the bin-capacity overflow they cause. The first s nets are picked, such that
the total amount of routing resources they use exceeds the total overflow of the
current placement. The cells connected by these nets are re-placed, as described
next.

For each cell c to be re-placed, the grid cell gci j corresponding to its optimal
bin location ∗ = (i∗, j ∗) for half-perimeter wirelength is determined by holding
all other cells fixed. Then the cell is placed in each of the neighboring bins of
within a certain distance d , that is,

{
bij | |i∗ − i| + | j ∗ − j | ≤ d

}
. Each time c is

placed in a bin, the topology for the nets incident on it is recomputed using
the LZ router described in Section 5.1.2. The new placement for c is evaluated
using a weighted wirelength of all the nets incident on c:

W Lc =
∑

W GTnetk × W Lnetk , (8)

where W GTnetk is the weight on netk , calculated as the average congestion of
the grids cell netk crosses, and W Lnetk is the half perimeter wirelength of netk .
Finally, c is placed in the bin that results in the shortest weighted wirelength.
Figure 13 shows an example. Starting from the optimal location ∗ for half-
perimeter wirelength, Weighted wirelength (8) is evaluated at each bin in the
neighborhood of ∗, and the bin that gives the shortest weighted wirelength is
selected as c’s final location. In this example, the original location ∗ gives a
weighted wirelength of 8.8, whereas the final location gives a smaller weighted
wirelength of 6.2.

Detailed experiments show that mPL-R’s topology-based method of routabil-
ity optimization is extremely effective. Compared to purely wirelength-driven
mPL, mPL-R alone reduces the number of overflowed global routing bins by
83% over the complete set of IBM-Dragon Version 2 easy and hard benchmarks
and leads to successful routing (by Cadence WarpRoute) of 14 out of 16 easy
benchmarks and 9 out of 16 hard benchmarks. When combined with the white-
space allocation method described next, successful routing of all 32 benchmarks
is achieved. Routed wirelength for the combined flow is reduced by 11.6% on
average and is shorter that that of all other leading tools.
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Supply-Based Congestion Control via White Space Allocation. In the global
placement of the proposed flow, the amount of white space in a region may not
accurately match its routing demand. To further reduce congestion, hierarchical
white-space allocation is applied after global placement, as part of legalization
and detailed placement. A slicing tree is constructed based on the geometric
locations of all cells. The congestion level at each node of the tree is calculated
and cell positions are adjusted at each node in a top-to-bottom fashion in order
to redistribute available white space to relieve congestion.

The slicing tree used in the proposed flow is similar to that in a partitioning-
based global placement. However, cutlines are selected based on the geometric
locations of the cells instead of the minimization of cut size. Cut directions
are selected simply to keep aspect ratios of the resulting subregions suitably
bounded. Every node in the tree maintains its cut direction, cut location, con-
gestion, and total cell area as well as cell list. After the initial slicing tree con-
struction, the congestion at each node in the tree is calculated from the bottom
up. The congestion of a leaf node can be estimated by the total routing overflow
of the grid cells contained in that leaf node. The congestion of an internal node
is computed by a post-order traversal of the tree.

The cutlines of the slicing tree are then adjusted one at a time in top-down
order. Each cutline is translated from the more congested of its two subregions
toward the less congested one, so that the amounts of white space allocated to
the sibling subregions are linearly proportional to their congestion levels. The
movement of the cutline is expressed as a coordinate scaling, as described below.
This scaling is applied to the cells of the subregions in order to redistribute
them in a way that relieves congestion without changing their relative ordering
within the parent subregion.

Consider a region r with lower-left corner (x0, y0), upper-right corner (x1, y1)
and the original vertical cut direction at xcut = (x0+x1)/2. The area of this region
is Ar = (x1 − x0) ( y1 − y0). Assume that the total area of cells for left subregion
r0 and right subregion r1 are S0 and S1, and the corresponding congestion
levels are u0 and u1, respectively. To distribute the total amount of white space,
which is (Ar − S0 − S1), the amount of white space allocated to subregion r0 is
(Ar − S0 − S1) u0

u0+u1
. The new cutline location x ′

cut can be derived as follows:

γ = S0+(Ar−S0−S1) u0
u0+u1

Ar
,

x ′
cut = γ x1 + (1 − γ )x0,

where γ is the ratio of the left subregion area to Ar after the cutline adjustment.
As an output of this step, a global placement that contains overlaps is ob-

tained. Moreover, cells may not be placed along a row. The cutline adjustment
approach is performed in the same spirit as fractional cut (Section 3.1.1), where
horizontal cuts are not aligned with row boundaries. Figure 14(b) gives an ex-
ample of this process. The total cell area and congestion at every tree node of
the slicing tree are given. Cut lines are adjusted from top to bottom such that
the white space in each subregion is proportional to its congestion level. After
white space allocation, a local-swapping-based detailed placement is applied to
obtain a legal placement.
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Fig. 14. (a) A slicing tree and its corresponding cut lines and regions. (b) A slicing tree after
congestion estimation and regions after cut lines adjustment.

This simple white-space allocation scheme is remarkably effective. When
used alone as part of detailed placement, it consistently reduces both routed
wirelength and the number of overflowed global-routing bins. When combined
with the topology-based congestion control in mPL-R as described above, it
leads to higher completion rates and shorter routed wirelengths than can be
achieved by any other leading tool.

6. CONCLUSION

Algorithms for large-scale circuit placement play a vital role in today’s
interconnect-limited nanometer designs. Recent studies suggest that the po-
tential exists for a full technology generation’s worth of performance gains
in the placement step alone. In this article, we have reviewed the current
state of the art, from the basic paradigms for scalable wirelength-driven place-
ment to techniques for performance and routability optimization. We believe
that hierarchical/multilevel methods are needed for scalability, and weighted
wirelength minimization provides a general framework for performance and
routability optimization in placement.

Ideally, systematic empirical comparisons would be used to understand the
trade-offs of the different algorithms summarized in this article. However, di-
rect numerical comparisons of these algorithms are difficult, partly due to lim-
ited accessiblity to these algorithms, and partly due to differences in their as-
sumptions. Recently, comparisons based on wirelength minimization have been
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attempted [Adya et al. 2003]. We are not aware of any comprehensive quan-
titative comparison in terms of performance or routability optimization. More
work is needed to build a common framework for direct comparisons of different
placement methods.
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