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ABSTRACT
Sound provides valuable information about a mobile user’s
activity and environment. With the increasing large market
penetration of smart phones, recording sound from mobile
phones’ microphones and processing the sound information
either on mobile devices or in the cloud opens a window to
a large variety of mobile applications that are context-aware
and behavior-aware. On the other hand, sound sensing has
the potential risk of compromising users’ privacy. Security
attacks by malicious software running on smart phones can
obtain in-band and out-of-band sound information to infer
the content of users’ conversation. In this paper, we pro-
pose two simple yet highly effective methods called sound
shredding and sound subsampling. Sound shredding mutates
the raw sound frames randomly just like paper shredding
and sound subsampling randomly drops sound frames with-
out storing them. The resulting mutated sound recording
makes it difficult to recover the text content of the original
sound recording, yet we show that some acoustic features are
preserved which retains the accuracy of context recognition.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.5.5 [Information interfaces and presentation (e.g.,
HCI)]: Sound and Music Computing

Keywords
Sound sensing; sound shredding; sound subsampling; user
privacy; context recognition

1. INTRODUCTION
Mobile sound sensing, which uses acoustic attributes col-

lected by mobile devices has been found useful in diverse
scenarios of context awareness. Because audio data may
contain unique fingerprints, allowing sound sensing software
to extract and recognize meaningful events, many applica-
tions and systems have already applied sound sensing to im-
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prove their approaches. For instance, SurroundSense [2] uses
acoustic and other attributes to identify user motions and
SensOrchestra [4] leverage sounds and images to recognize
the location from where those data were collected. These re-
search results clearly demonstrate that sound sensing could
be of significant value in context recognition.

In a typical audio-based application, sounds are collected
by mobile devices (either phones or tablets), and stored in
storage like SD cards. These mobile devices are usually
equipped with high sample rate microphones, which are use-
ful for audio-based applications such as phone conversation,
speech recognition, and sound sensing etc. However, the
benefit entails the risk of privacy when it comes to collect-
ing audio data. The raw audio data from the microphone are
insecure and could easily be replayed. The replayed sound,
even at a low sampling rate, may reveal the identity and
other sensitive information about the users. Thus the raw
sounds may be abused to disrupt the privacy guarantees for
users. The problem becomes more obvious in case of con-
tinuous sampling applications such as MobiSens [13].

Figure 1: Shredded and sub-sampled audio could
not be easily reconstructed, making it difficult for
an attacker to sniff any sensitive information.

The main contributions of this paper are:

• Two methods to preserve audio privacy: We ad-
dress the concern of privacy guarantees that may be
undermined by malicious software intending to sniff
information from raw sounds, by preprocessing raw
sounds with sound shredding and subsampling.

• Experiments and evaluation of proposed meth-
ods: The goal of the two proposed methods is to
preserve the user’s privacy without significantly de-
creasing context recognition accuracy. Therefore, we



present the results of context recognition accuracy as
well as gender and speaker recognition accuracy using
shredded and subsampled sound in section 5. In ad-
dition, we also propose a sound reconstruction model
using frequency content of shredded audio and quan-
tify our findings in this section.

The rest of the paper is organized as follows. We discuss
related work in section 2. Then We define a threat model in
section 3 that describes the possible attacks against users’
privacy. Our sound shredding and sub-sampling methods
are described in section 4. In section 5, the experiments and
results are elaborated and evaluated. We conclude our work
in section 6.

2. RELATED WORK
Sound sensing has been shown to be useful in many con-

text aware applications. Eronen, A.J. [6] demonstrated the
usefulness of audio in recognizing environment around a de-
vice. Similarly Chu [5] used environmental sounds for the
understanding context. SensOrchestra [4] achieved 87.7%
recognition accuracy in determining location using audio
and image. In addition to context recognition, sound can
also be used for other informations. For instance, StressSense
[11] used human voice recorded by smartphones to recog-
nize stress. These experiments demonstrate the usefulness
of acoustic features.

Although there is a plenty of research on using audio sens-
ing, not much has been done on securing the collected audio
data. Klasnja [9] through his work on privacy, shows strong
aversion to audio sensing. He mentions ”Reactions to the
raw audio were nearly unanimously negative. Only two of
the 24 participants (8.3 %) would consider a microphone
that continuously recorded raw audio”. Unfortunately, not
many sound sensing applications take the privacy implica-
tions into account, therefore introducing potential attacks
against user privacy.

One way to improve privacy is by extracting audio fea-
tures and discarding raw audio, though now it is generally
accepted that MFCC are poor features for maintaining pri-
vacy because they reveal speech [10]. The PCA of audio
spectrogram is proposed to detect non-speech sounds and
prevent speech reconstruction intelligently [3, 10] using fil-
ters to omit the audio. In addition, there are encryption
techniques available to secure audio data, e.g. audio features
encrypted by LSH key is devised to hide speech while provid-
ing cues for prosody and recognition of conversations [14].
All above methods though suitable on server, cannot be used
on mobile phones. The limitations on mobile phones de-
mand a technique, which could easily be implemented and
does not consume much power, even if the application runs
continuously.

3. THREAT MODEL
Sensitive information is often communicated verbally be-

cause audio is generally more ephemeral than an email or a
SMS text message. However, emails and text messages are
often encrypted by the applications that store them, which
is rarely the case with audio data collected by sound-sensing
applications. Because many sound-sensing applications col-
lect data continuously, the audio data could reveal sensitive
information.

In this paper, we are concerned with securing audio data
from attackers and malicious software. To provide a clear
outline of the threat model, we identify three roles involved:
a user, a mobile sensing application and an attacker. A user
allows a mobile sensing application to use microphone for
collecting contextual information. The application continu-
ously records audio, stores it on the phone and later uses it
for context recognition tasks. The application is supposed to
provide privacy guarantees to the user, but often makes no
attempt to encrypt the audio data. We assume that an at-
tacker can then get an access to the unencrypted audio files
containing sensitive information (e.g., by physically stealing
the device or by tricking a user to install seemingly-benign
app, which will search for unencrypted audio files on the
device).

To achieve the goal of privacy preserved sensing, we pro-
pose that the operating system preprocesses the audio using
sound shredding, sound subsampling or both, before for-
warding it to the context sensing application (as shown in
Figure 1). Note that we assume that the operating system
is trusted, but that the apps with access to audio data are
not. For the purposes of this preliminary work, we addition-
ally assume that an attacker has access to a limited corpus
of short audio clips and cannot gain additional sensitive in-
formation about one clip from another.

4. METHODOLOGY
In this section, we introduce the technique of context

recognition using audio data. Then we propose two ways to
improve users privacy while collecting audio data, namely
”Sound Sub-sampling” and ”Sound Shredding”.

The architecture of system involves mobile and server.
Audio snippets are obtained from mobile OS, which after
shredding and sub-sampling are stored on local memory.
The stored data is later sent to server for analysis.

4.1 Context Recognition using Audio data
We define context as background environment in which

an activity happens. For example, when a person is tak-
ing out money from an ATM, taking out money is an ac-
tivity whereas ATM room is the context. The process of
context identification involves data collection, features ex-
traction and context recognition using machine learning as
discussed below:

Audio data collection: Audio data could be collected
using any device with a microphone. For our experiment, a
total of 35 sounds samples were recorded with a sampling
rate of 8KHz sampled at 16 bit using a Nexus 4 phone.

Features extraction: First, the audio data is framed
using a sliding window with window size of 30 ms, and for
each of these audio frames, Mel-frequency cepstral coeffi-
cients (MFCC) of 12 vector length are calculated.

Context Recognition: Our experiment uses two ma-
chine learning algorithms namely K Nearest Neighbor (KNN)
and Support Vector Machine for context classification using
MFCC features.

4.2 Sound Subsampling
Identifying speech from an audio source requires a fairly

continuous data but that is not the case with context recog-
nition, which can often be extracted from a few segments
of sound e.g. if a person is driving his car as well as talk-
ing to his fellow rider, the extraction of speech requires a



continuous sample whereas the background noise of a mov-
ing car on the road can be extracted from even a few audio
segments. In fact, the context recognition like driving a car
does not require a continuous sample. At the same time if
continuous sample is not collected, it makes it difficult to
retrieve speech information. Hence, if context recognition
is the primary goal, users privacy could improve by storing
sub-samples of audio data.

Figure 2: Sound Sub-sampling at the rate of 50%

We define Sub-sampling as the process of collecting only
a part of the raw data e.g. a subsampling at 20% means
only 20% of audio data is stored, i.e. only two frames out of
ten audio frames are stored and rest are discarded. Figure
2 demonstrates the process of sub-sampling at 50% where
every second frames is dropped during audio data collection.

4.3 Sound Shredding
Subsampling of audio is good way to reduce speech infor-

mation in the audio data, but even sub-sampling at a lower
rate could still give away information. One possible way to
further improve user privacy is by randomizing the sound
data. We noticed that sound features like MFCC are ex-
tracted from audio frames of 20-40 ms duration. These fea-
tures do not change even if the sound frames are randomized
as long as the frames are not changed internally.

We define Sound Shredding as randomizing the audio frames
in a sound snippet. We randomize sound by selecting an au-
dio frame and moving it to a random location in the sound
snippet i.e. if a frame is located at i index in the collection
of audio frames that makes the sound snippet, we generate
a random number between 0 and i, and move the frame at
the generated random number. We do the same with all the
frames that make the sound snippet.

Figure 3 shows the process of sound shredding. Shredded
audio becomes difficult to reconstruct and replay as later
demonstrated in the experiments section 5.

Figure 3: Sound shredding

Figure 4 shows the data collected by shredding. As
the data is randomized during collection, the shredded data
looks very different from sub-sampled data.

Figure 4: Sound Shredding: Raw data and shredded
data

4.4 Sound Shredding and Sound Sub-sampling
In some cases of context recognition, sound shredding and

sound sub-sampling can be combined for improved privacy.

5. EXPERIMENTS AND RESULTS
In this section, we describe our experiments that are di-

vided in four parts. First we conducted experiments to
determine the effect of sound shredding and sound sub-
sampling on context accuracy. Then we conducted a user
study to find changes in user privacy by replay of privacy
preserved audio. Next we used a speech recognition engine
to determine gender and speaker identification accuracy. At
the end we designed and evaluated a speech reconstruction
model based on frequency content of shredded audio.

5.1 Context Recognition
Audio data for the experiments was collected using a Nexus

4 phone by reading its microphone at 8000 HZ using single
audio channel. In total we collected thirty-five sound sam-
ples in different contexts including: student faculty meeting,
friends talking during lunch, walking, brewing coffee in cafe-
teria, students talking in a meeting, classroom, guest talk,
laboratory etc. The experimenter used the context as the
label for the audio. For each of the contexts, three sound
snippets of approximately 2 minutes duration were recorded.
We divided the raw audio snippet in frames of 30 ms, which
were used to extract the MFCC(12) features. For testing
the algorithms accuracy, we divide the entire set of MFCC
features in to training and test data. We used 80% of the
data set as training data and the rest as test data. To clas-
sify the context, we used proven KNN and SVN algorithms.
A collection of vectors made of 12 coefficients of MFCC and
the audio label was used as input to the classification algo-
rithms. The training and testing data were used as input to
the above two algorithms for the context recognition accu-
racy. We used Java-ML [1] for running experiments, which
provides an easy interface to get the classification results.

The experiments were run with varying degree of sub-
sampling (10% to 100%).

Figure 5 shows the trend of changes in the accuracy of
SVN and KNN algorithms with changes in sub-sampling per-
centage. The results show a slow decrease in recognition ac-
curacy with increased sub-sampling (increased frames drop-
ping) till the sub-sampling percentage is around 70%. But
after 80% sub-sampling there is a steep decrease in context
recognition accuracy.

In addition, the experiments were also run with sub-sampled
shredded sound with varying degree of sub-sampling (10%
to 100%).

Figure 6 shows the trend of change in accuracy of SVN and
KNN algorithms with change in sub-sampling percentage
for shredded audio. The results show a slow decrease in
recognition accuracy with increased sub-sampling (increased



Figure 5: Context Recognition Accuracy vs. Sound
sub-sampling percentage

Figure 6: Context Recognition Accuracy vs. Sound
sub-sampling percentage for shredded sound

frames dropping) till the sub-sampling percentage of 80%.
But after around 80% sub-sampling, there is a steep decrease
in the context recognition accuracy.

The above experiments and results indicate that shredding
and sub-sampling of audio data can lead to improved data
privacy without losing much on recognition accuracy, if sub-
sampling and shredding has positive impact on users privacy.
The impact of sub-sampling and shredding on privacy is
discussed next.

5.2 Privacy-preservation User Study
The user study involved playing different sounds (shred-

ded and sub-sampled) in front of users. As they hear the
sound, they rated the sound on speech recognition, recogni-
tion of count of people in conversation and gender identifi-
cation. Parameters and scale used for user study:

1. Speech recognition (1- 5)

2. Count of people in conversation (1-5)

3. Gender identification (1- 5)

The scale used was 1-5, where 1 meant ”Not at all” and
5 meant ”Yes, I can”. Over all, 10 students took the survey
and the responses were averaged to use in the graph.

The data obtained was aggregated in a chart format shown
in Figure 7. As it can be observed the speech recognition,
one of the major concern is user privacy drastically improves
by sound shredding in which audio frames are randomized.
In addition, the possibility of counting people decreases with
shredding as well as sub-sampling. The gender identification
showed least improvement, but still improves by 10-25%.
Overall sound shredding with subsampling rate of 20% gives
the best result in terms of privacy preservation.

Figure 7: The user study results indicate that sound
shredding can effectively protect user privacy. The
speech recognition rates decrease significantly by us-
ing our approaches. The scale used was 1-5, where
1 meant ”Not at all” and 5 meant ”Yes, I can”

5.3 Computer-based Recognition
In the previous experiment, we studied how well can peo-

ple recognize the gender, the identity and the speech given
shredded and subsampled audio signal. In the following,
we evaluate computer-based recognition techniques using a
similar criteria. This simulates the situation of having an
attacker, who gets an unauthorized access to the audio files.

We use 330 speech snippets with an average duration of
10 seconds collected from 8 users (4 male, 4 female) [8]. For
gender and speaker identification we use the open source
LIUM toolkit [12], which has pre-trained gender recognition
model. To train the speaker identification model for our
evaluation, we use one audio snippet for each user in the
dataset.

As illustrated in Figure 8, subsampling and shredding does
not have a significant effect on both gender and speaker
identification. This confirms the results of the user study.
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Figure 8: Subsampling and shreadding does not
have a significant effect on gender prediction.
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Figure 9: Subsampling and shreadding does not
have a significant effect on speaker identification.

To recognize the speech we use the speech recognition sys-
tem presented in Kim et al. [8]. The performance of speech



recognition is measured in Word Error Rate (WER), where
the smaller WER, the more content is recovered. The WER
for the original signal is 5.70%. As shown in Figure 10, with
low subsampling rate, one can recover the speech relatively
well. However, if an audio signal is shredded, no speech
information can be recovered.
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Figure 10: Speech content cannot be recovered if
the audio is shredded or subsampled with high rate.

From the presented results we can observe that through
shredding and subsampling the sound signals do not loose
information about the gender and user identity. However, no
speech content can be recovered if the audio is shredded or
subsampled with a high rate. This property is highly desir-
able in many applications such as social life-logging. These
applications aim to measure how much social interaction did
a user have and how many people she met over the day with-
out needing to know the content of user’s conversations.

5.4 Speech Reconstruction Attacks
In shredded audio, all components of the original audio

are present and so it is theoretically possible to reconstruct
the sound, though it may be infeasible to do so because of
computational challenges. As in the case of paper shredding
challenge by Darpa [7], there are no single known efficient
solution to reconstruct shredded sound. Possible solutions
would involve a combination of approaches. Here we de-
scribe two possibilities.

5.4.1 Brute force attack
If we take a small sound sample of 10 seconds and frame

width of 15 ms, there are apprximately 667 frames in the
sound sample. There are n! different ways of arranging n dis-
tinct objects into a sequence, so these 667 frames can be rear-
ranged in 667! ways. O(n!) calculations are computationally
very expensive e.g. 100! is approximately 9.332622e+157,
which indicates that our computer could easily run out of
processing capability. Also, we need to consider the cost of
analyzing the audio of each of the arrangements to get the
text back, which can be either done manually or by using a
speech processing system, and incurs additional cost.

5.4.2 Reconstruction based on frequency content
Shredded audio contains all frequencies present in the

original audio, but they loose their original order because of
shredding. The diagram 11 compares spectogram of original
audio and shredded audio, where original audio was shred-
ded in 12 pieces, looking at which one gets an impression
that it could be possible to rearrange the frames back. We
designed an experiment to do the same and tried a greedy
algorithm approach to reconstruct the audio.

Assume we have original signal O, the shredded signal S
and the reconstructed signal R. We compute d(O, S) and

Figure 11: Spectrogram of Original, Shredded and
Reconstructed audio. The original audio was split in
12 pieces and shredded. In this case, the greedy al-
gorithm could partially reconstruct the original au-
dio. As the no of divisions (split) increases, it be-
comes increasingly difficult to reconstruct the orig-
inal audio as shown in figure 12.

d(O, R), where d() is Euclidian distance function compar-
ing two audio encodings. We define audio encodings as the
arrangement of audio frames e.g. an audio signal O can be
represented as a string abcdef.... where each character rep-
resents an audio segment, whereas a shredded audio S will
be represented as dbmkc.... comprising entirely of charac-
ters present in audio O, but in a random order. We compute
d(O,S) as the Euclidian distance between strings abcdef....
and dbmkc...., where each character represents a number e.g.
a=1, b=2 etc. In addition, we also calculate similarity be-
tween O and R using Longest common subsequence (LCS)
algorithm which uses abcdef... and dbmkc... as two strings
obtained from the method described above.

To reconstruct signal O from signal S, we take inspira-
tion from paper shredding experiment [7] where right edge
of a shredded part matches the left edge of the shredded
part on the right. Similarly, for audio spectrogram, the fre-
quencies present on the right most window of a segment
will be similar to frequencies present in the left edge of the
segment on the right. Based on this idea, we compute spec-
trogram of segments of shredded audio, which gives ampli-
tude and phase of all frequencies present in smaller segments
d,b,m,k.... Then we start with the first frame of shredded
signal S, namely d and use greedy approach to search the re-
maining frames in S, to find the closest match for frequency
amplitude present in the rightmost window of segment d.
If closest match of d gives k, then we construct signal as
”dk” and then start another greedy search for k. This way
we can reconstruct complete audio R like ”dkmabc....”. We
then compute d(O,R), the Euclidian distance comparing O
and R. The measure of d(O,R) gives us how much success-
ful we are in reconstructing the shredded audio. In addition
to the Euclidian distance we also calculated similarity using
Longest common subsequence algorithm.

The results shown in figure 12 reveals that the thinner
the shredding is, the more difficult it is to reconstruct the
audio. The audio signal which was divided in 5 or lesser
segments, it was possible to reconstruct the audio, but as the
number of divisions increase (shredding thickness decreases),
it becomes increasingly difficult to reproduce the original
audio based on frequency content.

6. CONCLUSION AND FUTURE WORK
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Figure 12: Euclidian distance and Similarity (us-
ing longest common sub-sequence) between Origi-
nal and Reconstructed audio Vs No of divisions of
Original Audio. The result indicates that the thin-
ner the shredding, the more difficult it becomes to
reconstruct the original audio.

Audio is a valuable source of contextual information, which
is crucial for many context-aware mobile applications. How-
ever, beside context information the captured audio signals
often contain sensitive speech content. In this work, we show
that sound shredding and subsampling are effective means
for making speech not recognizable, while preserving suffi-
cient information for context, gender and speaker recogni-
tion. Through the experiments, we showed that no speech
content could be recognized from the processed signal by
either human or automated computer techniques.

In future work, further studies are needed to understand
the effectiveness and robustness of the proposed approaches.
Since both sound shredding and subsampling are meant to
be run directly on mobile devices, additional experiments are
needed to analyze the battery consumption and the compu-
tational complexity of these approaches. Although we pro-
vided a theoretical analysis of attacks aiming at reconstruct-
ing the original signal, more sophisticated attacks needs to
be explored to study the effectiveness of the proposed ap-
proaches.
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