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Abstract
In spite of advances in technologies for working with data, analysts still spend an inordinate amount of time
diagnosing data quality issues and manipulating data into a usable form. This process of ‘data wrangling’ often
constitutes the most tedious and time-consuming aspect of analysis. Though data cleaning and integration
are longstanding issues in the database community, relatively little research has explored how interactive
visualization can advance the state of the art. In this article, we review the challenges and opportunities asso-
ciated with addressing data quality issues. We argue that analysts might more effectively wrangle data through
new interactive systems that integrate data verification, transformation, and visualization. We identify a number
of outstanding research questions, including how appropriate visual encodings can facilitate apprehension of
missing data, discrepant values, and uncertainty; how interactive visualizations might facilitate data transform
specification; and how recorded provenance and social interaction might enable wider reuse, verification, and
modification of data transformations.
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The elephant in the room

Despite continued advances in data management

technologies, it remains tedious to examine a newly

acquired data set and ‘wrangle’ it into a form that

allows meaningful analysis to begin. First, an analyst

must diagnose the data. Are the data responsive to the

current analysis questions? What format are they in, and

how much effort is required to put them into a format

expected by downstream analysis tools? Are there data

quality issues, such as missing data, inconsistent values,

or unresolved duplicates? Next, the analyst must decide

whether to continue working with the data, and, if

so, the data must be transformed and cleaned into a

usable state.

Our own informal interviews with data analysts

have found that this process of assessment and trans-

formation constitutes the most tedious component of

their analytic process. Others estimate that data clean-

ing accounts for up to 80% of the development time

and cost in data warehousing projects.1 Often this

process requires writing idiosyncratic scripts in

programming languages such as Python, Perl, and R,

or engaging in tedious manual editing using tools such

as Microsoft Excel. Perhaps more significantly, this

hurdle probably discourages a large number of

people from working with data in the first place. The

end result is that domain experts regularly spend more
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time manipulating data than they do exercising their

speciality, while less technical audiences are needlessly

excluded.

We define such data wrangling as a process of iterative

data exploration and transformation that enables analysis.

One goal is to make data usable – to put them in a form

that can be parsed and manipulated by analysis tools.

Data usability is determined relative to the tools by

which the data will be processed; such tools might

include spreadsheets, statistics packages, and visuali-

zation tools. We say data are credible if, according to an

analyst’s assessment, they are suitably representative

of a phenomenon to enable productive analysis.

Ultimately, data are useful if they are usable, credible,

and responsive to one’s inquiry. In other words, data

wrangling is the process of making data useful. Ideally,

the outcome of wrangling is not simply data; it is an

editable and auditable transcript of transformations

coupled with a nuanced understanding of data organi-

zation and data quality issues.

The database community has developed numerous

techniques for cleaning and integrating data. Most of

this research focuses on specific data quality problems,

such as resolving entities to remove duplicates.2–5

Interactive visual tools have been introduced for tasks

such as schema matching,6 entity resolution,7 and data

cleaning.8,9 However, most systems for working with

data are non-interactive and inaccessible to a general audi-

ence, while those that are interactive make only limited use

of visualization and direct manipulation techniques.

On the other hand, dirty and ill-formatted data con-

stitute an ‘elephant in the room’ of visualization

research: most visualization research assumes that

input data arrive pristine, too often turning a blind

eye to concerns of data formatting and quality. This

disconnect suggests a research opportunity: data wran-

gling is a common impediment to analysis that visual-

ization and interaction techniques could do much to

alleviate. Data wrangling also constitutes a promising

direction for visual analytics research,10 as it requires

combining automated techniques (e.g. discrepancy

detection, entity resolution, semantic data type infer-

ence) with interactive visual interfaces.

In this article, we survey the problems, established

approaches and research opportunities associated

with data wrangling. Our hypothesis is that we can

advance the state of the art by enriching data-processing

technologies with novel visual interfaces for data diagnos-

tics and transformation. In particular, we investigate

how visualization and interaction techniques might

improve analysts’ abilities to diagnose and subsequently

transform data, and chart a research agenda for both

empirical and tools research in data wrangling. The

overarching goal is to improve the efficiency and scale

at which data analysts can work, while simultaneously

lowering the threshold to enable broader audiences to

engage with data.

Why we wrangle: Tales
of effort and error

Nearly everyone who has taken on a serious data analysis

effort has experienced the challenges of assessing data

quality and modifying a data set to allow analysis to

being in earnest. In this section, we review how the

need for data wrangling arises. We begin with a hypo-

thetical usage scenario representative of our experi-

ences, and then enumerate sources of data problems.

A data wrangling scenario

John is tasked with analyzing 30 years of crime data

collected by three different authorities. Accordingly,

the data arrive in three different formats: one source

is a relational database, another is a comma-separated

values (CSV) file, and the third file contains data copied

from various tables within a portable document format

(PDF) report. Knowing the structure required for his

visualization tool, John first reviews the different data

sets to identify potential problems (step 1 in Figure 1).

The relational database allows him to specify a query

and generate a file in an acceptable format. For the

comma delimited data, the column headings associated

with the data were unclear. Using spreadsheet software

he adds a row of header information at the top to fit the

format required by the visualization tool. While updat-

ing the header, John notices that the location of a given

crime is encoded in one column (as ‘City, State’) in the

CSV file and encoded in two columns (one ‘City’

column and one ‘State’ column) in the relational data-

base. He decides to split the column in the CSV file

into two separate columns. John then opens the text file

in the spreadsheet but the spreadsheet does not parse

the data as desired. After manually moving data fields

to appropriate columns and some other manipulation

(step 2), John finally has consistent columns and now

combines the three files into one, but then notices that

some columns have inconsistently formatted cells.

The ‘Date’ column is formatted as ‘dd/mm/yy’ in

some cells and as ‘mm/dd/yyyy’ in others. John returns

to the original files, transforms all the dates to the same

format, and recombines the files.

John loads the merged data file in a visualization

tool (step 3). The tool immediately gives the error

message ‘Empty cells in column 3’; it cannot cope

with missing data. John returns to the spreadsheet to

fill in missing values using a few spreadsheet formulas

(back to step 2). He edits the data by hand; sometimes

he transforms the data (e.g. one state reports data only

every other year so he uses an average for the missing
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years). At other times there is nothing he can do after

diagnosing a new problem (i.e. return to step 1). For

example, he finds out that survey question 24 did not

exist before 2000, and the most recent year of data from

Ohio has not been delivered yet, so he tries to pick the

best possible value (e.g. �1) to indicate missing values.

John detects other, more nuanced, problems; for exam-

ple, some cells have a blank space instead of being

empty. It took hours to notice that difference.

John tries to follow a systematic approach when

evaluating the data, but it is difficult to keep track of

what he has inspected and how he has modified the

data, especially because he discovers different issues

across different files. Even after all of this work, he is

not sure if he has examined all of the variables or over-

looked any outliers. After a while, the data file seems

good enough and he decides to move on.

It took a few days so it is with a great sense of

accomplishment that John finally loads the data for

the second time into the visualization tool he wants

to use (step 3 again). He constructs several views of

the data, including a geospatial representation of the

crimes and a scatterplot of age against crime.

As soon as he sees the visualized data he realizes that,

unfortunately, data quality issues still persist. Extreme

outliers appear in the visualization. Some outliers seem

to be valid data (e.g. data from the District of Columbia

are very different from data from every other state).

Others seem suspicious (criminals may vary in age

from teenagers to older adults, but apparently babies

are also committing crimes in certain states). John iter-

atively removes those outliers he believes to be dirty data

(e.g. criminals under 7 and over 120 years old). Time-

series visualizations indicate that, in 1995, some causes

Figure 1. The iterative process of wrangling and analysis. One or more initial data sets may be used and new versions
may come later. The wrangling and analysis phases overlap. While wrangling tools tend to be separated from the visual
analysis tools, the ideal system would provide integrated tools (light yellow). The purple line illustrates a typical iterative
process with multiple back and forth steps. Much wrangling may need to take place before the data can be loaded within
visualization and analysis tools, which typically immediately reveals new problems with the data. Wrangling might take
place at all the stages of analysis as users sort out interesting insights from dirty data, or new data become available or
needed. At the bottom we illustrate how the data evolves from raw data to usable data that leads to new insights.
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of death disappear abruptly while new ones appear. Two

days later, an email exchange with colleagues reveals

that the classification of causes of death was changed

that year. John writes a transformation script to merge

the data so he can analyze distinct terms referring to the

same (or at least similar) cause of death.

Although the ‘real’ analysis is just about to start

(step 4), John has made dozens of transformations,

repeated the process several times, made important

discoveries relating to the quality of the data, and

made many decisions impacting the quality of the

final ‘clean’ data. He also used visualization repeatedly

while walking through the process, but still does not

have results to show to his boss. Finally, he is able to

work with the usable data, and useful insights come to

the surface, but updated data sets arrive (step 5).

Without proper documentation (step 6) of his trans-

formations, John might be forced to repeat many of the

tedious tasks.

The many sources of data problems

Many sources of error contribute to the types of

problems described in the scenario above. Human

error during manual data entry often includes entering

incorrect or misleading default values. For instance, cer-

tain states may require data clerks to enter a criminal’s

age as an integer, even if the age is unknown. Clerks

resort to entering arbitrary but legal values that have

impossible interpretations, such as 0 or 999 for ages,

resulting in erroneous ages.

Data from different sources often follow different

conventions, formats, or data models. Integrating

these sources into a common data model often requires

not only manipulation of data formats, but also making

other judgements to resolve incompatible schemas.

Even within one data set, schemas may evolve over

time or be misinterpreted by new users entering data.

Classification systems may change, making it hard to

compare categories over time. Finally, although auto-

mated data collection systems such as sensors can

reduce errors in data entry, they introduce new types

of uncertainty, such as inconsistencies in calibration or

interference from outside sources.

The database, statistics and scientific workflow liter-

ature each offer several categorizations of the types and

sources of errors. Li et al.11 outline 41 different types of

dirty data, and examine the costs of fixing these errors

within different contexts. Kim et al.12 propose a taxon-

omy of 33 dirty data types. These types fall into three

broad categories: missing data (e.g. a state fails to report

crime data for one year), incorrect data (e.g. incorrect

criminal ages), and inconsistent representations of the

same data (e.g. different encodings of crime location).

They conclude that existing technologies address less

than half of the dirty data types in their taxonomy and

that 25 of the 33 types require some kind of human inter-

vention. Müller and Freytag13 roughly classify data

anomalies into syntactical, semantic, and coverage

anomalies. Syntactical anomalies are errors in data

format and values. Semantic anomalies include inconsis-

tencies within or across data sets (e.g. integrity constraint

violations, contradictions, duplicates, and invalid tuples).

Coverage anomalies refer to missing or incomplete data.

After identifying the source or type of error, analysts

most likely need to transform their data. Data trans-

forms generally fall within three categories: syntactic,

structural and semantic transformations.14 Syntactic

transformations refer to parsing or reformatting data

to ensure they can be read. Structural transformations

refer to schema modifications. Semantic transforma-

tions refer to the meaning of the concepts and

constraints in the schema, such as mapping causes of

death across classifications in the data above. In many

cases, these semantic transforms are not expressible in

database languages or in the terms of low-level data

models.

Identifying and correcting these different forms of

dirty data may benefit from interactive visualizations;

however, some types of dirty data prevent the direct

application of traditional visualization tools. Novel

visual interfaces for data transformation that are

more robust to common data quality issues could

help analysts identify and correct these types of errors.

We hypothesize that a tight coupling of data verifica-

tion, transformation, and visualization can accelerate

analysis and lead to more effective results. The analysis

process often involves many iterations, as analysts

generate hypotheses or develop insights that call for

new data requirements. For instance, an insight may

reveal the need to transform a data source to better

suit an ensuing analysis task, or require assimilating

additional data sets. The iterative nature of data wran-

gling suggests that the process might be facilitated by

visual interfaces that intimately integrate both data

diagnostics and a variety of data transformations.

However, how to best couple visualization, interac-

tion, and algorithmic techniques remains unclear.

Additional research questions arise around the effec-

tiveness of different visual encodings for data wrangling

and how to handle increased data sizes. We would also

like any resulting data transformations to be amenable

to reuse and refinement. To avoid reinventing the wheel,

both cleaned data and wrangling transformations might

be shared and evolved via the social web.

In the following sections, we outline the research

challenges and opportunities that lie in applying visual-

ization and interaction techniques to the problem of

data wrangling, consider past related work, and identify

areas for future research.
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Diagnosing data problems

To make data useful for analysis, analysts must first

identify any problems in their data. As stated above,

there are dozens of possible ‘errors’ that can arise in

data. We believe that tightly integrating visualization

into the iterative process of wrangling will help unearth

data quality issues. Visualizations can appropriately

convey the ‘raw’ data and present the results of auto-

mated routines such as outlier detection. Different

visual representations highlight different types of issues

in the data; currently, this requires an analyst to select an

appropriate progression of visualizations to view.

Visualizing ‘raw’ data

Some of the most common insights people gain

using visualization are about data errors and outliers.

Outliers often stand out in a plot, sometimes reducing

the visibility of other data points owing to an extreme

scale. Similarly, missing data may surface as a promi-

nent gap or zero value in the data. Duplicate or mis-

spelled values may appear adjacent to one another in a

sorted list. Other errors may be more subtle, becoming

apparent only when an appropriate transform is per-

formed; for example, calculating an aggregate over

individual demographics may not match a provided

total because of a privacy-preserving redaction of

some lower-level values.

A central concern invisualizing raw data is the choice of

representation.ConsiderFigure2, inwhichsocialnetwork

diagrams show data extracted from the Facebook web

application programming interface (API). Figure 2(a)

visualizes the data as a node-link diagram with a force-

directed layout, revealing multiple clusters. Figure 2(b)

shows the same data as a matrix diagram: rows and col-

umns represent people, and filled cells represent a connec-

tion between them. Following best practices, automatic

permutation of rows and columns has been applied to

highlight patterns of connectivity. One sees clusters

along the diagonal, including more substructure than

can be seen in the node-link diagram.

However, for the purposes of data cleaning, the

‘raw’ visualization in Figure 2(c) is more revealing.

The rows and columns are instead sorted in the

order provided by the Facebook API. We now see a

striking pattern: the bottom-right corner of the matrix

is completely empty. Indeed, this is a missing data

problem, as Facebook enforces a 5000-item result

limit for a query. In this case, the maximum was

reached, the query failed silently, and the mistake

went unnoticed until visualized. As this example indi-

cates, choices of representation (e.g. matrix diagram)

and parameterization (e.g. default sort order) are crit-

ical to unearthing data quality issues.

Analysts need to be aware of the potentially mis-

leading factors induced by visualizations. A natural

starting point is a simple textual or tabular view of

data: inspecting the raw values (or at least a subset)

provides insight into data formatting and potential

errors. In many cases, no other visualizations are

applicable until the data are suitably transformed.

However, as one restructures the data, additional visu-

alizations can shed further light. For instance, the data

cleaning tool Google Refine8 uses histograms to

aid inspection and outlier detection. However, the

visualization chosen must also fit the semantics of

the data. For example, an error in the encoding of

geographic locations may not become apparent until

plotted on a map. Once the data have been assessed

in a ‘raw’ fashion, an analyst may move on to assess

more abstract or transformed (e.g. aggregate) views of

the data.

What forms of summary visualization best assist

analysts as they profile their data? More research is

needed to characterize the effectiveness of available

visualization techniques for surfacing data quality

issues across various data types. The results of this

research might then be applied to suggest protocols

for visual data diagnosis.

Scaling to large data sets

Another important concern is the issue of scale. As data

set sizes become large, it becomes exceedingly difficult

to visualize the ‘raw’data. In response, researchers have

invented techniques such as pixel-oriented visualiza-

tions15 to increase data density while still showing

individual values. However, this approach reaches an

obvious breaking point when there are more data

elements than pixels. Furthermore, in many cases

perception breaks down much earlier; for example,

with only a few hundred data points, overplotting can

quickly render a scatter plot ineffective.

A common recourse is to apply aggregation, but

doing so risks obscuring low-level details in the data.

Histograms are a common form of one-dimensional

(1D) aggregation, both for categorical data and for

binned quantitative data. Binning is also applicable

in scatter plots, for example to form a heat map

visualizing data density (Figure 3). Statisticians have

suggested numerous techniques for plotting data at

scale,16,17 including using hexagonal (as opposed to

rectangular) two-dimensional (2D) bins in order to

improve density estimates and de-emphasize horizon-

tal and vertical striping.16 A related issue is the

judicious use of color: a naı̈ve color ramp visualizing

counts of data elements results in bins with few

elements being practically invisible. Instead, a color

ramp with a perceptible discontinuity between 0 and
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1 allows viewers to quickly discern all cells containing

non-zero values and thereby spot potential outliers or

erroneous values.

Visual design techniques must also be coupled with

interaction techniques. For example, one might assess

if an outlier cell contains noteworthy values or merely

errors by seeing how the points project along other

data dimensions. How should we enable rapid linked

selections (brushing and linking) over scalable sum-

mary visualizations?

Another approach to visualizing data at scale is

sampling. Techniques such as online aggregation18

might be applied: a visualization may show a dynamic

aggregate of a sample, with error bars indicating

a confidence interval. As query processing continues,

the visualization can update the computed values and

intervals; the analyst need not wait until completion

to assess the data and proceed to other tasks.

While initially proposed for 1D quantitative data,

such dynamic sampling-based techniques might be

Figure 2. The choice of visual representation impacts the perception of data quality issues. (a) A node-link diagram of a
social network does not reveal any irregularities. (b) A matrix view sorted to emphasize connectivity shows more sub-
structure, but no errors pop out. (c) Sorting the matrix by raw data order reveals a significant segment of missing data.
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extended to other data types. More research is nec-

essary to characterize the strengths and limits of such

approaches.

Visual assessment and specification of
automated methods

Although our discussion has focused primarily on

visualization, statisticians and database researchers

have developed a number of analytic techniques for

assessing data quality. These techniques include

algorithms for detecting outliers and discrepancies.19,20

Other approaches range from simple validation routines

(e.g. regular expression patterns) to complex data

mining algorithms. How might we use visualization to

best communicate the results of these routines? How

can visual interfaces be used to specify or steer appro-

priate routines based on the semantics of the data? Can

visualizations also serve as an input device for authoring

new validation patterns? Moreover, we might evolve

these algorithms, using approaches such as active learn-

ing,5 so that they can improve in response to guidance

and verification from analysts. These questions present

important research challenges requiring the combina-

tion of data wrangling, visualization, and analysis

methods.

Living with dirty data

Visualization can be a powerful tool for identifying data

quality issues. However, once found, it is not always clear

how (or even whether) one should modify the data in

response. In fact, some may wish to proceed with visual

analysis despite the presence of missing data, outliers, or

other inconsistencies. Such actions naturally raise the

question: how can visualizations be best designed to sup-

port reasoning with dirty or uncertain data? As in data

diagnosis, onewould like errors such as missing data tobe

visibly indicated. However, unlike data diagnosis, one

may wish to reduce this visual saliency so as not to

unduly distract from analysis of the rest of the data.

Visualizing missing data

What forms of visual encoding or annotation should be

used to flag known data quality issues during visual

Figure 3. Visualizing ‘raw’ data at scale, taken from Carr et al.16 (a) A traditional scatter plot. (b) A binned plot using a
size encoding. (c) A binned plot using a color encoding. Note the discontinuity in color between 0 and 1, making cells with a
single element readily apparent.

1850 1900 1950 2000

2M

4M

6M

1850 1900 1950 2000

2M

4M

6M

1850 1900 1950 2000

2M

4M

6M

1850 1900 1950 2000

2M

4M

6M

Figure 4. Alternative representations of missing data in a line chart. The data are U.S. census counts of people working
as ‘Farm Laborers’; values from 1890 are missing due to records being burned in a fire. (a) Missing data is treated as a
zero value. (b) Missing data is ignored, resulting in a line segment that interpolates the missing value. (c) Missing data is
omitted from the chart. (d) Missing data is explicitly interpolated and rendered in gray.
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analysis? A small amount of prior work has investi-

gated this question. The example in Figure 4 shows

alternative representations of missing data in a line

chart. In spatial domains, such as maps or fluid

flows, color interpolation techniques might be applied.

For example, Restorer21 maintains smooth luminance

contours but drops hue to unobtrusively show missing

values. In contrast, space-filling visualizations such as

pie charts or treemaps may obscure the presence of

missing data and bias the appearance of other items.

Eaton et al.22 categorize visualization techniques

based on how amenable they are to revealing missing

data and compare design variants in a user study.

They find that users do not necessarily realize that

data are missing when they are replaced by default

values. Cues that more explicitly highlight imputed ele-

ments can reduce the rate of error. They also find that,

even if the missing data are noticeable, users regularly

make general conclusions with the remaining partial

data. This study provides evidence for a need to indicate

the presence of missing information. However, we still

lack a comprehensive answer to our design question.

More work is needed to assess the design space of

visual encodings of missing data and the impact on

dependent analysis tasks.

Visualizing uncertain data

Much of the research on visualizing uncertainty has

been in the fields of geographic visualization and scien-

tific visualization. MacEachren et al.23 report a review of

models of information uncertainty with the goal of

informing visualizations for geospatial information

analysis. The list of challenges includes ‘understanding

the components of uncertainty and their relationships to

domains, users, and information needs’, ‘developing

methods for depicting multiple kinds of uncertainty’,

and ‘developing methods and tools for interacting with

uncertainty depictions’. MacEachren et al. also caution

that uncertainty has been defined in many different ways

and is referred to inconsistently in a variety of fields.

Skeels et al.24 create a classification of uncertainty

based on the review of existing work on uncertainty

from several domains and an interview-based user

study. In their classification, they identify five types of

uncertainty: measurement precision, completeness,

inference, disagreement, and credibility.

Uncertainty arises from a number of sources,

including measurement errors (e.g. sensor drift), miss-

ing data, and sampling. Uncertainty can also accumu-

late when data are aggregated or transformed.

Techniques for visualizing uncertain data25–28 often

employ special visual encodings, including transpar-

ency, blur, error bars, and error ellipses. Olston and

Mackinlay27 describe mechanisms for visualizing

uncertain data with known bounds. CandidTree

shows two types of structural uncertainty using color

and transparency based on the differences between

two tree structures.29 Other techniques include

adding glyphs (Figure 5),25 adding or modifying

geometry,30 and animation.31 Listen sonifies geomet-

ric uncertainty using sound to represent the difference

between geometric quantities obtained by two

interpolants.32

Figure 5. Visualizing Uncertainty. Correa et al.25 add line segments to show sensitivity parameters to an input variable.
Color encodes clustering with respect to a third variable; here we see a critical region where these sensitivities change
sign.

278 Information Visualization 10(4)



How effective are these techniques? Kosara,33 for

instance, has found that people have difficulty identify-

ing different levels of blur, implying that blur is a rela-

tively ineffective encoding for multiple levels of

uncertainty. It is important to note that most of the pro-

posed solutions for visualizing uncertainty have not

been empirically evaluated. The field would benefit

from a deeper understanding of how these various rep-

resentations of uncertainty affect perception and rea-

soning. Moreover, many techniques for handling

uncertainty require choosing an underlying statistical

model. Interactive visualization might aid in both select-

ing and evaluating such choices.

Adapting systems to tolerate error

Finally, the goal of living with dirty data suggests impor-

tant criteria for visual analysis systems. Do the data

models provided by our systems explicitly support miss-

ing values or values that deviate from a schema? For

example, a collection of numbers with a few erroneous

string values interspersed should not prevent a tool from

visualizing most values along a numeric axis. In such

cases, the visualization might also include an indication

of the presence and amount of deviant data. More

advanced systems might also consider the semantics of

uncertainty when transforming data – for example, how

uncertainty propagates across aggregations and other

analysis routines25,34 – and use this information to

incorporate uncertainty into the visualization.

Transforming data

As we use visualizations to identify and represent data

quality issues, we might also interact with the visualiza-

tions to correct those issues. A variety of data transforms

may be needed throughout the wrangling process;

examples include reformatting, extraction, outlier cor-

rection, type conversion, and schema mapping. In this

section, we consider the interactive tasks that data wran-

gling systems need to support.

Data formatting, extraction, and conversion

One challenge of data wrangling is that reformatting and

validating data requires transforms that can be difficult

to specify and evaluate. For instance, splitting data into

meaningful records and attributes often involves regular

expressions that are error-prone and tedious to inter-

pret.35,36 Converting coded values, such as mapping

Federal Information Processing Standards (FIPS)

codes to US state names, may require integrating data

from multiple tables.

Several interactive systems apply direct manipulation

and programming by demonstration (PBD) methods to

assist in specific cleaning tasks. Toped++36 is an inter-

face for creating topes, objects that validate data and

support transformations such as text formatting and

lookups. PBD systems infer a user’s desired transform

from examples provided via direct selection. SWYN35

infers regular expressions from example text selections

and provides visual previews to help users evaluate their

effect. Potluck37 applies simultaneous text editing38 to

merge data sources. Users of Karma39 build text extrac-

tors and transformations for web data by entering exam-

ples in a table. Vegemite40 applies PBD to integrate web

data, automates the use of web services, and extends

CoScripter41 to generate shareable scripts. These

systems introduce powerful tools to support text extrac-

tion and transformation, but they are insufficient for

iterative data wrangling: each supports only a subset of

needed transformations and lack operations such as

reshaping data layout, aggregation, and missing value

imputation.

Other work has introduced automated techniques for

information extraction42,43 or interactive interfaces to a

more general transformation language. Potter’s Wheel9

provides a transformation language for data formatting

and outlier detection. Ajax44 contains facilities for data

transformation and entity resolution. These tools

enable a variety of transforms, including data reshaping

and reformatting. However, both tools provide only lim-

ited support for direct manipulation: interaction is lar-

gely restricted to menu-based commands or entering

programming statements.

Analysts could benefit from interactive tools that sim-

plify the specification of data transformations. Can

transformations be communicated unambiguously via

simple interactive gestures over visualized data? If not,

can relevant operations be inferred and suggested?

Direct manipulation and PBD techniques might allow

both expert and novice users to construct data trans-

forms. However, users may have to provide a multitude

of examples from which a system can infer appropriate

extraction or transformation rules. Visualization and

interaction techniques might help users find appropri-

ate examples to contribute. Visualization might also

reveal incorrect inferences by PBD routines, and users

could update these examples interactively to improve

inferred patterns and transforms. As an example,

Wrangler45 suggests relevant transforms based on the

current context of interaction. Wrangler also provides

visual previews of operations that are intended to facil-

itate rapid evaluation and refinement of suggested

transforms.

Another common hurdle in data wrangling is

converting data values to different types. An example

is converting zip codes into the latitude–longitude cen-

troids of their regions; a precomputed lookup table is

sufficient to perform this conversion. Another is
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adjusting a currency for inflation or converting one cur-

rency to another. These transforms require multiple

inputs, as they are parameterized by a specific date or

year. These transforms could be facilitated by semantic

data types that include parsing, validation, and transfor-

mation rules to aid data wrangling. Although a few data

types occur regularly (e.g. dates and geographic loca-

tions), creating an exhaustive set of semantic data

types a priori is infeasible. As we discuss later, peer pro-

duction and sharing of new semantic data types by

domain experts may provide one solution.

Correcting erroneous values

Once data found ‘in the wild’ have been extracted and

reformatted, an analyst can begin assessing and cor-

recting problematic values. Transforms of this type

include outlier detection, missing value imputation,

and resolving duplicate records.

Consider the problem of outlier detection: although

automated outlier detection can highlight potential

errors in the data, human judgement is often necessary

to verify these errors and choose an appropriate trans-

form to correct them. For instance, outlier detection

might flag states with a large number of crimes (e.g.

greater than three standard deviations from the mean)

as errors. An analyst might assess whether this value is

high because of some error (e.g. incorrectly entered into

the database) or because it accurately reflects a real-

world occurrence. After verifying that an error is in

fact an error, there are still multiple ways to correct it.

In this case the analyst could decide to remove only

specific outliers or decide to set bounds on the data

values. A better test of abnormality may be high crime

despite low population. Existing errors can make it dif-

ficult to detect other errors; by cleaning errors as they are

discovered, automated detection algorithms are gener-

ally more effective. A common example of this effect is

masking – when an abnormally large value in a data set

affects the modeled distribution so much that other

extreme values appear ‘normal’. In this case, an analyst

could iteratively run outlier detection and transforms

until he is satisfied with the results. Interaction is

needed to accelerate these iterative loops of assessment

and action.

Open questions concern how best to specify correc-

tions. In the case of misspellings, text editing and batch

updates may suffice. For missing values, filling in or

interpolating nearby values are options. In the case of

outlier correction, one could simply select and delete

(or regress) values, but this may prove unsatisfying.

Such an operation is highly specific to the selected

data point(s); how might the transform generalize to

cover new data as they arrive? Rather than make selec-

tions in data space, an alternative may be to make

selections within a model space. For example, in addi-

tion to raw value ranges, a visualization may show stan-

dard deviations or quantiles of the data. Selections

(perhaps with interactive ‘snap to’ quantile boundaries

or increments of the standard deviation) could then be

made with respect to a more robust model, rather than

absolute value ranges. Future work should investigate

what forms of constrained interaction with visualiza-

tions best support data wrangling.

Another common problem is entity resolution, or de-

duplication. Duplicate records often arise within a data

set, for example addresses or names representing the

same entity may be expressed using different strings. A

number of automated techniques have been proposed to

perform entity resolution,2–4,46 but eventually reconcil-

ing duplicate records requires human judgement as

well, requiring an interactive interface. One example is

Google Refine,8 which leverages Freebase to enable

entity resolution and discrepancy detection. Another

example is D-Dupe system,7 which helps users to

perform entity resolution. Human input is used to

improve the system’s suggestions via active learning.

The example of Figure 6 shows that two instances of

George (W.) Fitzmaurice are correlated and may refer

to the same person. Human judgement can help deter-

mine if these names refer to the same author.

Future research might further improve and inte-

grate such approaches.

Integrating multiple data sets

Analysis of data frequently requires integration of data

from different sources. Integration requires being

able to join or link data sets together along one or

more shared dimensions. A number of the previously

considered techniques contribute to the integration

process: resolved entities or semantic data types may

be used to match data together. A common subprob-

lem is schema matching: mapping the dimensions of

one data set onto the dimensions of another. However,

even with matching data types, integration may be

difficult. For example, how should one join sensor

measurements taken at different time intervals?

To support this process, a number of algorithms4,47–49

and interactive tools have been developed for data

integration. Clio50 uses semi-automated methods to

help users map schemas. Schema Mapper6 (Figure 7)

adopts appropriate visualization and animation to

enable more efficient navigation and mapping of large,

complex schemas. One of the main problems addressed

by Schema Mapper is the scalability of schema-to-

schema connections.

Interfaces also allow users to choose between pos-

sible valid merged schemas.51 A number of commer-

cial ETL (extract, transform, load) tools contain

280 Information Visualization 10(4)



Figure 6. A network diagram produced by the D-Dupe7 tool for entity resolution. Connections between clusters of
suspected duplicates are shown among authors of ACM SIGCHI publications. Users can then interactively select which
entities to merge. D-Dupe7 allows users to perform entity resolution, here in a paper citation data set. On the left we see
the list of potential duplicate author pairs that were identified based on the user-defined similarity metric. On the upper
right the relational context viewer visualizes the coauthorship relation between the author pair selected in the duplicate
viewer. The data detail viewer (lower right) shows all the attribute values of the nodes (authors) and edges (papers)
displayed in the relational context viewer.

Figure 7. Robertson et al’s6 schema mapping visualization tool. The transformation mapping one XML schema to another
is shown. The interface has three main sections: the left area shows the source schema and the right area shows the
destination schema. The area in the middle shows the connections between source and destination. Schema Mapper
introduces the concept of ‘coalescence trees’ to hide less interesting items. Notice that in the left part of the screen some
items have been replaced by three dots. This visual cue indicates that there are hidden items that can be revealed moving
the mouse pointer over the dots.
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graphical interfaces for data integration.52–54 Other

interfaces55 generalize copy and paste actions to inte-

grate data. Future research might further investigate

how visual interfaces and automated approaches to

data integration could be more deeply combined.

Of course, some desired integrations are simply unat-

tainable. Consider changes to category schemas: the

passing of the North American Free Trade Agreement

(NAFTA) led to the creation of a new classification

system for companies in participating countries, the

North American Industrial Classification System

(NAICS). This scheme replaced the previously used

(and increasingly antiquated) Standard Industrial

Code (SIC). The dramatic reorganization of companies

between the two systems leaves them nearly incompara-

ble, as there are no reliable correspondences between

high-level categories within the two taxonomies.

Sometimes there is a limit to what one can wrangle.

Editing and auditing transformations

Transforming a data set is only one part of the larger data

life cycle. As data update and schemas evolve, reuse

and revision of transformation scripts becomes neces-

sary. The importance of capturing data provenance is

magnified when teams of analysts share data and scripts.

Existing research in visualization highlights the value

of explicitly recording the provenance of an analysis.

For example, the VisTrails56 system provides a general

infrastructure for authoring and reviewing visualization

workflows. VisTrails maintains a detailed history for

each workflow, including the insertion, deletion, and

parameterization of visualization operators. However,

VisTrails, along with most other visualization history

tools,57–60 focuses on analysis and does not support

the process of data transformation necessary to use

the visualization tools in the first place. More general

scientific workflow tools61–63 enable the creation and

maintenance of workflows, but often by providing

access to heterogeneous tools and scripting languages.

Provenance-aware database systems34 can track the lin-

eage of data over multiple transformations and joins,

but rarely support the steps necessary for transforming

raw data into an appropriate format for import.

Informed by this prior work, we contend that the

proper output of data wrangling is not just transformed

data, but an editable and auditable description of the data

transformations applied. High-level transformation

descriptions will enable repeatability, modification,

and recording of data provenance. Transforms could

then be indexed and shared, enabling analysts to benefit

from the work of others. Such transforms might also

provide an artifact that can be annotated, enabling

analysts to share their rationale for various data cleaning

decisions.

Modification and reuse

Analysts frequently face the challenge of repeating a

transformation process, whether due to the discovery

of previously unnoticed errors, the arrival of new data,

or changes to the data schema. In manual tools such as

spreadsheet applications, this results in a great deal of

tedious replicated effort. When using transformation

scripts, simply rerunning a script is easy, but modifying

it to handle changes to the data may be difficult or

error-prone.

As a result, we believe an important requirement

for data wrangling tools is not only to store a previ-

ously executed chain of data manipulations, but to

facilitate interactive editing of transforms. Editing a

transform may be necessary at multiple levels: one

may wish to remove or insert additional operations, or

refine the parameters within a particular step. Providing

interactive transform histories are critical not only

for repurposing existing scripts to meet new data

demands, but also for enabling exploration of alterna-

tives by skeptical analysts. With current tools, it can be

difficult to determine if a provided data set has been

manipulated in an unseemly fashion, perhaps done

(un)consciously to hide the ‘flaws’ that might compli-

cate an analyst or decision maker’s desired story.

An equally important part is not what data operations

were performed, but why they were performed in the

first place. A precise description of the changes made,

and the rationales behind them, allows us to reconstruct

the data wrangling process post hoc and assess the

impact of each change on the data. Provenance is a

common theme in modern data management64;

although both origin and process are important in

provenance, data wrangling generally concerns itself

with the process. This part typically involves annotating

the manipulations with metadata, such as the reason for

performing the manipulation or the number of records

affected by the manipulation. The combination of

actions with rationale provides a richer picture of the

data wrangling process and results.

Of course, data transforms (and their consequences)

may be difficult to understand. For wrangling tools

to be successful, transform histories must be quickly

and accurately apprehended by auditors. Various tech-

niques might be applied to reduce this gulf of evalua-

tion.65 For example, transform histories might be

presented using natural language descriptions, enabling

broader audiences to assess the transforms applied. This

requires the development of techniques to enable both

representation and manipulation of operators within a

transformation. Moreover, we might develop visualiza-

tions that communicate the effects of various transforms

(as in the Wrangler system45). Visual previews of trans-

form effects should facilitate both the specification and

review of data transformations.
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Data transformation languages

One step towards achieving this goal is to create a

declarative language for data transformation that pro-

vides a high-level representation of data transforms.

Interactive operations performed by analysts within a

visual interface could be mapped to statements in this

language. Interactive wrangling would produce reus-

able scripts that can be modified to wrangle a new

data set, inspected to communicate data provenance,

and annotated to indicate an analyst’s rationale. Using

a high-level language also enables wrangling systems to

generate code for a variety of platforms; for example,

a transformation could be translated into a Python

script or MapReduce code to run on a Hadoop instal-

lation. As a starting point, we might look to prior work

from the database community,9,66 which has devel-

oped expressive languages for data reformatting. We

might extend these approaches with additional support

for discrepancy detection and correction.

Along the way, we will need to assess how visual

analytics tools might be designed in response to data

wrangling needs. Should analysis tools take data sets

only as input (as is typically done) or be extended to

become ‘provenance aware’? What is the right separa-

tion of concerns for tool modularity? System design

questions arise both for lower-level performance

issues – how to support rapid editing and rollback,

for example by caching intermediate transformation

states – and for user interface design – how might

data transformations and annotations be surfaced in

analysis tools to aid reasoning?

Wrangling in the cloud

One of the insights motivating our interest in data

wrangling tools is that algorithms are not enough.

Nuanced human judgements are often necessary

throughout the process, requiring the design of inter-

active tools. One avenue for further reducing the costs

associated with data preparation is to consider collab-

oration. To amortize wrangling costs and improve the

scalability of data cleaning in the wild, we might cast

data wrangling as an exercise in social computing.

Sharing data transformations

As a first step, we can consider how the wrangling

efforts of one analyst might be picked up and used

by others. Indexing and sharing of data transformation

scripts would allow analysts to reuse previous data

wrangling operations, with the goals of saving time

and improving data consistency. Transformation revi-

sions submitted by other collaborators could improve

the quality or reliability of shared transforms. By

deploying wrangling tools on the public web, a large

audience (analysts, journalists, activists, and others)

might share their transformations, and thereby further

open data access. Research challenges arise in how to

search for, present, and suggest transformations, or

transformation subsets, developed by others.

Mining records of wrangling

While the sharing of individual scripts has a clear

utility, additional benefits might arise from analyzing

a large corpus of wrangling scripts. For example,

one could analyze data set features (e.g. data types,

columns names, distributions of values) to learn map-

pings to probable transformations or infer higher-

level semantic data types. These data could lead to

better automatic suggestions.56 Such a corpus would

also be a valuable resource for studying data cleaning

strategies and informing the iterative design of wran-

gling tools.

User-defined data types

Another opportunity lies in providing mechanisms

for user-contributed type definitions: how can we

best enable data domain experts to define new seman-

tic data types? Analysts might author and share

domain-specific data type definitions enabling verifica-

tion, reformatting, and transformation (e.g. mapping

between zip codes and latitude–longitude pairs).

Incorporating domain-specific knowledge can improve

validation and might also facilitate data integration.

Though type authoring is probably feasible for only a

cadre of advanced users, a broad class of analysts

might benefit by applying those types to their data.

We might look for guidance from existing systems for

end-user authoring of data reformatting and validation

rules.36

Feedback from downstream analysts

Finally, we can consider how data quality might be

improved by social interactions occurring across

different phases of the data life cycle. Although data

wrangling typically seeks to improve data quality prior

to more sustained analyses, inevitably the process will be

imperfect. Downstream analysts or visualization users,

who might not have been involved in the initial data

preparation, may also discover data errors. Indeed,

such discoveries appear to be a common occurrence

in social data analysis environments.67,68 What interac-

tion techniques might allow such users to annotate,

and potentially correct, data quality issues discovered

during subsequent analysis? How can these discoveries

be fruitfully propagated into data transformation scripts

and brought to the attention of other users of the data?

Kandel et al. 283



Conclusion

In this article we have examined the practical problems

and challenges that regularly occur when an analyst

tries to work with a real-world data set. Although

data quality problems are commonplace and all of

the authors have experienced them in one form or

another, we found there was a gap in the literature

concerning the challenges and potential solutions. In

the previous sections we have highlighted broad

research directions which, in our opinion, warrant fur-

ther research (Table 1).

Future work should extend visual approaches into

the data wrangling phase. Visualization can aid in the

detection of potential problems in the raw data as a

counterpart to fully algorithmic approaches. Ideally,

we see a promising route in integrated approaches

that allow a human to visually steer statistical algo-

rithms. Visualization is also useful in the communica-

tion of data errors and uncertainties. When designing

new visual metaphors we should always be mindful

that our input data may not be pristine, and that our

chosen visual encoding should indicate any missing

values and data uncertainties. Finally, when it comes

to correcting data errors, visual approaches could inte-

grate with automated approaches to allow an interac-

tive editing cycle.

We have argued that data wrangling should be made

a first-class citizen in the data analysis process. Typical

research papers tend to showcase the result of visual-

izing previously cleaned data, but more often than not

neglect to mention how data errors were found and

fixed. Ideally, the output of a wrangling session

should be more than a clean data set; it should also

encompass the raw data coupled with a well-defined

set of data operations and potentially some metadata

indicating why these operations were performed.

These operations should be auditable and editable by

the user. Secondary benefits of a high-level data

transformation language include easier reuse of previ-

ous formatting efforts and an increased potential

for social, distributed collaboration around data

wrangling.

In current practice, wrangling often consists of

manual editing and reshaping using a general purpose

tool such as Microsoft Excel. Although this approach

is feasible for smaller data sets, a great deal of effort is

wasted on relatively menial tasks and no audit trails are

stored. We expect that this way of working will become

increasingly rare in the near future for two reasons.

First, in an increasingly data-driven society we need

auditable information on the data sets on which we

intend to base our decisions. Without ways of explicitly

storing the edits we make to a raw data set, we cannot

guarantee that the pristine data we are looking at has

not been substantially altered and is thus no longer

credible. Second, as the number and size of data sets

continues to grow, a completely manual approach will

become infeasible. Currently, in order to work with

many data analysis tools an analyst also needs to

have significant expertise in programming and/or

scripting in addition to the domain knowledge

needed to make sense of the data. If we do not address

this issue in the near future, we run the risk of disen-

franchising the very domain experts on whom we

depend for our data analysis.

In the previous sections we have provided a num-

ber of potentially interesting research directions, but

there are some challenges that we have not touched

upon. One obvious shortcoming is that there is very

little empirical work that studies how day-to-day

users wrangle with their data. To confirm and gauge

the importance of data wrangling, and to inform the

design of novel wrangling tools, it might be useful to

collect data on how data cleaning is currently

performed, both in the information visualization com-

munity and elsewhere. A survey could ask researchers

and practitioners to report on the amount of effort

spent on data wrangling, the tools they use, successes

and failures, and if they are in agreement with the

directions proposed in previous sections.

The VAST challenge69 might provide a valuable

resource for studying and comparing how users deal

with data wrangling issues. Many of the challenges

require participants to preprocess data in order to

conduct their analysis. For example, the 2010 entries

for the contest mentioned a multitude of manual

approaches for cleaning the data, leading to different

end results. Similar to the research literature, little was

said in the entries about how this was done, and only

a few people reported on how long it took to clean

the data.

Throughout this article we have assumed that our

data are stored in a structured format. Although this is

increasingly the case for many data sources, there are

also plenty of cases where the data are stored in a

format that is not directly amenable to computational

analysis. Data dissemination (especially by govern-

ments) has traditionally been done in the form of

printed reports, and there are still data providers that

consider a PDF scan of a report a digital version of the

data. There is no simple answer to these types of

problems and turning an unstructured raw file into

a structured format typically involves a lot of manual

work.

Finally, we wish to reiterate that there is not one

definition of ‘clean data’ and that overly cleaned data

are probably just as problematic as dirty data. For this

reason we always have to be aware of how data

operations we perform could affect the outcome of
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Table 1. Research directions in data wrangling and the sections in which they are discussed

No. Wrangling step Research challenge

3 Diagnosing data problems How to tightly integrate visualization
in the iterative process of data wrangling?

3.1 Visualizing ‘raw’ data What forms of summary visualizations
best assist analysts as they profile their data?

3.2 Scaling to large data sets How should we enable rapid linked
selections over scalable summary
visualizations, such as dynamic
aggregate views?

3.3 Visual assessment and
specification of automated
methods

How might we use visualization
to best communicate the results
of analytic techniques for
assessing data quality?

How can visual interfaces be used
to specify or steer analytic data quality
algorithms based on the semantics of the data?

4 Living with dirty data How can visualizations be best designed
to support reasoning with dirty or uncertain data?

4.1 Visualizing missing data What forms of visual encoding or annotation
should be used to flag known data quality
issues during visual analysis?

4.2 Visualizing uncertain data How effective are the existing techniques
to visualize uncertain data?

4.3 Adapting systems to
tolerate error

Do the data models provided by visual
analysis systems explicitly support missing
values or values that deviate from a schema?

5 Transforming data What interactive tasks do data wrangling
systems need to support to correct
data quality issues?

5.1 Data formatting, extraction,
and conversion

How can data transformations for reformatting
and validating data be specified and evaluated?

How can conversions between data values
of different types be facilitated
by semantic data types?

5.2 Correcting erroneous values What forms of constrained interaction with
visualizations best support the
specification of corrections?

How can automated techniques
for entity resolution be improved
by human input?

5.3 Integrating multiple data sets How can visual interfaces and
automated approaches to data
integration be more deeply combined?

6 Editing and auditing transformations How can data provenance
be captured and managed?

6.1, 6.2 Modification, reuse, and understanding
of a transformation

How can interactive transform histories
be used to represent, annotate
and modify the data transformation process?

6.3 Data transformation languages How to integrate visual interfaces with
data transformation languages to aid discrepancy
detection and correction?

(continued)

Kandel et al. 285



an analysis. In developing sophisticated capabilities for

data wrangling, we must be careful to define an ‘error’

not as an incompleteness, inconsistency, or incorrect-

ness that is intrinsic to a particular data representation,

but rather as a judgement of the suitability of that rep-

resentation’s format and semantics for data analysis.

In closing, we argue that data wrangling has long

been an elephant in the room of data analysis.

Extraordinary amounts of time are spent getting a data

set into a shape that is suitable for downstream analysis

tools, often exceeding the amount of time spent on the

analysis itself. At the same time, all this effort is wasted

when the data set changes and may be duplicated by

many other analysts looking at the same data. Data

cleaning cannot be done by computers alone, as they

lack the domain knowledge to make informed decisions

on what changes are important. On the other hand,

manual approaches are time consuming and tedious.

The principled coupling of visual interfaces with auto-

mated algorithms provides a promising solution, and we

hope visual analytics research will contribute a lasting

impact to this critical challenge.
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