Interconnect Estimation and Planning for Deep Submicron Designs

Jason Cong and David Zhigang Pan

UCLA Computer Science Department
Los Angeles, CA 90095

Sponsored by SRC

Interconnect-Centric Design Methodology

- Proposed transition
- Analogy

- Interconnect centric vs. device centric
 - device/function centric
 - interconnect/communication centric

- Data/Objects vs. Programs
 - Programs
 - Data/Objects
At UCLA, we are working on an interconnect-centric design flow, which includes:

- Interconnect Planning
- Interconnect Synthesis
- Interconnect Layout

Other supporting tools:

- Interconnect performance estimation
- Interconnect performance verification

Integration for design convergence

Pre-design planning (within the fabrication technology):

- number of routing layers
- metal and isolation material at each layer
- thickness of each metal and isolation layer
- nominal width and spacing on each layer
- ...

Problem in this talk: optimal wire width planning for each metal layer, with performance-area optimization
Problem Formulation

Given:
- Certain technology
- Wire assignment for each metal layer

Find:
- A small set of “globally optimal” widths per layer
- Performance/Area optimization

Motivation
- Simplify interconnect optimization
- Ease routing architecture

Design Optimization Objective

- Given some weight function $\lambda(l)$ for wire length range $[l_{\text{min}}, l_{\text{max}}]$, we want to find a small set of optimal widths W^* to minimize

$$\Phi(W, l_{\text{min}}, l_{\text{max}}) = \int_{l_{\text{min}}}^{l_{\text{max}}} \lambda(l) \cdot f(W, l) dl$$

- $f(W, l)$: the objective function to be minimized by the design using W

$$f(W, l) = A^4(W, l) \cdot T^4(W, l)$$

- (A-area T-delay)

- (performance only)

or

$$f(W, l) = A(W, l) \cdot T(W, l)$$

- (performance-driven and area-saving)
1-WS and 2-WS

- 1-WS and 2-WS have less than 10% difference from OWS for length <4mm in Tier1 (Metal 1-2)
- Both work well in upper metal layer up to chip dimension
- In above figure, different widths for different lengths.

Overall Approach

For each metal layer i

Assign length range l_{min} and l_{max};

Find W^* or $\{W_1^*, W_2^*\}$ to minimize

$$\Phi(W, l_{\text{min}}, l_{\text{max}}) = \int_{l_{\text{min}}}^{l_{\text{max}}} \lambda(l) \cdot f(W, l) dl$$

Method: Analytical and numerical
Overall Approach (Cont’d)

- Analytical formula for 1-width planning for best T
 \[W^* = \sqrt{\frac{1}{3} rCf (l_{\text{max}}^2 - l_{\text{min}}^2) + rCf (l_{\text{max}}^2 - l_{\text{min}}^2)} \]
 \[R_{\text{dca}} (l_{\text{max}}^2 - l_{\text{min}}^2) \]

- Numerical method by effective searching the best 1-width planning under AT^4 metric and the best 2-width planning under T and AT^4 metrics

Experimental Setting

- Parameters based on NTRS’97 and Strawman [Otten&Brayton, DAC’98]
- Assume uniform weight function and the max length in Tier1 is 10,000x feature size, and in top tier is the chip dimension
- Intermediate tier’s length range follows a geometric sequence
- Representative driver size for each metal layer (10x, 40x, 100x, and 250x for tiers 1-4)
- Verify against optimal wire sizing and spacing algorithm (using many widths) [Cong+, ICCAD’97]
Surprising Result: Two widths good enough!

Case study of 0.10um using upper metal pair

- 2-width design superior than 1-width design
 - delay reduction up to 12.4%
 - area saving up to 48%

- 2-width design comparable to many-width design
 - Avg. delay less than 5% and Max. delay less than 7%
 - Area difference less than 4.7%

<table>
<thead>
<tr>
<th>scheme</th>
<th>pitch-sp=2um</th>
<th>pitch-sp=2.9um</th>
<th>pitch-sp=3.8um</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>avg-d</td>
<td>max-err</td>
<td>avg-w</td>
</tr>
<tr>
<td>1-width</td>
<td>0.245</td>
<td>28%</td>
<td>1.98</td>
</tr>
<tr>
<td>2-width</td>
<td>0.215</td>
<td>7%</td>
<td>1.08</td>
</tr>
<tr>
<td>m-width</td>
<td>0.204</td>
<td>0%</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Max-error Theorem

\[\Phi(\vec{W}, l_{\min}, l_{\max}) = \int_{l_{\min}}^{l_{\max}} \lambda(l) \cdot f(\vec{W}, l) dl \]

If \[\frac{f(\vec{W}, l) - f(\vec{W}^*, l)}{f(\vec{W}^*, l)} \leq \delta_{\max} \text{ for any } l \in (l_{\min}, l_{\max}) \]

\[\left| \frac{\Phi(\vec{W}, l_{\min}, l_{\max}) - \Phi(\vec{W}^*, l_{\min}, l_{\max})}{\Phi(\vec{W}^*, l_{\min}, l_{\max})} \right| \leq \delta_{\max} \text{ for any } \lambda(l) \]

- Max-error of any length is less than 7% in our expt =>
- For any weight function \(\lambda(l) \), the max-error of weighted integral (our objective function) is less than 7%!

Recommendation for Future Tech.

- 2-width design under objective function of AT^4
- Wiring hierarchy for both performance and density!

<table>
<thead>
<tr>
<th>Technology (um)</th>
<th>0.25</th>
<th>0.18</th>
<th>0.13</th>
<th>0.10</th>
<th>0.07</th>
</tr>
</thead>
<tbody>
<tr>
<td>M12 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M34 1</td>
<td>0.25</td>
<td>0.18</td>
<td>0.13</td>
<td>0.10</td>
<td>0.08</td>
</tr>
<tr>
<td>M56 1</td>
<td>0.25</td>
<td>0.18</td>
<td>0.13</td>
<td>0.10</td>
<td>0.08</td>
</tr>
<tr>
<td>M78 1</td>
<td>0.25</td>
<td>0.18</td>
<td>0.13</td>
<td>0.10</td>
<td>0.08</td>
</tr>
<tr>
<td>M12 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M34 1</td>
<td>0.25</td>
<td>0.18</td>
<td>0.13</td>
<td>0.10</td>
<td>0.08</td>
</tr>
<tr>
<td>M56 1</td>
<td>0.25</td>
<td>0.18</td>
<td>0.13</td>
<td>0.10</td>
<td>0.08</td>
</tr>
<tr>
<td>M78 1</td>
<td>0.25</td>
<td>0.18</td>
<td>0.13</td>
<td>0.10</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Conclusion

- Interconnect architecture planning
 - In-depth study of optimal wire-width planning
 - An analytical formulation considering both delay and area optimization
 - A surprising result showing that 2-width planning achieves near-optimal solution
- Closed-form interconnect area estimation model for optimal wire sizing optimization
- Application:
 - Simplify routing architecture with consideration of interconnect optimization
 - Simplify many other related problems...