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Interconnect Sizing and Spacing with Consideration of
Coupling Capacitance

Jason Cong, Lei He, Cheng-Kok Koh, and Zhigang (David) Pan

Abstract—This paper studies interconnect sizing and spacing (ISS)
problem with consideration of coupling capacitance for performance opti-
mization of single or multiple critical nets. We introduce the formulation
of symmetric and asymmetric wire sizing. We develop efficient bound
computation algorithms for ISS optimization and prove their optimality
under general interconnect resistance and capacitance models. Our exper-
iments show that our algorithms are very effective and obtain significant
performance improvement compared to previous wire-sizing/spacing
algorithms.

Index Terms—Coupling capacitance, interconnect, wire sizing, wire
spacing.

I. INTRODUCTION

It has been widely recognized that for deep submicrometer (DSM)
very large scale integration designs, interconnect plays a dominating
role in determining the overall circuit performance [1]. Among var-
ious interconnect optimization techniques, wire sizing and spacing are
effective techniques to determine proper width/spacing for one or mul-
tiple nets such that certain design objective is optimized.

It was first shown in [2] and [3] that when wire resistance becomes
significant, as in DSM designs, proper wire sizing can effectively re-
duce the interconnect delay. Assuming that each wire segment has a set
of discrete widths, their work presented the first optimal wire-sizing
(OWS) algorithm for a single-source resistance–capcitance (RC) in-
terconnect tree using a local refinement (LR) operation. It was later
extended for a routing tree with multiple sources [4] and for the max-
imum delay objective using Lagrangian relaxation [5]. Another formu-
lation of wire-sizing optimization is to determine the continuous wire
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shaping functions. The closed-form wire shaping functions were de-
rived to minimize the Elmore delay, first without fringing capacitance
[6] and later with fringing capacitance [7] and for a bidirectional wire
[8]. Wire-sizing optimization is also studied using high-order delay
model (e.g., [9] and [10]).

However, most of these works on wire sizing only sized asinglenet
and did not explicitly consider the coupling capacitance, which has al-
ready become the dominating capacitance component. Moreover, the
optimality of most algorithms assumed rather simple interconnect ca-
pacitance models (e.g.,constantunit area and fringing capacitances),
which no longer hold for DSM designs. In this paper, we study the inter-
connect sizing and spacing (ISS) problem withexplicit consideration
of coupling capacitance and under more general (e.g., table look-up)
capacitance models. Our optimization target can be either asinglecrit-
ical net [single-net interconnect sizing and spacing (SISS)], orglobal
optimization of multiple critical nets [global interconnect sizing and
spacing (GISS)]. The major contribution of this paper includes the fol-
lowing.

1) We introduce the symmetric and asymmetric wire-sizing for-
mulation. Since a net usually has asymmetric neighborhood
structures, the asymmetric wire-sizing formulation provides
more flexibility.

2) We extend the LR operation first introduced in [3] and show its
optimality to bound an optimal SISS solution using thedomi-
nance property for SISS, under more general resistance and ca-
pacitance models than [3].

3) We introduce two bound-refinement (BR) operations and prove
theirglobal optimalityto bound an optimal GISS solution using
thedominance property for GISS(again, under general resistance
and capacitance models).

4) We extend the dynamic programming (DP) algorithms [11]–[13]
for SISS and GISS.

The rest of this paper is organized as follows. Section II formulates
the problem. Sections III and IV present the properties and algorithms
for SISS and GISS optimizations. Experimental results are shown in
Section V, followed by the conclusion in Section VI. Proofs of theo-
rems, together with validation of capacitance models that we assume
for the optimality of our algorithms, are available in a technical report
[14].

II. PROBLEM FORMULATION

A. Symmetric and Asymmetric Wire Sizing

The purpose of this study is to perform postlayout (after global or
detailed routing) ISS optimization to one or multiple timing-critical
nets, based on some initial layout or topology of these nets. For each net
Ni, it consists ofni+1 terminalsfs0; . . . ; sn g connected by a routing
tree, denotedTi. The terminalsi0 denotes the source ofNi. The rest of
the terminals are sinks. The terminals (source and sinks) ofTi are at
fixed locations, andTi consists ofmi wire segments1 fE1; . . . ; Em g.

For a wire segmentE, we define itscenter lineto be a line that di-
vides the initial layout evenly along the signal direction. For example,
in Fig. 1(a), two horizontal wire segmentsE1 andE2 are shown with
their center lines. We assume that the center line for each wire seg-
ment is fixed during wire sizing and spacing optimization. We call the

1A wire segment is the smallest unit for wire sizing. For delay minimization
purpose, a long wire may be divided into a number of smaller wire segments.
For ease of presentation, we assume that each wire segment has unit length [3].
Note that in this paper, a wire segment may also be referred to as an “edge”E,
using graph terminology.

0278–0070/01$10.00 © 2001 IEEE
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(a) (b) (c)

Fig. 1. (a) Wire segments with center lines. (b) Symmetric wire sizing. (c) Asymmetric wire sizing.

distance between adjacent center lines as the pitch spacing (PS). All
previous works implicitly assumedsymmetric wire sizingaround the
center lines, so each wire segment needs only one width to describe it.
An example of symmetric wire sizing of the two wire segmentsE1 and
E2 with a neighboring net is shown in Fig. 1(b).

However, symmetric wire sizing may be too restrictive when we take
coupling capacitance into account because it is likely that the neigh-
borhood structure of a net isnot symmetric. We propose theasym-
metric wire sizingthat allows a wire to be sized asymmetrically with
respect to its center line. Using the same example as in Fig. 1(b), we
may wantE1 to be farther away from its upper neighbor since the cou-
pling capacitance would be less. As a result, we may only size up the
bottom half piece and keep the top half intact, as shown in Fig. 1(c).
In this case, each wire segment needs two widths to describe it. Let
wE denote the width of the wire segmentE, w#

E(w
"

E) be wire width
below (above) the center line ofE, ands#E(s

"

E) be the edge-to-edge
spacing fromE to the neighbor wire segment below (above) it. Then,
wE = w#

E + w"

E . An asymmetric wire-sizing solution is valid if
w#

E � Wmin=2 andw"

E � Wmin=2. Note that for symmetric wire
sizing,w#

E = w"

E = wE=2. To avoid introducing additional notations,
we also usew#

E(w
"

E) to denote the wire width for the left (right) part of
a vertical wire segment ands#E(s

"

E) to denote the spacing fromE to its
left (right) neighboring wire, respectively. In this paper, we assume that
symmetric and asymmetric wire sizings have negligible difference in
terms of wire resistance, if both have the same wire width for each cor-
responding wire segment [e.g., see Fig. 1(b) and (c)]. It is valid to the
first order because for wire sizing to take effect, a wire needs to be suf-
ficiently long (e.g., more than 5000 of the minimum wire width [1]).
Then, the small resistance difference between symmetric and asym-
metric wire sizing at the connections of different wire widths [e.g., see
E1 andE2 in Fig. 1(b) and (c)] is negligle compared to the total wire
resistance.

B. SISS

Given an initial layout ofn nets, the SISS problem is to find a sym-
metric or asymmetric wire-sizing solutionW for a single netN (usu-
ally the most critical net) with the corresponding routing treeT to min-
imize the following delay objective:

tT (W) =
s 2sink(T )

�k � tT (sk;W) (1)

where�k is the criticality of sinksk andtT (sk;W) is the delay from
sources0 to sinksk with wire-sizing solutionW . Note that although
only routing treeT appears in the above delay notation, other nets pro-
vide neighborhood structures and constraints thus will affect the value
of tT (W) as well.

We model the driver of the routing treeT by an effective resistance
Rd and the routing tree itself by a distributedRC circuit and use the
Elmore delay model [15] to guide performance optimization. For a wire
segmentE, let rE be its resistance andcE be its lumped capacitance,
i.e., cE = ca(E) � wE + cf (E) + cx(E), where theca(E); cf(E)
andcx(E) are the unit area, fringing, and coupling capacitances forE,
respectively.2 Let Des(E) be the set of descendant wire segments in
the subtree rooted atE (excludingE), sink(T ) be the set of sinks in the
routing treeT , sink(E) be the set of sinks in the subtree rooted atE,
PT (u; v) be the unique path from nodesu to v in T , andCdown(E) be
thetotal downstream capacitance in the subtree rooted atE (including
both wire and sink capacitances), i.e.,

Cdown(E) =
s2sink(E)

cs +
E 2Des(E)

cE :

Then, the Elmore delay from sources0 to sinksk can be written as

tT (sk;W) = Rd �
E2T

cE +
s2sink(T )

cs

+
E2P (s ;s )

rE �
cE
2

+ Cdown(E) : (2)

Let �(s0) =
s 2sink(T ) �k and�(E) =

s 2sink(E) �k, (1) can
be rewritten as

tT (W) = �(s0) � Rd �
E2T

cE +
s2sink(T )

cs

+
E2T

�(E) � rE �
cE
2

+ Cdown(E) : (3)

If we treat�(s0)Rd as the new effective driver resistance and�(E)rE
as the new effective wire resistance ofE, (3) will be exactly of the same
form of (2).

In this paper, the objective function is to minimize the weighted
delay summation of all sinks, similar to [3]. It was shown by [5] and
[16] that the weighted formulation can be used to solve other opti-
mization problems such as minimizing the maximum delay or mini-
mizing total area subject to delay constraint for each sink, using the
Lagrangian relaxation technique. It relaxes all constraints using non-
negative Lagrange multipliers with each Lagrange multiplier corre-
sponding to a constraint. Finding the optimal set of Lagrange multi-
pliers usually needs iterative adjustment, e.g., by the subgradient op-
timization method [16]. These Lagrange multipliers correspond to the

2For different wire segments, the unit area, fringing, and coupling capaci-
tances may be different, so we write them as functions ofE and they can be
obtained by table look-up.
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weights under our weighted formulation.3 Then, under a given set of
Lagrange multipliers (i.e., weights), our optimization algorithms (SISS
and GISS) can be used to get the optimal or near-optimal solutions.
Their role is the same as the greedy wire-sizing algorithm during the
Lagrangian relaxation in [5], [16]. It shall be noted that the optimality of
Lagrangian relaxation in [5] and [16] assumescontinuouswire sizing,
while our optimization algorithms work ondiscrete wire sizing, so the
optimality may not be guaranteed.

C. GISS

The GISS problem is to find a symmetric or asymmetric wire-sizing
solution W for all n critical nets under optimization so that the
weighted delay of them

t(W) =

n

i=1

�i � tT (W) (4)

is minimized, wheren is the number of critical nets to be simultane-
ously optimized and�i is the criticality of netNi. Note that the net
criticality �i can be absorbed into each sink weight of netNi.

III. A LGORITHM FOR SISS OPTIMIZATION

In this section, we study ISS optimization for a single critical net,
i.e., the wire widths of all other nets are fixed. We first present the
dominance propertyfor an optimal SISS solution, then give an effective
algorithm for it.

A. Dominance Property for SISS

In [3], the LR operation was first introduced, which sizesonewire
segment optimally at a time. Based on the LR, an elegant dominance
property was obtained for OWS under simple constant interconnect re-
sistance and capacitance models. We prove that the dominance property
can be extended for SISS and under much more general resistance and
capacitance models as follows.

Definition 1—Monotone Resistance Model:The wire resis-
tance monotonically decreases as wire width increases, i.e.,
rE(wE) < rE(w

0

E) if wE > w0

E .
Definition 2—Monotone Lumped Capacitance Model:The lumped

capacitance for a wire segmentE monotonically increases as wire
width increases, i.e.,cE(w0

E) > cE(wE) if w0

E > wE , given fixed
neighboring structures.

Our study shows that the monotone resistance model and monotone
lumped capacitance model always hold [14]. Then, we have the fol-
lowing theorem.

Theorem 1—Dominance Property for SISS:LetW� be an optimal
SISS solution for a routing treeT . Under the monotone resistance
model and the monotone lumped capacitance model, if a wire-sizing
solutionW 0 dominatesW�, then an LR ofW 0 will still dominateW�;
similarly, if W 0 is dominated byW�, an LR ofW 0 will still be domi-
nated byW�.

B. Algorithm for SISS Optimization

1) Bound Computation for SISS:The dominance property suggest
that one can start from some upper or lower bound of the optimal SISS
solution and iteratively update these bounds toward the final optimal
SISS solution using LR. The overall flow of bound computation for
SISS is similar to that for OWS in [3]. LetW� be an optimal SISS so-
lution andcE(w�

E ; s
#�

E ; s
"�

E ) be the lumped capacitance for an edgeE

based on the optimal wire sizing and spacingW�;S#�, andS"�. Now,
consider an upper boundWU of W�. FromWU , we can obtain the

3In the weighted formulation, we can easily incorporate other design objec-
tives, such as area and power for optimization.

corresponding spacing lower boundsS#L andS"L for S#� andS"�,
respectively. Under the monotone lumped capacitance model, we have
cE(w

U
E ; s

#L

E ; s
"L

E ) � cE(w
�
E ; s

#�

E ; s
"�

E ). According to the dominance
property, an LR operation to any wire segment ofWU will still be an
upper bound ofW�. Similarly, the LR operation of an initial lower
boundWL will still be a lower bound ofW�.

Note that for the symmetric case, each wire segment just has one
width, while for the asymmetric case, it has two widths: one for each
side of its center line. The wire spacing is determined once the wire
width is given because we assume the PS is fixed during the wire-
sizing/spacing optimization. In this paper, we use an accurate capac-
itance lookup table, not a simple capacitance formula (constantca and
cf ) as in [3]. Thus, we need to enumerate the given discrete wire widths
to get the local optimal symmetric or asymmetric wire-sizing solution.

2) DP for SISS: As we shall see in Section V, the bound-computa-
tion algorithm for SISS usually leads to exactly the the same lower and
upper bound for each wire segment. When the lower and upper bounds
do not meet, we use the bottom-up DP algorithm similar to [11] and
[12] to compute the final SISS solution between the lower and upper
bounds. The main idea for the DP is to compute and merge candidate
wire-sizing solutions in a bottom-up manner starting from all sinks.
During the merging phase, inferior (or called theredundantas in [11]),
options are pruned out.4 At the end of the bottom-up computation, the
source may have a set of irredundant options. The optimal solution is
picked according to the design objective. Tracing back from the source,
we have the corresponding optimal wire-sizing and spacing solution.

Compared to previous DP algorithms in [11] and [12], our DP ap-
proach has the following features: 1) we consider the coupling capaci-
tance between neighboring wires and 2) we keep two wire widths (w

#

E

andw"

E ) for each edge in the asymmetric scenario while performing
bottom-up accumulation and top-down pruning.

IV. A LGORITHM FOR GISS OPTIMIZATION

The SISS algorithm is for optimizing a single critical net. However,
it largely depends on the previous layout of other neighboring nets.
During layout optimization, there may have multiple critical nets that
share limited routing resources. Thus, just optimizing one net may sac-
rifice the performance of other critical nets. In this section, we will
study the GISS optimization for multiple nets. It is a much more diffi-
cult problem than SISS due to the interaction of multiple nets through
coupling capacitance.

Before presenting the theory and algorithm on GISS, we shall point
out the suboptimality of our previous approach in [17], where the GISS
problem is decomposed into a set of single-net OWS problems to iter-
atively compute the lower and upper bound widths for each net. How-
ever, we found later that such bound computations did not consider the
delay of neighboring nets during each single-net optimization and, thus,
they may miss the optimal solution, especially when the sink weights
are very different (see [14] for more details). In this section, we develop
a new theory and algorithm that can guarantee theglobal optimalityof
bound computations. We also introduce two new operations for global
bound computation of each wire segment, namely,lower BRandupper
BR.

A. Dominance Property for GISS

First of all, it shall be noted that during GISS optimization, the capac-
itance of a wire segmentE is not only a function (explicit or implicit)
of its own width, but also a function of the widths of its neighboring

4In this paper, we use a more accurate table-based capacitance model than
those assumed in [11] and [12], then the complexity of the DP may not be poly-
nomial as in [11]. However, it is not a major concern in our overall flow since
the bound computation by itself already computes the near-optimal solution.
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Fig. 2. BR-based algorithm to compute upper and lower bounds for GISS.

wire segments. Then, the width change of a wire segmentE will affect
the delay terms of not just the net thatE belongs to, but also all the
neighboring nets ofE. First, let us define the following two BR oper-
ations for a wire segmentE for GISS optimization.

Definition 3—Upper BR:LetWU andWL be an upper and lower
bound to an optimal GISS solution. We consider the following two ini-
tial settings for all wire segments: 1) all wire widths take their upper
bound fromWU and 2) all wire widths take their upper bound from
W

U , except forE ’s neighboring wire segments, which take their lower
bound fromWL. We compute the optimal width forE [i.e., to mini-
mize the delay objective in (4) with other wire widths fixed] under these
two scenarios, denoted aswU

1 (E) andwU

2 (E), respectively. Then, the
upper BR width forE isMAX(wU

1 (E); w
U

2 (E)).
Definition 4—Lower BR:LetWU andWL be an upper and lower

bound to an optimal GISS solution. We consider the following two
initial settings for all wire segments: 1) all wire widths take their lower
bound fromWL and 2) all wire widths take their lower bound from
W

L, except forE ’s neighboring wire segments, which take their upper
bound fromWU . We compute the optimal width forE under these two
scenarios, denoted aswL

1 (E)andwL

2 (E), respectively. Then, the lower
BR width forE is MIN(wL

1 (E);w
L

2 (E)).
Note that these twoBRoperations are different from theLRoperation

in [3], as the former usesbothupper and lower bounds to obtaineither
a new loweror a new upper bound, while the latter usesonly upper
bound to compute a new upper bound andonly lower bound to get a
new lower bound. Then, we have the following theorem.

Theorem 2—Dominance Property for GISS:Under the monotone
resistance model and the monotone lumped capacitance model, the
upper BR for any wire segment will dominate its optimal width and
the lower BR for any wire segment will be dominated by its optimal
width in an optimal GISS solution.

B. Algorithm for GISS Optimization

Thedominance property for GISS, together with the two BR opera-
tions associated with it, leads to a very effectiveglobalupper and lower
bound computation algorithm for the GISS optimization problem. As
in SISS, the algorithm for GISS also has two phases. The first phase is
the upper and lower bound computation using BR. The second phase
is the DP algorithm to compute the final GISS solution between the
lower and upper bounds. In practice, our bound computation phase is
very effective such that most wire segments have identical lower and
upper bound.

1) Bound Computation for GISS:The bound-computation algo-
rithm for GISS is shown in Fig. 2. The lower and upper BR operations
are used to iteratively update the width upper and lower bounds for
each wire segment of each net. The algorithm starts at the iteration
i = 0. First, we initialize upper and lower bounds of all wire widths
specified by the user inputs and the layout constraints. A sample
initialization is shown in Fig. 3. LetEl and Eu be two parallel
horizontal edges, withEl belowEu. LetWmin be the minimum wire
width andSmin be the minimum spacing from the layout constraint.

Fig. 3. Initialization of upper bound wire widths.

If the distance between the center lines ofEl andEu is d, then the
maximum width (i.e., the initial upper bound) forw"

E
(the side closer

to Eu) andw#

E
(the side closer toEl) is d �Wmin=2 � Smin. The

overall flow of iterative bound computation for GISS is exactly the
same as that for SISS. The only difference is that GISS uses the BR
operations and SISS uses the LR operation.

2) DP for GISS: In case that the upper and lower bounds do not
meet, we will use the DP-based greedy algorithm to obtain the final
wire-sizing solution for each net. We first take the lower bound width
for each wire segment as the initial layout. Then, we perform the
bottom-up DP similar to that for SISS to obtain the final GISS solution
in a net-by-net manner following the decreasing order net priority.
The major difference from SISS is that in GISS, our objective is the
multiple-net weighted delay. So, the performance measure during the
DP is now slightly modified to incorporate the delay terms from the
neighboring nets (see [14] for more detail). All other DP processes
for GISS is exactly the same as that for SISS, so we omit the details
here. It shall be noted that the DP for SISS guarantees the optimality,
but the DP for GISS can not guarantee it. Nevertheless, our optimal
bound-computation process for GISS usually obtains convergent or
tight lower and upper bounds, so the role of DP to a large extent is
optional.

V. EXPERIMENTAL RESULTS

We have implemented SISS and GISS algorithms using C++ on a
SUN Ultra-SPARC 1 with 256-MB main memory. The parameters used
in our experiments are based on a 0.18-�m technology specified in
NTRS roadmap [18]. We use the simple resistance model with the
sheet resistance being 0.0638
= . The minimum wire sizingWmin

is 0.22�m and minimum edge-to-edge spacingSmin between neigh-
boring wires is 0.33�m. In this case, themin pitch, defined as the
sum of minimum spacing and minimum wire size, is equal to 0.55�m.
The allowable wire widths for each side of the center line are from 0.11
to 1.1�m, with the incremental step to be 0.11�m. The area, fringing,
and coupling capacitances are obtained by a table-lookup model sim-
plified from the 2.5-D model in [19]. The driver resistance for each net
is set to be 119
 (assuming each driver is 100 times of the minimum
gate size) and the loading capacitance at each sink is 12.0 fF.

A. SISS

We perform experiments for the optimal SISS algorithm on five nets
extracted from an advanced industrial microprocessor. The number of
sinks from Net1 to Net5 are 2, 3, 8, 3, and 15, respectively. We assign
equal weight for each sink. Given the initial layout of these nets, we
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TABLE I
COMPARISON OFWEIGHTED DELAY AND AVERAGE WIRE WIDTH USING DIFFERENTALGORITHMS

TABLE II
COMPARISON OFWEIGHTED DELAY AND AVERAGE WIRE WIDTH USING DIFFERENTALGORITHMS

TABLE III
CONVERGENCERATE (CR), AVERAGE GAP (GAP), AVERAGE NUMBER OF LOCAL REFINEMENT OPERATIONS PER EDGE (#BR),

AND TOTAL RUNTIMES (CPU) USING GISS-SAND GISS-A ALGORITHMS

randomly assign some surrounding wire segments with spacing from
the net being 1–5�min pitch.

In Table I, we summarize the weighted delay and the maximum
delay from different algorithms: minimum wire sizing (MIN); OWS
algorithm without considering the coupling capacitance (but coupling
capacitance is included in the HSPICE simulations for delay compar-
ison); symmetric SISS algorithm (SISS-S) and asymmetric SISS algo-
rithm (SISS-A).5 Note that for all five nets, the bound computation
leads to 100% convergence for both symmetric and asymmetric SISS
optimization. In the parentheses under the columns of OWS, SISS-S,
and SISS-A, we list the percentage of improvement over MIN. From
the table, we can see that SISS-A consistently outperforms all other al-
gorithms. In terms of its weighted delay, the improvement is up to 52%
over the MIN solution (Net2), 34% over OWS (Net4), and 33% over
SISS-S (Net5). Note that although the weighted delay is our objective,
this formulation also help to reduce the maximum delay as well. From
the table, we can see that SISS-A reduces the maximum delay from
MIN, OWS, and SISS-S by up to 48%, 38%, and 32% (Net4), respec-
tively.

B. GISS

To demonstrate the effectiveness of our GISS algorithm on multiple
nets, we have performed the experiments on a 16-bit parallel bus struc-
ture of 10-mm long with equal weight for every bus line and the PS
between adjacent lines aref2; 3; 4; 5; 6g � min pitch, respectively.
Each wire segment is set to be 500�m.

Table II shows the weighted delay and average wire width obtained
after HSPICE simulations from running different algorithms: MIN just

5We use the suffix “-A” and “-S” to denote the asymmetric and symmetric
wire sizing throughout this section. If not stated, the default is the asymmetric
wire sizing.

uses the minimum wire width, OWS performs OWS without explicit
consideration of the coupling capacitance, SISS runs the the SISS op-
timization in Section III in a net by net manner, [17] and [20] are two
previously reported algorithms for wire sizing and spacing, and GISS
is our global optimization algorithm in Section IV. From Table II, we
can see that GISS consistently obtains the best performance than all
other algorithms by as much as 74% (for bus 6�), 40% (for bus 2�),
13% (for bus 4�), 13% (for bus 4�), and 11% (for bus 4�) than MIN,
OWS, SISS, [17], and [20], respectively. Meanwhile, it is interesting
to observe that better delay does not necessarily consume larger wiring
area. The GISS algorithm has less wiring area than SISS and [20] in all
cases. It also has less area than OWS and [17] in most cases.

Table III reports some statistics from the bound computations from
the symmetric and asymmetric GISS algorithm, including the conver-
gence rate, the average gap between the final lower and upper bounds
for each wire segment, the average number of BR operations for each
edge, and the runtime. We define a wire segment to beconvergentif
its lower and upper bounds are exactly the same. We can see that our
bound computation is very effective as on average, 65% wire segments
in symmetric GISS and 72% wire segments in asymmetric GISS are
convergent. Even for those wire segments that are not convergent, the
gaps between lower and upper bounds are very small, in most cases,
just the wire width increment (0.11�m in our experimental setting).
The average gap between the lower and upper bounds for all wire seg-
ments is only from 0.011 to 0.067�m. Note that since there are very
few wire-width choices for each wire segment, the DP algorithm runs
very fast (see the CPU breakup between BR and DP in Table III).6

6In fact, we also directly assigned the lower bound wire widths to be the final
wire-sizing solution (i.e., without the DP step) and found very little delay/area
difference from the GISS results in Table II.
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TABLE IV
COMPARISON OFWEIGHTED DELAY, AVERAGE WIRE WIDTH, AND CPUFOR

TWO PARALLEL BUS LINES WITH WEIGHTS OF1 AND 10 000

As mentioned in the beginning of Section IV, the algorithm in [17]
may fail to give correct lower and upper bound wire widths, especially
when net weights differ drastically. To show such an example, we take
two parallel bus lines with weights to be 1 and 10 000, respectively.
Other parameters are the same as those in the 16-bit bus example.
The results by using [17] and [20] and GISS algorithms are listed in
Table IV. It shows that [17] cannot take the net weights into consid-
eration and leads to incorrect lower and upper bounds. In all cases,
[17] leads to larger weighted delay (e.g., 20% for bus 2�) and wire
width (e.g., 25% for bus 2�) than GISS. In this example, [20] obtains
delay/width comparable to GISS. However, it uses significantly more
CPU time by a factor of 40� of that by GISS. This is because the bound
computation stage by [20] does not give good convergence and it has
to rely heavily on our bottom-up DP to pick the best solution between
lower and upper bounds. Our bound-computation stage of GISS, how-
ever, leads to 100% convergence rate for this weighted bus example.
Thus, it is much more effective than [20].

VI. CONCLUSION

In this paper, we have developed efficient bound-computation algo-
rithms and show their optimality under general interconnect resistance
and capacitance models for wire-sizing and spacing optimizations in
DSM designs. In practice, by bound computation alone, we can achieve
optimal or near-optimal solutions. Our experimental results show sig-
nificant performance improvement over previous wire-sizing/spacing
algorithms.

It shall be noted that besides wire sizing and spacing, some other
interconnect optimization techniques, such as driver sizing, buffer in-
sertion, and sizing, can be used to improve interconnect performance as
well. Also in practice, one may not need extensive wire tapering (i.e.,
using a lot of discrete wire widths, or even continuous wire shaping) to
get near-optimal results. Some simplified wire-sizing schemes, such as
uniform-width sizing [21], [22] and two-width sizing [21], may be good
enough to get near-optimal solution, especially when optimal buffer
insertion and sizing are performed so that all wires are not too long.
In general, more freedom of wire sizing will lead to longer critical
length for buffer insertion [23], which means less number of buffers.
So there is a design tradeoff between buffer insertion/sizing versus
wire-sizing/spacing.

In this paper, the focus is on the performance side of the coupling
capacitance. Another important effect of the coupling capacitance is
the crosstalk noise. In the future, we plan to extend the bound-com-
putation and/or DP algorithm for simultaneous performance and noise
optimization.
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