
 

BodyScope: A Wearable Acoustic Sensor  
for Activity Recognition  

Koji Yatani1,2 and Khai N. Truong2 

1Microsoft Research Asia 
Beijing, China 

koji@microsoft.com 

2University of Toronto 
Toronto, ON Canada 
khai@cs.toronto.edu 

 
ABSTRACT 
Accurate activity recognition enables the development of a 
variety of ubiquitous computing applications, such as 
context-aware systems, lifelogging, and personal health 
systems. Wearable sensing technologies can be used to 
gather data for activity recognition without requiring 
sensors to be installed in the infrastructure. However, the 
user may need to wear multiple sensors for accurate 
recognition of a larger number of different activities. We 
developed a wearable acoustic sensor, called BodyScope, to 
record the sounds produced in the user’s throat area and 
classify them into user activities, such as eating, drinking, 
speaking, laughing, and coughing. The F-measure of the 
Support Vector Machine classification of 12 activities using 
only our BodyScope sensor was 79.5%. We also conducted 
a small-scale in-the-wild study, and found that BodyScope 
was able to identify four activities (eating, drinking, 
speaking, and laughing) at 71.5% accuracy. 

Author Keywords 
Activity recognition, wearable sensor, acoustic sensor, 
machine learning. 

ACM Classification Keywords 
H.5.2. [User interface]: Input devices and strategies; H.5.5. 
[Sound and music computing]: Signal analysis, synthesis, 
and processing.  

General Terms 
Human Factors 

INTRODUCTION 
The ability of designers to develop a variety of truly 
ubiquitous computing applications (e.g., context-aware, 
lifelogging, and personal health systems) may depend on 
the existence of tools and techniques for continuously 
sensing user activities of interest. Wearable sensing 
technologies can be used to gather sensor data for activity 
recognition without relying on sensors to be installed in the 
infrastructure. Thus, researchers have explored how to 
perform activity recognition in a practical way using a 

variety of wearable sensors, such as location beacons, 
accelerometers, cameras, and physiological sensors. Despite 
the existence of these many different sensing technologies, 
there is still a wealth of activities that are not easily 
detected with a single sensor. Often, in order to accurately 
infer a large number of user activities, many sensors must 
be used in combination. But, users might be reluctant to 
carry or wear multiple sensors in real practice. Mobile 
phones could be a good platform for daily activity 
recognition [19, 20, 21]; however, they may not be always 
with the user [25], and therefore may miss some activities. 

In this project, we focus on the sounds produced from 
different user activities that involve the user’s mouth and 
throat. For instance, when we speak to someone, we 
generate vocal sounds. When we eat or drink, we produce 
chewing, sipping, and swallowing sounds [3]. We are 
interested in exploiting the sounds naturally produced from 
the user’s mouth and throat area to recognize a wide variety 
of user activities, yet with only a single sensor. 

We developed a wearable acoustic sensor for activity 
recognition, called BodyScope (Figure 1). We modified the 
Bluetooth headset to embed a microphone into one of its 
earpiece and then covered it with the chestpiece of a 
stethoscope. Because the uni-directional microphone points 
towards the user, this eliminates external noises. The 
chestpiece then amplifies the sounds produced inside the 
throat, enhancing features that differentiate the recorded 
audio for one user activity from another.  

To evaluate its effectiveness, we conducted two user studies. 
Our laboratory study collecting 12 kinds of activities (e.g., 
eating, drinking, speaking, laughing and coughing) with 
BodyScope reveals that the system was able to differentiate 
between the activities with Support Vector Machine 
classification at 79.5% accuracy (F-measure). Our small-
scale in-the-wild study found that BodyScope was able to 
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Figure 1. The BodyScope prototype. It consists of a Bluetooth 
headset, a microphone (embedded in the headset), and the 
chestpiece of a stethoscope. 
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identify four activities (eating, drinking, speaking, and 
laughing) at 71.5% accuracy. Our results indicate the 
potential use of an acoustic wearable sensor recoding the 
sound produced around the throat area to recognize a wide 
variety of activities, and its integration into existing 
ubiquitous computing applications. 

RELATED WORK 
Activity Recognition with Wearable Sensors 
Location sensors, such as a Global Positioning System 
(GPS) module are used commonly for activity recognition. 
Liao et al. examined a method for recognizing activities 
related to locations, such as working, and sleeping, based 
on GPS data [18]. Their method identifies and labels 
significant locations and activities from the GPS data using 
a conditionally-trained relational Markov network and tree 
representation. Their experiment showed that their method 
was more accurate than a simple threshold-based method.  

An inertial sensor is another sensing technology used 
frequently in performing activity detection. Accelerometers, 
in particular, can be used for detecting the user’s physical 
movements. Farringdon et al. [11] developed a wearable 
device with a built-in accelerometer that recognized the 
user’s posture and movement (e.g., sitting, standing, and 
walking) using a simple threshold-based method. Foerster 
et al. demonstrated that specific placements of two-axis 
accelerometers on four different areas of the body (on the 
chest, wrist, thigh, and lower leg) enabled the recognition of 
nine physical activities, including walking, sitting, talking, 
and cycling [12]. Using the 1-nearest neighbor algorithm, 
they were able to achieve 95.8% recognition accuracy in a 
laboratory setting. Bao and Intille also tested a similar 
method with five 2-axis accelerometers and classified 20 
activities with a C4.5 decision tree at 70 – 90% accuracy [4]. 

Because cameras have become low-cost and small enough 
that the user can always wear them (e.g., SenseCam [15]), 
computer vision can also be used to determine user activity. 
For example, Sundaram and Cuevas developed an activity 
recognition method that uses low-resolution images 
recorded by a wearable camera [30]. Their system 
recognized nine hand-related manipulations (e.g., open the 
door, wipe, and eat/drink) at approximately 60% accuracy. 

Philipose et al. employed radio frequency identification 
(RFID) tags to determine which objects the user interacts 
with, and used this information to infer the activity [27]. 
They developed a glove with an embedded RFID reader, 
and assumed that all objects of interest in a house are 
instrumented with RFID tags. Their system can detect when 
and which objects the user interacts with. By using dynamic 
Bayesian networks on the sequence of contact events, they 
were able to recognize 14 activities (e.g., washing the hands, 
and preparing food or a drink) at 84% accuracy. Although 
this work demonstrated that the objects with which the user 
is interacting offers information useful for recognizing user 
activities, the installation of RFID tags to all objects around 
the user is not always feasible (e.g., outside the home and in 
environments not under the control of the user). 

Muscle movements can be used to infer different activities. 
Cheng et al. [8] developed a capacitive sensor that can be 
worn around the user’s neck. This sensor can classify 
dietary activities and breathing as well as head movements. 
Our exploration can complement the prior work through 
investigating how useful sounds recorded from the user’s 
throat area can be for gesture recognition. 

Acoustic Sensors for Activity Recognition 
In addition to the existing wearable sensors described above, 
acoustic sensors can also be used to detect user activities by 
recording and processing sound waves. Although various 
types of acoustic sensors applications have been built, we 
focus on technologies and systems using microphones to 
collect human-audible sound (20 – 20000 Hz). 

Most related to activity recognition is computational 
auditory scene recognition (CASR) [26], which differs from 
computational auditory scene analysis (CASA) [6]. CASR 
aims to infer the context from the observed sound while 
CASA aims to extract the sound of interest. Clarkson et al. 
conducted a preliminary study on detecting scene changes 
based on the sound recorded by the microphone attached to 
the user’s shoulder [10]. Their system could detect most 
scene changes, but generated many false positives. Peltonen 
et al. collected sound data from 17 scenes (e.g., streets, 
parks, restaurants, and offices) for CASR [26], and 
achieved 63.4% classification accuracy with Gaussian 
Mixture Model. 

CASR primarily examines the ambient sounds generated by 
different environments to infer contexts. But sounds 
produced by the user can be useful in inferring her activities. 
Chen et al. examined how accurately activities in a 
bathroom (e.g., taking a shower, hand washing, and 
brushing teeth) could be recognized through the sound 
recorded by a microphone installed in the room [7]. They 
found that the accuracy for recognizing six activities was 
84%. Lu et al. developed an activity recognition system 
using microphones embedded in mobile phones [19]. Two 
distinguishing features of their system are the use of multi-
level classifiers for coarse and fine classification, and the 
integration of an unsupervised learning method to include 
newly found and user-specific sounds. The accuracy of the 
coarse classification for three kinds of sounds (ambient 
sound, music, and speech) was 92.3 %, and the average F-
measure of the four events tested with their unsupervised 
classifier was 72.4 %. This system has also been extended 
to sensing systems using mobile phones by combining with 
other sensor data (e.g., accelerometers and GPS) [20, 21].  

Acoustic sensors can also be used to detect dietary activities. 
Amit et al. investigated the chewing sounds of different 
food with an inner-ear microphone [1]. Their study found 
that the system could distinguish chewing sounds with four 
kinds of food (chips, apples, pasta, and lettuce) at ~85% 
accuracy. Amit and Troster used EMG sensors and a 
microphone to further classify the human swallowing 
activities [2]. They found that their sensors could detect 

342



 

swallowing events, and differentiate two levels of volumes 
and viscosities. They also integrated multiple sensors to 
recognize dietary activities in a more holistic manner [3]. 
We extend their work to explore how accurately a wider 
variety of activities can be recognized with a single acoustic 
sensor attached to the user’s neck. 

BODYSCOPE: A WEARABLE SOUND SENSOR 
BodyScope is a wearable sensing system that records and 
classifies sounds produced in the user’s mouth and throat 
by different activities. Our sensor prototype includes a 
modified Rocketfish Bluetooth headset with a uni-
directional condenser microphone embedded into one of its 
earpieces so that it is pointed inwards the user’s body (see 
Figure 1). We covered the microphone with a windscreen, 
and attached the chestpiece of a stethoscope over the 
windscreen. This has previously been demonstrated to be 
effective for recording sounds around the neck [3, 23]. 

The chestpiece is designed to be positioned on the side of 
the neck to amplify the sounds produced inside the throat 
and minimize audio from external sources. Through pilot 
studies, we observed that placement of the chestpiece at or 
near the larynx interfered with some activities, such as 
speaking and drinking. Thus, we designed the BodyScope 
device to be worn on the side of the neck, near the carotid 
artery. The device sends the sound to a computer or mobile 
phone via Bluetooth.  

USER ACTIVITIES DETECTED THROUGH SOUND 
Sitting and Deep Breath 
A weak yet noticeable signal appears periodically even 
when the user is simply seated still (Figure 2). This sound 
likely results from blood pumping through the carotid artery 
because each cycle consists of two parts, which correspond 
to the sounds caused by the opening and closing of 
atrioventricular valves [14]. Although these sounds could 
be useful information for monitoring health status, the 
signal is weak and the isolation of the vascular sound 
seemingly becomes difficult when the sensor is recording 

sounds caused by other activities. We do not analyze the 
heart sound further in this work. 

Often, changes from a typical breath to a deep breath may 
indicate that the user is engaging in a physical activity. 
When the user takes a deep breath, a large volume of air 
goes through the throat. It produces a stronger signal than a 
normal breath, which distinguishes it from normal breathing. 
Figure 3 shows that there are two large changes in the 
signal. The first and second changes in the signal are 
produced by inhaling and exhaling air, respectively. 

Eating 
Detection of food intake may enable close monitoring of 
the user’s dietary behavior. Figure 4 shows the 
spectrograms of when the user is eating a crunchy cookie 
(left) and a piece of soft bread (right). Regardless of the 
materials, the chewing sound appears approximately every 
700 milliseconds. This is in line with the findings in the 
field of dental research [22], showing that the average 
frequency of chewing is about 1.25 Hz. The swallowing 
sounds also appear as relatively larger sounds at the end of 
the sequence. 

When eating soft bread, the chewing sound is slightly 
weaker than when eating a cookie. This indicates that we 
might be able to distinguish whether the user is eating 
crunchy or soft food, in addition to recognizing her eating 
activity. Future work on this problem would involve using 
BodyScope to further determine the specific type of food 
being consumed. 

Drinking 
Related to eating, fluid intake is another important dietary 
and health-related activity. BodyScope detects the gulping 
sound of drinking, and can differentiate this sound from that 
of eating and swallowing. Figure 5 shows the spectrograms 
of the sound generated from drinking a regular beverage 
(cold water) and a warm beverage (hot tea). When the user 
takes a gulp, a fairly loud sound is caused. As seen in 
Figure 5, the gulping sound reaches up to 1500 Hz. We also 
observed that the gulping sound is generally stronger than 
the swallowing sound. 

Figure 2. A sound spectrogram when the user is seated. The 
strongest signal from a heart sound is below 70 Hz. In this 
and later spectrograms, the interval of the two vertical 
dotted lines is 5 seconds, the vertical axis represents the 
frequency ranging from 0 to 3kHz, and the brighter color 
represents higher intensity. 

Figure 3. A sound spectrogram when the user is taking a 
deep breath. The highest signal from a deep breath appears 
from 100 to 500 Hz. 
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BodyScope can also sense the sound of sipping, for 
example, preceding a gulp of hot tea (see Figure 5). The 
presence of sipping may be a good indicator of whether the 
user is drinking cold or hot beverages. However, the user 
also could sip when drinking cold beverages or when 
drinking out of a different container. Thus, we focused only 
on examining whether drinking with and without a sip are 
distinguishable rather than detecting whether the user is 
drinking cold or warm beverages. 

Speaking and Whispering 
Identification of speaking and whispering is the first step 
towards determining the volume, tone, and connotations of 
speech. Figure 6 shows spectrograms of the sound when the 
user is speaking normally and whispering. With speaking, 
we can see clear harmonics in the sound, which 
differentiate the human voice from the sounds caused by 
eating and drinking. On the other hand, whispering sounds 
are generated mainly by a turbulent noise in and above the 
larynx, but not vibration of the vocal folds [32]. Thus, the 
sound intensity decreases and the harmonics disappear in 
whispering. Nakajima et al. attempted to recognize words 
when the user speaks and whispers using wearable 
microphones [23]. Our work differs in that we are primarily 
interested in being able to automatically separate whispers 
from normal speech for systems like Nakajima et al.’s work, 

and differentiate these two vocal activities from other 
activities, such as eating and drinking. 

Whistling 
Whistling can be an indicator of mood, attempts to get 
someone’s attention, or simply a subconscious habit. Figure 
7 shows a spectrogram when the user is whistling outwards. 
We clearly can see the melody of the whistle between 500 
Hz and 1500 Hz. In addition to the melody, BodyScope can 
sense the flow of air between 100 Hz and 500 Hz. We 
observed a similar spectrogram for inward whistling. 

Laughing, Sighing, and Coughing 
Laughing, sighing and coughing are important activities 
that can provide clues for inferring mental and physical 
wellbeing. Audio-based detection of laughing [28, 31], 
coughing [17], and sighing [7] has been explored separately 
in the past. Here we focus primarily on how accurately 
BodyScope can distinguish these activities.  

Because laughing aloud is a form of vocalization, the 
intensity is noticeably high (see Figure 8, left). Although 
BodyScope can collect the sound of a chuckle, its signal is 
significantly weaker than the signal for laughing aloud. 
Furthermore, the power distribution of the chuckling sound 
often becomes very similar to the sound signal of a deep 
breath.  

        
Figure 5. Sound spectrograms when the user is drinking (cold water in the left figure and hot tea in the right). Both spectrograms 
shows the moment of the gulp, but the sound of the sip also appears when the user is drinking hot tea. The gulping sound reaches 
up to 1500 Hz. 

        
Figure 4. Sound spectrograms when the user is eating food (a cookie in the left figure and a piece of bread in the right). The 
chewing sound appears approximately every 700 milliseconds. When the user is eating a soft material (bread in this case), the 
power of the sound becomes slightly weaker. The swallowing sound also appears at the end of the sequence. 

344



 

Sighing and coughing are particularly challenging to 
recognize accurately. The sound pattern for sighing (Figure 
8: center) is somewhat similar to the sound of drinking hot 
beverages (Figure 5: right). But the first part of sighing 
(inhaling the air) is shorter than sipping when drinking hot 
beverages. A cough causes a large sound (see Figure 8: 
right) with a spectrum similar to that of drinking cold 
beverages (Figure 5: left), laughing, and sighing.  

CLASSIFICATION TECHNIQUE 
Sample Length, Sampling Rate and Frame Size 
The length of sounds we are interested in varies from less 
than 1 second (e.g., gulping or coughing) to over 10 
seconds (e.g., eating or speaking). We set the length of a 
sample sound to 5 seconds to capture the most important 
characteristics of the sound. 

The sampling rate must be sufficiently high so that we do 
not lose important characteristics of the sound. Our 
observations of different sounds revealed that the power of 
a signal is distributed mostly below 5000 Hz. Thus, we set 
the sampling rate to 22050 Hz, meaning our system covers 
up to 11025 Hz (refer to as !0). 

We defined the frame size for the Fast Fourier Transform 
(FFT) operation to be 4096 samples, 186 milliseconds long, 
without any overlap. We did not include the last 164 

milliseconds of the sample in calculations. Each frame was 
Hamming-windowed by ! = 0.54 – 0.46 * cos (2"n/4096). 

Features 
Based on the previous work we reviewed, we decided to 
use the following three domain features for our machine-
learning classification: time, frequency and cepstral. Due to 
the space limit, we omit their mathematical definitions, but 
note that they are available in [13, 19, 29]. 

Time-domain Feature 
We used the zero-crossing rate (ZCR) as a time-domain 
feature. ZCR is the rate of sign-changes along a signal. 
ZCR has been used for audio-based systems, such as speech 
recognition and audio classification. For example, it is used 
as a feature for differentiating voiced and unvoiced sounds 
(i.e., voiced and unvoiced sounds tend to have low and high 
ZCRs, respectively) [19]. 

Frequency-domain Features 
We used the following five frequency-domain features. To 
calculate these features and cepstral features (below), the 
sound data was pre-processed with FFT. We calculate the 
average and standard deviation across all the frames for 
each feature and use them in our classification. 

! Total Spectrum Power: We used the logarithm of the 
summed spectrum power [13]. 

! Subband Powers: This represents the summed power 
signal in logarithmetically-divided bands [13]. We set 
five sub-bands for our classification: [0, !0/16], [!0/16, 
!0/8], [!0/8, !0/4], [!0/4, !0/2], and [!0/2, !0]. 

! Brightness: The brightness corresponds to the frequency 
centroid and represents the balancing point of the 
spectrum [19]. 

! Spectral Rolloff: The spectral rolloff represents the 
skewness of the spectral distribution. We use a 93% 
threshold similarly to [19]. 

! Spectral Flux: The spectral flux is defined as the L2-
norm of the spectral amplitude difference of two 
adjacent frames [19]. This represents how drastically the 
sound is changing between frames. 

Figure 7. A spectrogram of the whistling sound. A similar 
spectrogram is observed when the user is whistling 
inwards. While the melody appears between 500 and 1500 
Hz, the flow of the air appears between 100 and 500 Hz. 

            
Figure 6. Sound spectrograms when the user is speaking normally and whispering the same short phrases (left: speaking, right: 
whispering). Harmonics which characterize the human voice are shown in speaking while the intensity decreases and the 
harmonics disappear in whispering. 
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Cepstral Features 
Mel-frequency cepstral coefficients (MFCCs) are 
commonly used for audio and speech recognition [29]. 
They were extracted by applying the discrete cosine 
transform to the log-scaled outputs of the FFT coefficients 
filtered by a triangular band-pass filter bank. We used 20 
filters and calculated the first 12 coefficients for our 
classification.  

Algorithms 
We used Support Vector Machine (SVM) for our 
classification. SVM is a well-known machine learning 
technique that is used in a variety of applications, including 
audio classification [13]. We used Libsvm [9] to implement 
our classifier. One problem with SVM is that it can only do 
a binary classification. Thus, when there are more than two 
classes to classify, the classification must be divided into 
multiple binary classifications. We used the “one-against-
one” strategy for our classification, which is already 
implemented in Libsvm. This strategy constructs k(k-1)/2 
classifiers for k classes and conducts pairwise comparisons. 
Each pairwise comparison votes for the predicted class, and 
the class with the most votes is predicted after all pairwise 
comparisons are completed. The mathematical details of a 
SVM and different strategies for a multi-class classification 
are available at [5, 16]. 

We used the Radial Basic Function (RBF) as a kernel 
function for SVM. The penalty parameter and scale 
parameter for RBF were determined through a grid search 
using 5-fold cross validations. They were fixed during the 
classification test (explained later). 

We also used Naïve Bayes and 5-nearest neighbor (5-NN) 
techniques for the comparison. These techniques are less 
computationally expensive than SVM [5]. Thus, these 
methods may be used when the system needs to recognize 
user activities in real time. We implemented these 
classifiers using Statistical Pattern Recognition Toolbox for 
Matlab [33]. We used a Gaussian Mixture Model for our 
Naïve Bayes classifier to accommodate the continuous 
input. We used Euclidean distance without a weight for the 
nearest neighbor algorithm. 

Hidden Markov Model (HMM) is another method 
commonly used for audio-based pattern classification, like 

speech recognition, because it can accommodate sequential 
data [5]. By aggregating each feature across time, we can 
use SVM, Naïve Bayes, and 5-NN to handle the sequential 
data. 

LABORATORY EVALUATION 
We conducted a laboratory study to examine the accuracy 
of activity recognition with BodyScope. Ten participants (9 
male and 1 female, all in their 20s or 30s) used the same 
prototype (Figure 1). All participants were in good health at 
the time of the experiment, and had no history of major 
diseases in their circulatory, respiratory, and gastrointestinal 
system. They were also all able to whistle. 

Data Gathering Procedure 
During the experiment, the participants were asked to wear 
the BodyScope sensor around the neck as shown in Figure 1. 
The experimenter asked the participants to perform one of 
the twelve activities discussed above and recorded the 
sound from the BodyScope sensor. We collected ten 
samples per activity per participant. No data processing on 
the recorded sounds was done during the experiment. 

For each of the following twelve activities, participants 
were instructed as follows:  

! Seated: The participants were asked to sit comfortably 
and breathe normally. Additionally, they were requested 
not to intentionally produce any other kind of sound. 

! Deep breath: The participants were asked to take a deep 
breath. The samples gathered contain sounds caused by 
both an inhale and exhale. 

! Eating cookies: The participants were asked to eat 
crunchy cookies. Because we did not intend to 
distinguish between chewing and swallowing in this 
project, some of the gathered samples included the 
participant’s bite into the cookie and swallowing. 

! Eating bread: The participants were asked to eat a piece 
of soft bread. Again, some samples included the sound of 
biting into the bread and swallowing, similar to Eating 
cookies. The two eating classes were intended to 
represent the cases in which a user is eating crunchy and 
soft food. 

 
Figure 8. Spectrograms of other non-verbal sounds (left: laughing; center: sighing; right: coughing). 
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! Drinking: The participants were asked to take a gulp of 
room-temperature water. The gathered sample each 
contained one gulping sound.  

! Drinking with a sip: The participants were asked to take 
a sip and gulp of hot tea. We controlled the temperature 
of the tea so that the participants could drink it in this 
manner comfortably. All the samples contained both the 
sipping and gulping sounds. For both Drinking and 
Drinking with a sip, the participants used the same mugs. 

! Speaking: The participants were asked to read aloud 
sentences from reading materials we prepared. We 
gathered samples while they were reading. These 
samples may contain short pauses and longer stops. 

! Whispering: The participants were asked to whisper 
sentences from the same reading materials used in 
Speaking, and we sampled the sound. Similar to 
Speaking, some samples contained short pauses and 
longer stops. 

! Whistling: The participants were asked to continuously 
whistle. Because the whistling skills of the participants 
varied, the participants were allowed to whistle melodies 
of their choice. As a result, we gathered whistling sound 
samples ranging from a single note to pop music tunes. 

! Laughing: We prepared a 15-minute long comedy clip 
and asked the participants to watch it as they normally 
would. We offered the participants a headphone to listen 
to the audio from the clip. We recorded all the sounds 
while the participants watched the clip. All participants 
found the clip funny and laughed aloud to it. After the 
experiment, a member of the research team manually 
extracted parts of the recorded sound in which the 
participants were laughing aloud. 

! Sighing: The participants were asked to sigh. Each 
sampled sound contained one sigh. 

! Coughing: The participants were asked to cough. Each 
sampled sound contained one cough. 

The study took about an hour. None of the collected sound 
data overlapped with each other, and all were stored as 
WAV files. In total, we collected 1200 samples. 

Classification Procedure 
After gathering the sound data, we conducted a 
classification test using the three classifiers. The system 
calculated the features mentioned in the previous section for 
each sound sample, and normalized the values of all the 
features across all samples.  

For training and testing, we decided to use two following 
protocols: 

! Leave-one-participant-out cross validation: We used the 
data gathered from nine of the participants for training, 
and used the data from the other participant for testing. 
This was repeated such that each participant’s data were 
used once as the validation data set.  

! Leave-one-sample-per-participant-out cross validation: 
We reserved one sample for one class from each 
participant as a test case, and used the rest of the samples 
for training. Similarly, this was repeated such that each 
sample from each participant’s data set was used once as 
the validation data set. 

The primary difference between these two strategies is 
whether the training data contains data gathered from the 
participant to be tested. In this sense, Leave-one-
participant-out trains the classifier in a user-independent 
manner while the other considers user-dependency. We 
believe that the comparison of these two protocols will 
illustrate what level of user-dependency in the data we have 
collected. We calculated the classification accuracy for each 
round of the cross validations. 

We also considered training the classifier for each 
participant. However, the size of the samples which could 
be used for training was limited (nine samples per class). 
Thus, we did not execute this training protocol in this study. 

RESULTS OF THE LABORATORY EVALUATION 
We calculated the overall precision, recall, and F-measure 
(the harmonic mean of the precision and recall). In all 
techniques, the F-measure with the Leave-one-sample-per-
participant-out protocol was about 25 – 30% higher than 
one with the Leave-one-participant-out protocol (see Table 
1). SVM outperformed the other two techniques in our 
classification. Because we found that the error distributions 
were similar across the three techniques, we focus on the 
results from the SVM classification. 

The F-measure with the Leave-one-participant-out protocol 
was 49.6%. With the Leave-one-sample-per-participant-out 
protocol, the F-measure reached 79.5%. This result indicates 
that the classifier should be trained for each user if the 
samples for training are abundant. 

Table 2 and 3 show the confusion matrices under the two 
protocols. There are a few noticeable differences between 
them beyond the overall accuracy. For instance, with 
Leave-one-sample-per-participant-out protocol, the 
classification accuracies for Deep breath and Sighing 
improved greatly. Whispering is another class whose 
accuracy was improved largely. These activities may be 
more user-dependent than other activities. We will discuss 
this in the next section. 

! !"#$"%&'"%(#)*+,+(#'*%&-*. !"#$"%&'"%/#0(1"%(")%
(#)*+,+(#'*%&-*.

!"# "$# %# !"# "$# %#

&'()*# "#$%&! "'$#&! "($)&! #*$)&! #+$*&! #*$*&!
+,--# ")$'&! ")$*&! ")$)&! #'$)&! #'$+&! #'$*&!
./0# '%$*&! ",$+&! ",$(&! #,$(&! #,$"&! #,$'&!

Table 1. The classification accuracies (the average values 
across the classes) with three machine learning techniques (PR: 
Precision; RE: Recall; F: F-measure). 
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LABORATORY STUDY DISSCUSSION 
The classification accuracies with the two protocols were 
significantly better than that of the random classification. 
This indicates that a single wearable acoustic sensor can 
reasonably recognize various activities by using the sounds 
recorded from the user’s throat area. 

The classification results with the Leave-one-sample-per-
participant-out protocol were approximately 30% better 
than ones with the Leave-one-participant-out protocol. 
During the study, the sounds produced by the activities we 
are interested in often varied by participant. For example, 
whispering by one of our participants was similar to 
speaking with a low volume in another, and we observed 
harmonics in the spectrograms for the whispering sound 
samples. This implies that the classifier for BodyScope 
performs better when it is trained for each user. BodyScope 
would be used by an individual in many applications, and 
personalizing the classifier is plausible. 

Distinguishing the two eating and two drinking classes from 
each other was not as accurate as we expected. We 
observed that some participants produced only weak sounds 
when sipping and gulping because they took only a small 
amount of tea. We also noticed that some participants 
produced fairly strong sounds even when eating soft bread. 
Thus, accuracies for these classes were not high under the 
Leave-one-participant-out protocol. However, we believe 
that personalizing the classifier could mitigate this problem 
as the accuracies were improved under the Leave-one-
sample-per-participant-out protocol. 

Decreasing the activity granularity would help to increase 
the classification accuracy. For instance, we can combine 
Eating cookies and Eating bread, and Drinking and 
Drinking with a sip as Eating and Drinking, respectively. 
This would result in 87.5% and 78.5% F-measure for 
Eating and Drinking under the Leave-one-sample-per-
participant-out protocol. Future applications using the 
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Table 2. The confusion matrix of the classification with the Leave-one-participant-out protocol. 
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Table 3. The confusion matrix of the classification with the Leave-one-sample-per-participant-out protocol. The accuracy was 
improved by approximately 30 % over the Leave-one-participant-out protocol. 
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BodyScope need to consider what level of granularity is 
necessary so that BodyScope can perform at its best. 

The distribution of the classification confusions is also 
interesting to discuss. The confusions are minimized with 
the Leave-one-sample-per-participant-out protocol, but the 
patterns of confusions between the two protocols are similar. 
As we expected, the two eating classes and two drinking 
classes were confused with each other in both protocols. 
Laughing and Sighing were confused for most of the other 
activities, whereas Seated was mainly confused for 
Drinking. The three non-verbal activities seem to be hard to 
distinguish very accurately, but our system could still 
distinguish them at 72.0% F-measure accuracy under the 
user-dependent training. 

SMALL-SCALE IN-THE-WILD STUDY 
We also conducted a small-scale in-the-wild study to 
examine how well BodyScope can detect human activities 
in a realistic setting. We recruited another 5 participants (3 
male and 2 female) for this study. We asked them to wear 
the BodyScope sensor for as much of the day and any 
portions of it in which they felt comfortable to do so. The 
sound from the sensor was recorded onto a mobile phone 
which the experimenters also gave the participants. In order 
to know the ground truth, we also asked the participants to 
wear another mobile phone around the neck. The camera of 
this phone faced away from the user’s body to record the 
user’s context as SenseCam does [15]. We focused on four 
activities (eating, drinking, speaking, and laughing) in this 
study because they were observed frequently and are 
representative of the classes we covered in the laboratory 
study (eating and drinking as a food-consumption activity, 
and speaking and laughing as a social activity). The 
participants were told to behave while wearing the sensor as 
they would normally do. We collected the data of 64 
minutes long on average. 

After the data collection, we analyzed and labeled the 
recorded sound. We split the sound data into 5-second 
WAV files, and marked the files which we considered that 
were associated with one of the activities based on the 
audio files and pictures recorded in the mobile phone. We 
then extracted the features, and trained the classifiers for 
each participant as we did in the laboratory study.  

Table 4 and 5 show the results of the classification using 
SVM and Naïve Bayes. The overall F-measure was 71.5% 
and 56.5% with the SVM and Naïve Bayes classifier, 
respectively. Again, SVM outperformed Naïve Bayes, but 
the results show several differences in classification errors 
between the two techniques. Particularly, Naïve Bayes 
showed a better recall rate for laughing activities. But 
generally, the accuracy for the drinking and laughing 
activities was relatively low. As seen in Table 4 and 5, the 
number of the instances for these two activities was small; 
thus, more data may be necessary to examine the true 
classification accuracy for these activities. 

We also note that the eating activities were identified fairly 
accurately. This indicates that BodyScope can enhance 
existing systems related to food consumption activities. For 
example, Noronha et al. developed Platemate, which allows 
the user to analyze her food consumption by taking a 
picture of the food with a mobile phone and getting food 
annotations through a crowdsourcing system [24]. With 
BodyScope, a wearable camera (like SenseCam [15]) 
automatically can identify the moments when the user is 
eating, and perform analysis on her food consumption 
through Platemate. In summary, this small-scale in-the-wild 
study shows that BodyScope can classify some of the 
activities we explored in this work even in a realistic setting 
with high accuracy, and demonstrates its potential to 
enhance lifelogging systems. 

CONCLUSIONS AND FUTURE WORK 
We presented BodyScope, an acoustic sensor wearable 
around the neck designed to recognize a variety of user 
activities. BodyScope is able to detect different sounds 
generated from different user activities, such as speaking, 
eating, drinking, and laughing. Our laboratory study shows 
that BodyScope classified the user’s twelve activities at 
79.5% F-measure accuracy. We also conducted a small-
scale in-the-wild study, and found that BodyScope was able 
to identify four activities (eating, drinking, speaking, and 
laughing) at 71.5% F-measure accuracy. 

We believe the BodyScope is able to sense additional 
activities (e.g., smoking and sneezing) that were not 
examined in this paper. We will explore the use of 
unsupervised learning methods like Lu et al.’s work [19] to 
automatically find such activities. We also plan to revise the 
BodyScope hardware. We will investigate how the 
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Table 5. The confusion matrix of the Naïve Bayes 
classification in our small-scale in-the-wile study. 
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Table 4. The confusion matrix of the SVM classification in 
our small-scale in-the-wile study. 
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BodyScope could be integrated into accessories worn 
around the user’s neck. 
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