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of coupling capacitance and under more general (e.g., table look-up)
capacitance models. Our optimization target can be eithigrggecrit-
ical net [single-net interconnect sizing and spacing (SISS)jlaival
Interconnect Sizing and Spacing with Consideration of  optimization of multiple critical nets [global interconnect sizing and
Coupling Capacitance spacing (GISS)]. The major contribution of this paper includes the fol-
lowing.
Jason Cong, Lei He, Cheng-Kok Koh, and Zhigang (David) Pan 1) we introduce the symmetric and asymmetric wire-sizing for-
mulation. Since a net usually has asymmetric neighborhood
structures, the asymmetric wire-sizing formulation provides

Abstract—This paper studies interconnect sizing and spacing (ISS -
1> hep Loes | 29 pacing (ISS) more flexibility.

problem with consideration of coupling capacitance for performance opti-

mization of single or multiple critical nets. We introduce the formulation 2) We extend the LR operation first introduced in [3] and show its
of symmetric and asymmetric wire sizing. We develop efficient bound optimality to bound an optimal SISS solution using thami-
computation algorithms for ISS optimization and prove their optimality nance property for SISSinder more general resistance and ca-

under general interconnect resistance and capacitance models. Our exper- . dels th 3
iments show that our algorithms are very effective and obtain significant paCI.tance models than [3]. . .

performance improvement compared to previous wire-sizing/spacing ~ 3) We introduce two bound-refinement (BR) operations and prove
algorithms. their global optimalityto bound an optimal GISS solution using

Index Terms—Coupling capacitance, interconnect, wire sizing, wire thedominance property for GIS8gain, under general resistance
spacing. and capacitance models).
4) We extend the dynamic programming (DP) algorithms [11]-[13]
for SISS and GISS.

The rest of this paper is organized as follows. Section Il formulates
It has been widely recognized that for deep submicrometer (DSKe problem. Sections Il and IV present the properties and algorithms
very large scale integration designs, interconnect plays a dominatfeg SISS and GISS optimizations. Experimental results are shown in
role in determining the overall circuit performance [1]. Among varSection V, followed by the conclusion in Section VI. Proofs of theo-
ious interconnect optimization techniques, wire sizing and spacing 4egns, together with validation of capacitance models that we assume
effective techniques to determine proper width/spacing for one or mi@s the optimality of our algorithms, are available in a technical report
tiple nets such that certain design objective is optimized. [14].
It was first shown in [2] and [3] that when wire resistance becomes
significant, as in DSM designs, proper wire sizing can effectively re- 1I. PROBLEM FORMULATION
duce the interconnect delay. Assuming that each wire segment has a set ) . ) o
of discrete widths, their work presented the first optimal wire-sizin§g- Symmetric and Asymmetric Wire Sizing
(OWS) algorithm for a single-source resistance—capcitaRe&® {n- The purpose of this study is to perform postlayout (after global or
terconnect tree using a local refinement (LR) operation. It was latéetailed routing) ISS optimization to one or multiple timing-critical
extended for a routing tree with multiple sources [4] and for the marets, based on some initial layout or topology of these nets. For each net
imum delay objective using Lagrangian relaxation [5]. Another formuV;, it consists of:; + 1 terminals{sq, . . ., s, } connected by a routing
lation of wire-sizing optimization is to determine the continuous wireree, denoted’;. The terminak} denotes the source df;. The rest of
the terminals are sinks. The terminals (source and sink%) afe at

|. INTRODUCTION

fixed locations, and’; consists ofn; wire segments {E1, ..., Epn, }.
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Fig. 1. (a) Wire segments with center lines. (b) Symmetric wire sizing. (c) Asymmetric wire sizing.

distance between adjacent center lines as the pitch spacing (PS). AlVe model the driver of the routing tréde by an effective resistance
previous works implicitly assumesiymmetric wire sizinground the R, and the routing tree itself by a distribut&C circuit and use the
center lines, so each wire segment needs only one width to describ&imore delay model [15] to guide performance optimization. For a wire
An example of symmetric wire sizing of the two wire segmefitsand segmentF, letr be its resistance and; be its lumped capacitance,
E> with a neighboring net is shown in Fig. 1(b). i.e.,ce = co(E) - wp + cp(E) + cx(E), where theco (E), c;(E)
However, symmetric wire sizing may be too restrictive when we talendc,. ( F') are the unit area, fringing, and coupling capacitance&for
coupling capacitance into account because it is likely that the neiglespectively: Let Des(E) be the set of descendant wire segments in
borhood structure of a net isot symmetric. We propose thesym- the subtree rooted & (excludingFE), sink(T") be the set of sinks in the
metric wire sizingthat allows a wire to be sized asymmetrically withrouting treeT’, sink(E) be the set of sinks in the subtree rootedat
respect to its center line. Using the same example as in Fig. 1(b), We(u, v) be the unique path from nodego v in T, andCyown (E) be
may wantE; to be farther away from its upper neighbor since the codhetotal downstream capacitance in the subtree rootdd @ncluding
pling capacitance would be less. As a result, we may only size up theth wire and sink capacitances), i.e.,
bottom half piece and keep the top half intact, as shown in Fig. 1(c).
In this case, each wire segment needs two widths to describe it. Let Clown(E) = Z cs + Z Cp’-
wp denote the width of the wire segmeht w (w),) be wire width sEsink(F) E’/€Des(E)

below (above) the center line @, ands;, (s};) be the edge-to-edge Then, the ElImore delay from soureg to sinks;. can be written as
spacing from&' to the neighbor wire segment below (above) it. Then,

wp = wh + wh. An asymmetric wire-sizing solution is valid if
wp > Wmm/Zkandug,[j > Wiin/2. Note that for symmetric wire tr(sp, W) =Ry - Z cr + Z cs
sizing,w}, = w], = w /2. To avoid introducing additional notations, EeT sEsink(T)
we also usew}j, (11,v;'3) to denote the wire width for the left (right) part of (CE
0 USe (1 » . . o (2 CE) 2
a vertical wire segment ami(sg) to denote the spacing frofi to its + Z = 2 + Caown (E) @)

. . . . . . FEEPr(sq,sy
left (right) neighboring wire, respectively. In this paper, we assume that €rrs0.k)

symmetric and asymmetric wire sizings have negligible difference lret A(so) = 3=, iy A ANAAE) = 30 o) Ak (1) can
terms of wire resistance, if both have the same wire width for each cte rewritten as

responding wire segment [e.g., see Fig. 1(b) and (c)]. It is valid to the
first order because for wire sizing to take effect, a wire needs to be suf-
ficiently long (e.g., more than 5000 of the minimum wire width [1]).

tr(W) = X(so) - Ra - ZCE+ Z cs

Then, the small resistance difference between symmetric and asym- per . sEeink(T)

metric wire sizing at the connections of different wire widths [e.g., see + Z XME) -rp- {7E + Cdown(E)} . 3)
E, andEs in Fig. 1(b) and (c)] is negligle compared to the total wire EET

resistance.

If we treat\(so ) R4 as the new effective driver resistance an@ )r ..
as the new effective wire resistancefof(3) will be exactly of the same
B. SISS form of (2).

Given an initial layout of: nets, the SISS problem is to find a sym- In this paper, the objective function is to minimize the weighted
metric or asymmetric wire-sizing solutidn for a single nef\” (usu-  delay summation of all sinks, similar to [3]. It was shown by [5] and
ally the most critical net) with the corresponding routing tfeeo min-  [16] that the weighted formulation can be used to solve other opti-

imize the following delay objective: mization problems such as minimizing the maximum delay or mini-
mizing total area subject to delay constraint for each sink, using the
tr (W) = Z Akt (55, W) @) Lagra_nglan relaxation te_chnlque._ It relaxes all constramt_s using non-

sy Esink(T) negative Lagrange multipliers with each Lagrange multiplier corre-

sponding to a constraint. Finding the optimal set of Lagrange multi-

where) is the criticality of sinks, andtr (s, W) is the delay from Pliers usually needs iterative adjustment, e.g., by the subgradient op-
sourceso to sink s with wire-sizing solutionV. Note that although timization method [16]. These Lagrange multipliers correspond to the
ohly ro‘%t'”g treel” appears in the above de!ay notatlorIL other nets PrO-2rqr different wire segments, the unit area, fringing, and coupling capaci-
vide neighborhood structures and constraints thus will affect the valid@ces may be different, so we write them as function&and they can be

of tr (W) as well. obtained by table look-up.
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weights under our weighted formulatiériThen, under a given set of corresponding spacing lower bounfis" andS'% for S'* andS'™,
Lagrange multipliers (i.e., weights), our optimization algorithms (SIS&spectively. Under the monotone lumped capacitance model, we have
and GISS) can be used to get the optimal or near-optimal solutions.(w%, s5", s1) > cu(w}, stF, s1¥). According to the dominance
Their role is the same as the greedy wire-sizing algorithm during tpeoperty, an LR operation to any wire segmentgf’ will still be an
Lagrangian relaxationin [5], [16]. It shall be noted that the optimality aipper bound ofV*. Similarly, the LR operation of an initial lower
Lagrangian relaxation in [5] and [16] assuneestinuouswire sizing, boundW’ will still be a lower bound ofV*.

while our optimization algorithms work agiscrete wire sizingso the Note that for the symmetric case, each wire segment just has one

optimality may not be guaranteed. width, while for the asymmetric case, it has two widths: one for each
side of its center line. The wire spacing is determined once the wire
C. GISS width is given because we assume the PS is fixed during the wire-

The GISS problem is to find a symmetric or asymmetric wire-sizingiZing/spacing optimization. In this paper, we use an accurate capac-
solution W for all n critical nets under optimization so that theltance lookup table, not a simple capacitance formula (consteeutd
weighted delay of them c¢y)asin [3]. Thus, we need to enumerate the given discrete wire widths

to get the local optimal symmetric or asymmetric wire-sizing solution.
2) DP for SISS: As we shall see in Section V, the bound-computa-
tion algorithm for SISS usually leads to exactly the the same lower and
upper bound for each wire segment. When the lower and upper bounds
is minimized, where: is the number of critical nets to be simultanedo not meet, we use the bottom-up DP algorithm similar to [11] and
ously optimized and; is the criticality of net\;. Note that the net [12] to compute the final SISS solution between the lower and upper

tOWV) =D b tr, (W) Q)

criticality &; can be absorbed into each sink weight of et bounds. The main idea for the DP is to compute and merge candidate
wire-sizing solutions in a bottom-up manner starting from all sinks.
IIl. ALGORITHM FOR SISS QPTIMIZATION During the merging phase, inferior (or called tedundants in [11]),

{)ptions are pruned odtAt the end of the bottom-up computation, the

In this section, we study ISS optimization for a single critical ne§ rce mav hav t of iredundant options. Th timal solution i
i.e., the wire widths of all other nets are fixed. We first present theOu ce may have a set of Irredundant options. The optimai solution 1S

dominance propertior an optimal SISS solution, then give an effectivé)ICked according to the qe3|gn quect|ye. Trqcmg back fro.m the Source,
algorithm for it. we have the corresponding optimal wire-sizing and spacing solution.

Compared to previous DP algorithms in [11] and [12], our DP ap-
A. Dominance Property for SISS proach has the following features: 1) we consider the coupling capaci-
tance between neighboring wires and 2) we keep two wire widmﬁs (

In [3], the LR operation was first introduced, which sizg®wire 54,1 ) for each edge in the asymmetric scenario while performing
segment optimally at a time. Based on the LR, an elegant dom'narﬂﬁﬁtom-up accumulation and top-down pruning.

property was obtained for OWS under simple constant interconnect re-
sistance and capacitance models. We prove that the dominance property
can be extended for SISS and under much more general resistance and
capacitance models as follows. The SISS algorithm is for optimizing a single critical net. However,

Definition 1—Monotone Resistance Modelhe wire resis- it largely depends on the previous layout of other neighboring nets.
tance monotonically decreases as wire width increases, iByring layout optimization, there may have multiple critical nets that
rep(we) < re(wy) if wp > wh. share limited routing resources. Thus, just optimizing one net may sac-

Definition 2—Monotone Lumped Capacitance Mod&he lumped rifice the performance of other critical nets. In this section, we will
capacitance for a wire segmeAt monotonically increases as wirestudy the GISS optimization for multiple nets. It is a much more diffi-
width increases, i.ecp(wz) > cp(wg) if wp > wg, given fixed cult problem than SISS due to the interaction of multiple nets through
neighboring structures. coupling capacitance.

Our study shows that the monotone resistance model and monotonBefore presenting the theory and algorithm on GISS, we shall point
lumped capacitance model always hold [14]. Then, we have the folit the suboptimality of our previous approach in [17], where the GISS
lowing theorem. problem is decomposed into a set of single-net OWS problems to iter-

Theorem 1—Dominance Property for SISSet W* be an optimal atively compute the lower and upper bound widths for each net. How-
SISS solution for a routing tre€. Under the monotone resistanceever, we found later that such bound computations did not consider the
model and the monotone lumped capacitance model, if a wire-sizidglay of neighboring nets during each single-net optimization and, thus,
solution¥y’ dominates/'*, then an LR ofV’ will still dominateW*;  they may miss the optimal solution, especially when the sink weights
similarly, if W' is dominated by/V*, an LR of W’ will still be domi-  are very different (see [14] for more details). In this section, we develop

IV. ALGORITHM FORGISS QPTIMIZATION

nated byW™. a new theory and algorithm that can guaranteegtbbal optimalityof
_ o bound computations. We also introduce two new operations for global
B. Algorithm for SISS Optimization bound computation of each wire segment, nanielyer BRandupper

1) Bound Computation for SISSFhe dominance property suggestBR
that one can start from some upper or lower bound of the optimal SISS
solution and iteratively update these bounds toward the final optim@&al Dominance Property for GISS

SISS solution using LR. The overall ﬂOV‘f*Of bound computation for gt of a1, it shall be noted that during GISS optimization, the capac-
|S|_SS is similar to thlft f?i OWSh'n |[3]' Lew” be an optlmfal SISS SO~ jtance of a wire segmetf is not only a function (explicit or implicit)
ution anch(wE? Sp oSk ) t?e_t e lumped capacitance for an edge of its own width, but also a function of the widths of its neighboring
L* [
based on the optimal wire sizing and spaci¥g, S**, andS'*. Now,
consider an upper bournd’” of W*. FromW?", we can obtain the  4in this paper, we use a more accurate table-based capacitance model than
those assumed in [11] and [12], then the complexity of the DP may not be poly-
3In the weighted formulation, we can easily incorporate other design objaemsmial as in [11]. However, it is not a major concern in our overall flow since
tives, such as area and power for optimization. the bound computation by itself already computes the near-optimal solution.
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Bound Computation for GISS by BR
i<0
WV (i) « Initialize upper bound for each net
WE(3) + Initialize lower bound for each net
do
for each net Nj
WV (i + 1) « Upper bound refinement for each wire in N; d
wt (i+ 1) « Lower bound refinement for each wire in Nj initia} upper bound fmwTE = W]]f
while (WY (5) # WY (i — 1) OR WE(3) # W (i — 1)) oo e

Fig. 2. BR-based algorithm to compute upper and lower bounds for GISS. Smin I
Winin /2

wire segments. Then, the width change of a wire segrienill affect

the delay terms of not just the net th&tbelongs to, but also all the

neighboring nets oF'. First, let us define the following two BR oper-

ations for a wire segmerft for GISS optimization. Fig. 3. Initialization of upper bound wire widths.
Definition 3—Upper BR: Let WY andW" be an upper and lower

bound to an optimal GISS solution. We consider the following two ini- . . )
tial settings for all wire segments: 1) all wire widths take their uppéf the distance between the center linesffand E. is 4, then the

bound fromW" and 2) all wire widths take their upper bound fromMmaximum width (i.e., the initial upper bound) forj;, (the side closer
WY, except forE’s neighboring wire segments, which take their lowet0 F.) andw, (the side closer td) is d — Wiin /2 — Smin. The
bound fromW’ . We compute the optimal width foF [i.e., to mini- overall flow of iterative bound computation for GISS is exactly the
mize the delay objective in (4) with other wire widths fixed] under thesg@Me as that for SISS. The only difference is that GISS uses the BR
two scenarios, denoted a¢' (E) andw$ (E), respectively. Then, the operations and SISS uses the LR operation.
upper BR width forE is MAX (w! (E), w5 (E)). 2) DP for GISS: In case that the upper and lower bounds do not
Definition 4—Lower BR:Let W' andW* be an upper and lower Meet, we will use the DP-based greedy algorithm to obtain the final
bound to an optimal GISS solution. We consider the following tw/ire-sizing solution for each net. We first take the lower bound width
initial settings for all wire segments: 1) all wire widths take their lowefor €ach wire segment as the initial layout. Then, we perform the
bound fromW" and 2) all wire widths take their lower bound frombPottom-up DP similar to that for SISS to obtain the final GISS solution
W, except forE’s neighboring wire segments, which take their uppelf & net-by-net manner following the decreasing order net priority.
bound fromWU_ We Compute the 0pt|ma| width fd¢f under these two The major difference from SISS is that in GISS, our Objective is the
scenarios, denoted ag (E) andw? ( E), respectively. Then, the lower Multiple-net weighted delay. So, the performance measure during the
BR width for E is MIN (w! (E), wh (E)). DP is now slightly modified to incorporate the delay terms from the
Note that these twBRoperations are different from th&operation neighboring nets (see [14] for more detail). All other DP processes
in [3], as the former usdsothupper and lower bounds to obtasither for GISS is exactly the same as that for SISS, so we omit the details
a new loweror a new upper bound, while the latter usedy upper here. It shall be noted that the DP for SISS guarantees the optimality,
bound to compute a new upper bound amdy lower bound to get a but the DP for GISS can not guarantee it. Nevertheless, our optimal
new lower bound. Then, we have the following theorem. bound-computation process for GISS usually obtains convergent or
Theorem 2—Dominance Property for GISSnder the monotone tight lower and upper bounds, so the role of DP to a large extent is
resistance model and the monotone lumped capacitance model, @Rtonal.
upper BR for any wire segment will dominate its optimal width and
the lower BR for any wire segment will be dominated by its optimal V. EXPERIMENTAL RESULTS
width in an optimal GISS solution.

We have implemented SISS and GISS algorithms using C++ on a
B. Algorithm for GISS Optimization SUN Ultra-SPARC 1 with 256-MB main memory. The parameters used
in our experiments are based on a 0;48-technology specified in

Thedominance property for GIS®gether with the two BR opera- NTRS roadmap [18]. We use the simple resistance model with the

tions associated with it, leads to a very effectivgbal upper and lower sheet resistance being 0.063gC. The minimum wire sizingVimin
bound computation algorithm for the GISS optimization problem. As 22,um and minimum edge-to-edge spacifigi, between neigh-
in SISS, the algorithm for GISS also h_as th phases. The first phas%é)?ing wires is 0.33&:m. In this case, thenin _pitch, defined as the
the upper and lower bound computation using BR. The second ph@ﬁﬁw of minimum spacing and minimum wire size, is equal to (.56

is the DP algorithm to compute the final GISS solution between thg,q jiiowable wire widths for each side of the center line are from 0.11
lower and _upper bounds. In pra_ctlce, our bound co_mput_atlon phas‘?o'ﬁ.lum, with the incremental step to be 0.iin. The area, fringing,
very effective such that most wire segments have identical lower agﬁd coupling capacitances are obtained by a table-lookup model sim-

upper bound. ) ) plified from the 2.5-D model in [19]. The driver resistance for each net
1) Bound Computation for GISSThe bound-computation algo- is set to be 1192 (assuming each driver is 100 times of the minimum

rithm for GISS is shown in Fig. 2. The lower and upper BR operatiorfbsdte size) and the loading capacitance at each sink is 12.0 fF.
are used to iteratively update the width upper and lower bounds for

each wire segment of each net. The algorithm starts at the iteration

i = 0. First, we initialize upper and lower bounds of all wire widthéA' SISS

specified by the user inputs and the layout constraints. A sampléWe perform experiments for the optimal SISS algorithm on five nets
initialization is shown in Fig. 3. LetE; and E, be two parallel extracted from an advanced industrial microprocessor. The number of
horizontal edges, witl®; below E,,. Let Wh,i, be the minimum wire sinks from Netl to Net5 are 2, 3, 8, 3, and 15, respectively. We assign
width andS..i» be the minimum spacing from the layout constraintequal weight for each sink. Given the initial layout of these nets, we
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TABLE |

COMPARISON OFWEIGHTED DELAY AND AVERAGE WIRE WIDTH USING DIFFERENT ALGORITHMS

length Weighted Delay (ns) Maximum Delay (ns)

(mm) | MIN OWS SISS-S SISS-A MIN OWS SISS-S SISS-A
Netl | 3.6 | 0.08 | 0.08 (-0.0%) | 0.08 (-0.0%) | 0.08 (-0.0%) || 0.14 | 0.14 (-0.0%) | 0.14 (-0.0%) | 0.14 (-0.0%)
Net2 | 6.6 | 0.31 | 0.19 (-39%) | 0.18 (-42%) | 0.15 (-52%) || 0.34 | 0.22 (-35%) | 0.22 (-35%) | 0.19 (-44%)
Net3 | 10.07 | 0.78 | 0.71 (-9.0%) | 0.71 (-9.0%) | 0.61 (-22%) || 1.03 | 0.96 (-6.8%) | 0.95 (-7.8%) | 0.83 (-19%)
Netd | 10.57 | 0.54 | 0.41 (-24%) | 0.39 (-28%) | 0.27 (-50%) || 0.84 | 0.71 (-16%) | 0.65 (-23%) | 0.44 (-48%)
Net5 | 31.98 | 3.19 | 2.57 (-19%) | 2.57 (-19%) | 1.73 (-46%) || 4.92 | 4.26 (-13%) | 4.27 (-13%) | 3.26 (-34%)

TABLE I

COMPARISON OFWEIGHTED DELAY AND AVERAGE WIRE WIDTH USING DIFFERENT ALGORITHMS

Weighted Delay (ns) Average Width (um)
PS5 | MIN [ OWS [ SISS | [17] | [20] | GISS || MIN | OWS | SISS | {17] | [20] | GISS
2x j 1.51 | 1.26 | 0.80 | 0.81 | 0.80 | 0.76 1 0.64 | 0.75 | 0.68 | 0.69 | 0.66
3x | 1.33 | 0.73 | 0.56 | 0.57 | 0.53 | 0.50 1 1.02 | 1.16 | 1.05 | 1.11 | 0.94
4x | 1.28 | 0.46 | 0.46 | 0.46 | 0.45 | 0.40 1 136 | 1.54 | 1.34 | 149 | 1.21
5x | 1.25 | 0.38 | 0.38 [ 0.39 | 0.36 | 0.35 1 152 | 1.74 | 1.46 | 1.65 | 1.44
6x | 1.23 | 0.35 | 0.33 | 0.36 | 0.32 | 0.32 1 1.52 | 1.75 | 1.48 | 1.64 | 1.63
TABLE Il

CONVERGENCERATE (CR), AVERAGE GAP (GAP), AVERAGE NUMBER OF LOCAL REFINEMENT OPERATIONS PER EDGE (#BR),
AND TOTAL RUNTIMES (CPU) USING GISS-SAND GISS-A ALGORITHMS

GISS-S GISS-A
PS [T CR [ Gap (um) | #BR | CPU(s): BR/DP || CR | Gap (#m) | #BR | CPU(s): BR/DP
2x | 90.3% | 0.011 | 2.95 0.41/0.10 852% | 0016 | 6.92 1.50/0.15
3x | 61.9% | 0042 | 8.69 1.25/0.25 64.5% | 0.040 | 13.8 4.35/0.62
4x | 484% | 0.061 | 9.76 1.64/0.44 66.6% | 0.047 | 135 8.50/0.70
5x | 484% | 0067 | 9.73 1.90/0.53 60.2% | 0057 | 143 11.4/2.30
6x | 77.5% | 0025 | 6.96 1.56/0.17 83.4% | 0.021 | 10.0 10.8/0.40
Avg | 653% | 0041 | 7.62 1.35/0.30 720% | 0036 | 11.7 7.31/0.83

randomly assign some surrounding wire segments with spacing frages the minimum wire width, OWS performs OWS without explicit
the net being 1-% min _pitch. consideration of the coupling capacitance, SISS runs the the SISS op-
In Table I, we summarize the weighted delay and the maximutimization in Section Ill in a net by net manner, [17] and [20] are two
delay from different algorithms: minimum wire sizing (MIN); OWS previously reported algorithms for wire sizing and spacing, and GISS
algorithm without considering the coupling capacitance (but coupling our global optimization algorithm in Section IV. From Table II, we
capacitance is included in the HSPICE simulations for delay compa&an see that GISS consistently obtains the best performance than all
ison); symmetric SISS algorithm (SISS-S) and asymmetric SISS algiher algorithms by as much as 74% (for bus)640% (for bus %),
rithm (SISS-A)> Note that for all five nets, the bound computatioril3% (for bus 4 ), 13% (for bus 4« ), and 11% (for bus #) than MIN,
leads to 100% convergence for both symmetric and asymmetric SIS®B/S, SISS, [17], and [20], respectively. Meanwhile, it is interesting
optimization. In the parentheses under the columns of OWS, SISSt&observe that better delay does not necessarily consume larger wiring
and SISS-A, we list the percentage of improvement over MIN. Froarea. The GISS algorithm has less wiring area than SISS and [20] in all
the table, we can see that SISS-A consistently outperforms all otheredses. It also has less area than OWS and [17] in most cases.
gorithms. In terms of its weighted delay, the improvement is up to 52%Table Ill reports some statistics from the bound computations from
over the MIN solution (Net2), 34% over OWS (Net4), and 33% ovehe symmetric and asymmetric GISS algorithm, including the conver-
SISS-S (Netb). Note that although the weighted delay is our objectigence rate, the average gap between the final lower and upper bounds
this formulation also help to reduce the maximum delay as well. Frofor each wire segment, the average number of BR operations for each
the table, we can see that SISS-A reduces the maximum delay fredge, and the runtime. We define a wire segment todreergenif
MIN, OWS, and SISS-S by up to 48%, 38%, and 32% (Net4), respets lower and upper bounds are exactly the same. We can see that our
tively. bound computation is very effective as on average, 65% wire segments
in symmetric GISS and 72% wire segments in asymmetric GISS are
B. GISS convergent. Even for those wire segments that are not convergent, the
To demonstrate the effectiveness of our GISS algorithm on multipgPs between lower and upper bounds are very small, in most cases,
nets, we have performed the experiments on a 16-bit parallel bus sttt the wire width increment (0.12m in our experimental setting).
ture of 10-mm long with equal weight for every bus line and the P&he average gap between the lower and upper bounds for all wire seg-
between adjacent lines afe. 3.4,5,6} x min _pitch, respectively. ments is only from 0.011 to 0.067m. Note that since there are very
Each wire segment is set to be 5000. few wire-width choices for each wire segment, the DP algorithm runs
Table Il shows the weighted delay and average wire width obtain¥@ry fast (see the CPU breakup between BR and DP in Table Ii).
after HSPICE simulations from running different algorithms: MIN just

SWe use the suffix “-A” and “-S” to denote the asymmetric and symmetric ©In fact, we also directly assigned the lower bound wire widths to be the final
wire sizing throughout this section. If not stated, the default is the asymmetvigre-sizing solution (i.e., without the DP step) and found very little delay/area
wire sizing. difference from the GISS results in Table II.
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TABLE IV
COMPARISON OFWEIGHTED DELAY, AVERAGE WIRE WIDTH, AND CPUFOR
Two PARALLEL Bus LINES WITH WEIGHTS OF1 AND 10 000

Weighted Delay (ns) | Average Width (um) CPU (s) [1]
PS | 7 | [20] | GISS || [17] | [20] | GISS || [17] | [20] | GISS
2% | 0.463 | 0.395 | 0.394 || 1.309 | 1.172 | 1.155 || 5.93 | 4.27 | 0.12
3x { 0.401 | 0.341 | 0.340 || 1.507 | 1.260 | 1.249 || 9.88 | 7.44 | 0.21 [2]
4x | 0.377 | 0.315 | 0.315 || 1.683 | 1.353 | 1.342 || 14.7 | 11.9 | 0.26
5% | 0.333 | 0.300 | 0.300 || 1.793 | 1.425 | 1.425 || 17.8 | 14.2 | 0.31
6x | 0.306 | 0.295 | 0.295 || 1.793 | 1.425 | 1.425 || 18.0 | 14.4 | 0.32 3]
[4]

As mentioned in the beginning of Section IV, the algorithm in [17]
may fail to give correct lower and upper bound wire widths, especially
when net weights differ drastically. To show such an example, we takel®]
two parallel bus lines with weights to be 1 and 10000, respectively.
Other parameters are the same as those in the 16-bit bus exampI?B]
The results by using [17] and [20] and GISS algorithms are listed in
Table IV. It shows that [17] cannot take the net weights into consid-
eration and leads to incorrect lower and upper bounds. In all cases|7]
[17] leads to larger weighted delay (e.g., 20% for bus) 2nd wire
width (e.g., 25% for bus ) than GISS. In this example, [20] obtains
delay/width comparable to GISS. However, it uses significantly more
CPU time by a factor of 4Q of that by GISS. This is because the bound
computation stage by [20] does not give good convergence and it hagg
to rely heavily on our bottom-up DP to pick the best solution between
lower and upper bounds. Our bound-computation stage of GISS, how-
ever, leads to 100% convergence rate for this weighted bus exampl€l
Thus, it is much more effective than [20].

(8]

(11]
VI. CONCLUSION

In this paper, we have developed efficient bound-computation algoH 2]
rithms and show their optimality under general interconnect resistance
and capacitance models for wire-sizing and spacing optimizations i
DSM designs. In practice, by bound computation alone, we can achieve
optimal or near-optimal solutions. Our experimental results show sig-
nificant performance improvement over previous wire-sizing/spacing14]
algorithms.

It shall be noted that besides wire sizing and spacing, some other
interconnect optimization techniques, such as driver sizing, buffer in-
sertion, and sizing, can be used to improve interconnect performance Qs‘?]
well. Also in practice, one may not need extensive wire tapering (i.e.,
using a lot of discrete wire widths, or even continuous wire shaping) tq16]
get near-optimal results. Some simplified wire-sizing schemes, such as
uniform-width sizing [21], [22] and two-width sizing [21], may be good
enough to get near-optimal solution, especially when optimal buffef17]
insertion and sizing are performed so that all wires are not too long.
In general, more freedom of wire sizing will lead to longer critical [18]
length for buffer insertion [23], which means less number of buffers.
So there is a design tradeoff between buffer insertion/sizing versugg)
wire-sizing/spacing.

In this paper, the focus is on the performance side of the coupling
capacitance. Another important effect of the coupling capacitance is
the crosstalk noise. In the future, we plan to extend the bound-cont?%]
putation and/or DP algorithm for simultaneous performance and noise
optimization. [21]
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