Motivations

- 193nm lithography extension: double/multiple patterning
- EUV and other emerging lithography
- Much closer design and manufacturing interaction

Related SRC Tasks

- Task 2414 - Robust Standard Cell Design and Layout Regularity Study with Nanolithography (04/2013-03/2016)

Cross-Layer Synergistic DFM

- Shape/Electrical Optimization
 - Physical Design
 - DFM Cell Library
 - Mask Synthesis
 - Predictive Modeling, Hotspot Detection
- Var. Si-image Model
- Var. Electrical Model
 (Litho, CMP, etc.)
 Shape/Electrical Analysis
 (Timing, Power, ...)

Research Highlights

<table>
<thead>
<tr>
<th>Problems</th>
<th>Solutions</th>
<th>Selected Pubs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litho Modeling, OPC, Variation</td>
<td>Variational lithography modeling</td>
<td>DAC06, ICCAD06, ICCAD07, SRC</td>
</tr>
<tr>
<td>Analysis</td>
<td>PV-OPC</td>
<td>Inventor Recognition Award</td>
</tr>
<tr>
<td>Litho Hotspot Detection &</td>
<td>Data/machine learning; meta-</td>
<td>IICD09 BPA*, DAC11, TCAD11,</td>
</tr>
<tr>
<td>Mitigation</td>
<td>classification; multi-level</td>
<td>ASPDAC12 BPA</td>
</tr>
<tr>
<td>Double/Triple Patterning</td>
<td>Layout decomposition; early physical</td>
<td>IICAD08, ISP09, DAC09, ASPDAC10</td>
</tr>
<tr>
<td>Lithography (DPL/TPL)</td>
<td>design optimization; deal with both LELE</td>
<td>BPA, IBM Research 2010 BPA,</td>
</tr>
<tr>
<td></td>
<td>and SADP</td>
<td>ICCAD10, DAC11, ICCAD11 1BPA*,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ICCAD13</td>
</tr>
<tr>
<td>Standard Cell DFM & Opt.</td>
<td>Total sensitivity based modeling</td>
<td>ISP010, DAC10, DAC11, ICCAD11</td>
</tr>
<tr>
<td></td>
<td>and optimization; cell placement</td>
<td></td>
</tr>
<tr>
<td>DFM Aware Routing</td>
<td>Systemic framework from global</td>
<td>DPC06, BPC, ICCAD06, DAC07,</td>
</tr>
<tr>
<td></td>
<td>to detailed routing, dealing with</td>
<td>DAC08, ICCAD08, DAC09, FTEDA10,</td>
</tr>
<tr>
<td></td>
<td>litho, redundant via, CMP,</td>
<td>DAC11, ICCAD11, ISP012,</td>
</tr>
<tr>
<td></td>
<td>random defect, DPL, TPL</td>
<td>ICCAD12, SRC Inventor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recognition Award</td>
</tr>
<tr>
<td>Emerging Lithography</td>
<td>E-beam throughput optimization</td>
<td>ISP011 BPA, ASPDAC13</td>
</tr>
</tbody>
</table>

Sample Results

- Standard cell library DFM tool kit
 - Litho/etch, etc
 - Environment + OPC
 - Doping/LE, strain
 - Monte Carlo

- DFM aware routing
 - Global Routing
 - Critical area minimization
 - Redundant via optimization
 - Lithography friendliness

Students & Technology Transfer

- Students involved and SRC companies they joined
 - Yongchan Ban (PhD’11, Intel), Ashutosh Chakraborty (PhD’10), Minsik Cho (PhD’08, IBM), Duo Ding (PhD’11), Jhih-Rong Gao, Katrina Lu (MS’08, SRC Scholarship, Intel), Joydeep Mitra, Xiaokang Shi (PhD’09, IBM), Gang Xu (PhD’07, Mentor), Xiaqing Xu, Jae-seok Yang (PhD’11), Bei Yu, Peng Yu (PhD’09), Kun Yuan (PhD’10)

- Technology transfer
 - DFM aware routing algorithms and methodologies widely adopted in industry (EDA companies and in-house EDA tools such as IBM and Intel)
 - DFM standard cell tool kit used by Freescale
 - Lithography hotspot detection algorithms and tools used by Mentor Graphics
 - Double/triple patterning layout decomposition and physical design a must for 22nm/14nm IBM, Globalfoundries, Mentor Graphics…
 - Open-sourced award winning BoxRouter
 - SRC sponsored patents on variational lithography modeling/PV-OPC and BoxRouter

- Many (20+) SRC liaisons: thank you very much!