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a b s t r a c t

Sensor-based human activity recognition (HAR), with the ability to recognise human
activities from wearable or embedded sensors, has been playing an important role in
many applications including personal health monitoring, smart home, and manufac-
turing. The real-world, long-term deployment of these HAR systems drives a critical
research question: how to evolve the HAR model automatically over time to accommodate
changes in an environment or activity patterns. This paper presents an online continual
learning (OCL) scenario for HAR, where sensor data arrives in a streaming manner
which contains unlabelled samples from already learnt activities or new activities.
We propose a technique, OCL-HAR, making a real-time prediction on the streaming
sensor data while at the same time discovering and learning new activities. We have
empirically evaluated OCL-HAR on four third-party, publicly available HAR datasets. Our
results have shown that this OCL scenario is challenging to state-of-the-art continual
learning techniques that have significantly underperformed. Our technique OCL-HAR has
consistently outperformed them in all experiment setups, leading up to 0.17 and 0.23
improvements in micro and macro F1 scores.
©2023 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Sensor-based human activity recognition (HAR) is the process of identifying human activities such as walking and
ooking from ambient and wearable sensors. HAR is the key enabling technology for applications in health monitor-
ng [1,2], smart home [3], traffic monitoring [4], and personalised training [5]. In recent years, HAR has been extensively
nvestigated [6,7], and numerous machine learning approaches, particularly deep learning [8,9], have been developed to
xtract features from sensor signals from multiple modalities and discover complicated correlations between features and
ehaviours [10–12].
The promising performance has potentially driven the increasing deployment of HAR systems in real-world applica-

ions. As time passes, individuals alter their activity patterns and engage in new activities, such as experimenting with a
ew type of exercise due to a change in their health status. This raises an important research question: how to discover and
earn new types of activities over time. There is a pressing need for a HAR system to incrementally identify and incorporate
ew types of activities into an existing HAR model. This refers to continual learning [13].
More formally, continual learning is the capability of a machine learning model to maintain old knowledge trained on

old tasks and incrementally learn and extend the knowledge from new tasks without the need for retraining the model
from scratch. In a computer vision application, for instance, a system may be trained with a set of photos to recognise a
pre-defined set of objects, and then it could be incrementally updated with new data to classify a new set of objects over
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time. However, such scenarios might not be feasible for HAR applications that often expect to process streaming sensor
data and automatically detect and learn new types of activities with sparsely labelled data. In addition, we often observe
distribution shift or concept drift in HAR data due to changes in user behaviour, sensor deterioration, or the addition of
new users. These problems are under-explored in the current continual learning fields.

This paper presents an OCL scenario for HAR, which captures the above unique characteristics to HAR. Compared
o the existing class-incremental continual learning setting, our scenario does neither assume explicit task boundaries
or abundant labelled training data for new tasks. To tackle this scenario, we propose an end-to-end technique, called
CL-HAR, which automatically detects novel activities from streaming sensor data and extends the current HAR model
ith sparsely labelled data. This technique is specifically designed for HAR, targeting real-world, long-term, deployment
hallenges.
One of the key challenges in continual learning is catastrophic forgetting [14], where the model tends to optimise

owards new data but forget old data, leading to degraded performance on predicting old classes. In our technique,
e have drawn effective practices from the literature to mitigate the forgetting effect; for example, sample and feature
eplay [15–19], knowledge distillation [20], and weight normalisation and re-scaling [21].

Another challenge faced in our OCL setting is the scarcity of labels. We assume working on streaming unlabelled data
nd OCL-HAR will actively detect new activities and select samples for users to annotate. In real-world deployments, it
s difficult to acquire high-quality activity labels on sensor data [22], so our technique aims to query users as little as
ossible. To do so, we have employed a cost-effective, semi-supervised learning technique with the mixup approach [23],
hich can leverage a very small number of labelled samples and tolerate corrupted labels.
Our main contributions are summarised as follows:

• We design and formalise an online continual learning setting for HAR that takes into account the main challenges
including new activities (new class), streaming data (online), and changes in activity patterns and sensor performance
(distribution shift).

• We propose a continual learning technique where we integrate new class discovery and learning while only requiring
a very constrained number of labels.

• We empirically evaluate our technique with state-of-the-art continual learning methods on a range of HAR datasets.
Our results show consistent, superior performance on sparsely labelled data streams with distribution shift.

. Related work

In the following, we introduce continual learning and its sub-field online continual learning, and compare and contrast
ur work with relevant studies.

.1. Continual learning

Continual learning is a popular topic in the field of machine learning and there is an increasing number of techniques
roposed every year. In general, these techniques are usually grouped into three categories [24]: dynamic architectures,
egularisation, and rehearsal. Dynamic architecture-based approaches increase the capacity of the network with new
arameters to learn new tasks, which often are more suitable for large sets of classes; e.g., 100 or 1000 classes and
hus more computationally expensive to train. For example, dynamically expandable representation for class incremental
earning (DER) [25] freezes the feature representation learnt from previous tasks to preserve the knowledge while at the
ame time adding additional layers to learn features on each new task. We consider them not suitable for human activity
ecognition (HAR) systems because of their large computational complexity and memory footprint.

Regularisation-based approaches introduce additional terms to the loss function that constrain the weight updates of
he network to prevent compromising the performance of old tasks. For example, Learning without forgetting (LwF) [26]
s the earliest attempt to employ the knowledge distillation loss [20] to prevent the current model’s softmax output
rom deviating from the previous model’s prediction. Elastic weight consolidation (EWC) [27] assumes that the posterior
robability of the network parameters given the data indicates which parameters are important. Unfortunately, the true
osterior is intractable. Thus, it is approximated as a Gaussian with diagonal precision given by the Fisher information
atrix (FIM) using Laplace approximation.
Rehearsal-based approaches store a subset of data from previous tasks and mix them with new tasks’ data in training.

ncremental classifier and representation learning (iCaRL) [28] is a class-incremental learning technique that reserves
representative samples from each task and combines them with new tasks’ data to update the classifier over time.
Additionally, it applies the distillation loss similar to LwF. A very similar technique to iCaRL is incremental learning in online
cenario (ILOS) [29] that uses a combination of the logit output of the old and the current model for the cross entropy
oss. The distillation loss is still calculated using the current model output. Greedy sampler and dumb learner (GDumb) [30]
s developed to question the progress in continual learning in general. It employs memory replay to train a model from
cratch for every incoming data batch. Surprisingly, this simple approach outperforms more sophisticated approaches by
large margin. These three approaches have demonstrated strong results in recent continual learning surveys [31,32].
The above rehearsal-based techniques use real samples for replay. Another strand of research is to use generated

amples for replay. Cong et al. [33] apply style-transfer generative adversarial neural networks (GAN) where the source
2
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model is frozen to mitigate forgetting while tuning a set of target-specific style parameters for new tasks’ data. However,
the quality of generated raw data will deteriorate over time and it often requires many samples and a long time to train.
deep generative replay-through-feedback (DGR-RtF) [34] uses variational autoencoder (VAE) [35] to generate samples,
and adds a classifier to the VAE via feedback connections such that they can train the classifier and VAE simultaneously.
This approach has outperformed a GAN-based approach on HAR datasets [36]. Xiang et al. [37] use GANs to generate
intermediate CNN features; that is, the output at the intermediate layer of a CNN for replay. The higher layers of CNN and
the fully connected layers will be updated to accommodate new knowledge. Our continual learning approach uses both
real sample replay and generated feature replay, with the goal to better mitigate the forgetting effect.

2.2. Continual learning in HAR

Continuous learning has recently gained interest in the HAR community. Siirtola et al. [38] propose incremental
earning methods to personalise HAR devices for different users. Ye et al. [39] have investigated the driving force behind
ontinual learning for real-world, long-term HAR system deployment and proposed a general framework to address
he problem. Jha et al. [31] have conducted empirical evaluation on a wide range of state-of-the-art continual learning
echniques on HAR datasets, and identified the best-performing techniques and their computational cost. Ye et al. [36]
ave applied GANs to generate sensor data on the seen activity classes and mix them with new classes’ data to train an
ncremental classifier. This helps to alleviate the privacy concern of storing real samples. However, GANs suffer from
orgetting over time and the quality of generated samples deteriorates. Leite et al. [40] propose a resource-efficient
trategy for HAR that utilises expandable networks that grow when new classes have to be learned. They employ the
eplay of compressed samples selected for maximal variability.

Adaimi et al. [41] argue that HAR based continual learning is still under-explored. They employ prototypical networks
nd memory replay to develop an online continuous learning system in which prototypes are continuously updated.
urther, they enforce inter-class separation through contrastive loss. Zhang et al. [42] examine multimodal learning in a
ontinuous fashion for HAR. They couple EWC and canonical correlation analysis in an effort to exploit the correlations
etween various activity sensors in order to mitigate catastrophic forgetting.
The main difference between these projects and ours is that in our OCL setting, the data stream does not have

ny labels, and our technique needs to actively detect the existence of new classes, acquire and propagate labels, and
hen perform continual learning. Their focus is only on the last part; i.e., continual learning, and we are looking for an
nd-to-end systematic solution for OCL.

.3. Online continual learning

OCL is gaining increasing attention as the existing offline setting of continual learning (CL) is considered less realistic
or real-world applications [29,43]. Aljundi et al. [44] consider online continual learning as a setting where new samples
re arriving in a streaming manner and there is no clear task boundary. Their focus is on optimising the sample selection
or replay-based techniques. They leverage gradient-based information to select samples that are likely to form a diverse
epresentation of the seen data.

Mai et al. [45] define OCL where data arrives in small batches a time and the previous batches are inaccessible so that
n OCL algorithm is required to have a single pass over the online data stream. They have reviewed a collection of CL
echniques and found out that these CL techniques are under-performing under this OCL setting.

Another online continual learning setting is to mix samples from new classes and old classes in a task to create blurry
ata batches [30,46–48]. Koh et al. [48] propose a mixture of importance based memory management where they choose
amples for their memory buffer by the expected loss decrease per sample, memory only training where instead of training
he incoming data together with the memory buffer only the updated memory buffer is used for each training step (similar
o GDumb) and an adaptive learning rate scheduling.

Our setting is similar to the above blurry setting as new data batches can contain old and new classes, but we do not
ssume to have access to all the labels immediately and the data within the same class exhibits distribution shift; e.g., this
an be caused by different users performing the same activity differently. More specifically, new batches can contain new
ata from seen users and their activity classes, new emerging users or new classes, or both. Our model has to learn from
his stream and make predictions, and as well as seek opportunities to detect new classes and extend the model. This is
more realistic and relevant scenario for a real-world HAR application.

. Background of continual learning and problem statement

In this section, we will introduce the CL problem and describe the most studied CL scenarios. Then we will define the
etting of online continual learning in HAR and highlight the difference from CL in classic areas such as computer vision.
Here we focus on the CL problem of a neural network model. Let T = [t1, t2, . . . , tn] be a sequence of tasks and each

ask ti (1 ≤ i ≤ n) consist of a finite set of new classes Ci and their training data {(xj, yj)|yj ∈ Ci}
mi
j=1. Continual learning

refers to the process of training a neural network model with the training data of multiple tasks in succession, in order to
predict labels for all classes observed to date. The goal is to incorporate new information into an existing model without
3
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Fig. 1. Class-incremental continual learning vs. online continual learning..

forgetting previous information. Early research efforts concentrated on two continual learning scenarios: task incremental
learning (task-IL) and class incremental learning (Class-IL) [49]. In task-IL, a model contains task-specific components; for
instance, in a multi-head architecture, each head corresponds to a classifier output head for all the classes in a task. A
task ID (e.g., ‘‘animals’’) is always provided during training and prediction to direct the network to a specific component
(e.g. ‘‘animal classifier’’). Class-IL typically lacks task-specific components, and a task ID is not provided during prediction.
It is a more difficult scenario and better resembles real-world problems because it is unrealistic to expect a known task
ID for an unknown sample.

However, class-IL may not be suitable for HAR systems. Firstly, class-IL still assumes a distinct separation between
tasks; however, sensor data frequently arrives in a streaming format, which can mix samples from old and new classes.
Secondly, class-IL requires a large number of well-labelled samples for each task, which can be impractical to collect on
a deployed HAR system. Thirdly, it often assumes that the distribution of old tasks remains unchanged, whereas in HAR,
sensors can degrade and activity patterns can shift. Consequently, the distribution of old classes will typically change over
time. To account for these constraints, we present an online scenario for continual learning, as shown in Fig. 1.

Assume that there exists the first task with its training data {(xj, yj)|yj ∈ C1}
m1
j=1, which can be used to initialise a model;

or example, training a feature extractor and a classifier. After this first task, we will only observe streaming data without
ask boundaries: {xj}∞j=1, where each sample xj may belong to a previously seen class ∈ C1, or a new class. Even when xj
elongs to a seen class, it may be sampled from a different distribution; i.e., from a different user. All these samples do
ot have a label. An online continual learning algorithm needs to either make a prediction on these samples or identify
otential new activities from them and acquire labels in a semi-supervised manner. This setting is different from recent
orks [50,51] in that the incoming batches are from a fuzzy data stream and not collected from an array of sequential
asks without explicit but implicit task boundaries.

. Proposed approach

In this section, we illustrate an online continual learning framework for HAR. It operates on a small batch of streaming
ensor data and is able to discover new types of activities with which to incrementally evolve the model. Fig. 2 presents
he overall pipeline which consists of the following four main steps.

• A. Training: Assume we have some initial data that are labelled with a subset of activity classes of a dataset. With
the data, we will train a neural network (NN) as a classifier to predict the activity labels provided in the initial data.

• B. Predicting and discovering: Working with streaming sensor data, we perform outlier detection and prediction on
a small batch.1. A batch is a sequence of streaming data that can contain the data from old and new classes, and
the data points are not labelled. The batch size is generally smaller than the size of a task, and it depends on the
operational device’s capacity for incoming data. To preprocess this incoming unlabelled data, outliers and possible
members of already seen classes have to be identified. If a sample is an outlier, it is stored in an in-memory buffer
for step C; otherwise, the NN classifier created in step A is used to provide a label.

1 To note that batch is different from a task in a classic continual learning setting. A task’s data often consists of a large number of well-labelled
samples on a new set of classes; for example, a few thousand images for ‘‘cat’’ or ‘‘dog’’ This data will be used for offline training on a continual
earning algorithm.
4



M. Schiemer, L. Fang, S. Dobson et al. Pervasive and Mobile Computing 93 (2023) 101817

r
f
f
f
l
n
a
i
h
f

Fig. 2. Workflow of an online continual learning algorithm where newly incoming batches can contain new samples of new and known classes
(represented by colour) and/or new and known users (represented by shape).

• C. Semi-supervised learning: We process the in-memory buffered samples to discover any new activities. To accom-
plish this, we will cluster the samples and select a very limited number of representative samples to query end-users
for annotation. Then, label propagation is performed on the remaining samples in the buffer. The now-labelled
outliers and previously labelled data samples are utilised to update the classifier.

• D. Updating: We will extend the architecture of the NN classifier to accommodate new classes and then fine-tune
it with replay samples and newly labelled data. In addition, we will update a replay memory with new samples to
reflect the changes in data distribution.

Steps B, C, and D are repeated as new streaming data arrive. Each of these steps will be described in detail in the
following subsections.

4.1. Prediction and discovery

For each sample in the incoming batch, we first perform outlier detection to filter outlier samples that deviate from
the data seen so far. These outlier samples can be drawn from unknown, new classes or from the known classes with
similar or different distributions, or they can be noisy samples due to environmental interference or sensor degradation.

A straightforward technique for outlier detection is to assess a models prediction confidence to identify uncertain
samples. However, NN classifiers are often over-confident on their predictions [52]. One observation is that uncertain
samples might not be the novel classes, but the samples residing at the boundaries of overlapping classes; for example,
sitting and standing. Therefore, we are looking for other outlier detection algorithms. Ideally, we would like a low-memory
and low-computing outlier detection algorithm that can accurately detect all outliers.

We decide to employ isolation forests [53] that generate multiple decision trees that split a dataset iteratively by
andomly selecting a feature of the data and then selecting a random value between the maximum and minimum of the
eature. Normality can be measured by the average length of the path on the trees required to separate a single sample
rom the rest. Outliers are identified if their separation requires fewer steps than in-distribution samples [53]. The isolation
orests have the following advantages: there is no need for distance or density measurements, the time complexity is
inear, it has a small memory footprint, and it is highly scalable to a large number of samples. Most importantly, they do
ot require the storage of any real data samples which allows us to use them for any constraint environment. We create
n isolation forest for each class that has been seen. If an incoming sample is identified to be an outlier by all forests,
t will be assigned as such and stored in the in-memory buffer. Otherwise, it will be passed to NN for classification. We
ave run preliminary test and compared with other techniques such as distance-based method and Dirichlet. Isolation
orest can achieve 74.3% on correct outlier detection, outperforming the alternatives.
5
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4.2. Semi-supervised learning

In our setting, streaming data does not have labels. Once the in-memory buffer is full, we will perform semi-supervised
earning to acquire labels and update the classifier. Semi-supervised learning has long been applied in scenarios with
carce annotation [54]. The goal is to achieve high accuracy on label propagation and at the same time to require as
ew real labels as possible. Motivated by this objective, we employ a technique based on clustering. First, we employ
-means [55,56] as clustering algorithm on all the outlier samples in the buffer once the buffer is full. The clusters
re arranged in descending order by size. Then, we select the top k groups whose sizes are large enough to indicate
hat they represent recurrent patterns and potentially novel types of activities. For each selected group, a label on the
entroid sample is acquired. These k-labels are then spread to the remaining samples in their respective clusters and
ll newly labelled data are added to the training data. We also experimented with the other off-the-shelf graph-based
abel propagation algorithms including Label Propagation [57] and Label Spreading [58], which are more computationally
xpensive and do not outperform this simple approach in our setting; i.e., 91% of correct label assignment.

.3. Updating

After preprocessing the incoming new data batch we extend the output layer of the current model by the number of
ewly detected classes and re-train the model. As we assume no prior knowledge about the total number of classes in
he datasets, we need to extend the output layer with the newly discovered classes. To minimise the impact to the model
ize, we only add neurons to the output layer, and therefore, the increased size of the model is the product of the number
f new classes and the number of parameters in the second last layer.
The main challenge of updating the model is catastrophic forgetting [13], a well-known problem in continual learning.

eural networks are too plastic to recently learned data. Thus, when the model is optimised to new data, the performance
n previously seen data will decrease. To mitigate the forgetting effect, we will adopt regularisation and replay-based
echniques that have demonstrated promising performance, as discussed in Section 2.

One of the most commonly applied regularisation algorithms is knowledge distillation (KD) [20], which uses a modified
ross-entropy loss and aims to retain the knowledge from the previous model by penalising a large update on the model
arameters [26]. Let f be a feature extractor and g be its classifier and the KD loss LKD is defined as follows:

LKD = −

c∑
i=1

y′(i)
oldlogy

′(i)
new (1)

y′(i)
=

(y(i))1/T∑
j(y(j))1/T

, y(i)new = softmax(g t (f t (x))), y(i)old = softmax(g t−1(f t−1(x))) (2)

here c is the number of known classes. y′(i)
old and y′(i)

new are the temperature T scaled softmax outputs of the old and new
model for class i. g t , f t , g t−1, f t−1 are the classifiers and feature extractors at the time step t and t − 1 respectively.
he loss LKD aims to minimise the difference of predictions between the current model g t (f t (xi)) and the previous model
t−1(f t−1(xi)).
Previous research [30,59] has demonstrated that regularisation alone is insufficient to combat catastrophic forgetting;

herefore, it is common to integrate regularisation with replay techniques, i.e., sub-sampling data from seen classes, storing
hem in memory, and mixing them with data from new classes when re-training the model. To further improve knowledge
etention, we introduce a recent approach on feature replay [18,19]. After training at each step, we generate a prototype
or each new class. The prototype is based on the final feature representation of the data; that is, the activations in the
econd last layer of the model. The class prototype is represented by the mean µc and variance σc :

µc =
1
nt
c

ntc∑
i=1

f (xti ), σ 2
c =

1
nt
c

ntc∑
i=1

(f (xi) − µc) ⊙ (f (xi) − µc) (3)

where nt
c is the number of samples in a class c at the time step t . During the following training steps, these prototypes

are used to sample feature vectors for each class from a normal distribution given the µc and the average of all class
variances.

xprotoc ∼ N (µc, σ
2
c ) (4)

These generated features are then replayed to the last layer in the feature relay loss LCEFeatRep. It calculates the cross
ntropy loss between the true class label c and the predicted label on the generated prototype sample xprotoc . The purpose
f this loss is to penalise large deviance of the classification layer on the already learnt features.

LCEFeatRep =

C∑
CE(g(xprotoc ), c) (5)
c=1

6
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The advantage to other generative methods such as GANs [60] and VAEs [35] is that the process is more resource-effective,
which is desirable on HAR devices. To maintain the usefulness of the class prototypes even after updating with new data,
feature level distillation [15,17,18] on the last layer before the classifier is also used to prevent the model from deviating
from its former representations:

LFeatureKD = −
1
nt

n∑
i=1

∥f (xi) − f t−1(xi)∥2 (6)

In our OCL setting, we only query a small number of labels and spread labels on the other data via label propagation,
which can lead to corrupted labels. To enhance the robustness, we employ mixup [23], a commonly adopted technique
in dealing with noisy labels. It works by generating linear combinations of samples and their labels:

x̃ = λxi + (1 − λ)xj, ỹ = λyi + (1 − λ)yj (7)

where (xi, yi) and (xj, yj) refer to any two random samples in the current batch, yi (yj) is the one-hot encoding of the
target labels, and λ is sampled from a beta distribution for each sample. These linear combined samples are then used for
training with the cross-entropy loss LCEMixup. Putting all the loss components together, we reach the final loss function:

L = LCEMixup + LKD + LCEFeatRep + LFeatureKD (8)

ALGORITHM 1: General Algorithm for Online Continual Learning
input : Batch 1 data b1 = {(xj, yj)|yj ∈ C1}

m1
j=1

input : Streaming data S = {xj}∞j=1
1 build a model with b1
2 initialise an in-memory buffer B to host outlier samples
3 initialise a replay memory M to host replay samples
4 for xj ∈ S do
5 if xj is abnormal then
6 add it to B
7 end
8 else predict a class label on xj ;
9 if |B| > threshold then

10 run clustering on B
11 identify significant clusters
12 perform semi-supervised learning to label each significant cluster
13 update the model with newly labelled data and replay samples in M
14 update M with samples subsampled from new data
15 end
16 end

The last preventative measure for catastrophic forgetting is weight alignment which is composed of vector normalisa-
tion and re-scaling [21]. The objective is to eliminate the output weight bias caused by the imbalanced training batches.
It has been empirically found that imbalanced training batches lead to larger weight vector norms for the majority
classes [21,61,62]. A larger norm indicates that a group is regarded as more significant and its classification is more likely.
The normalisation is performed in the following way:

wnorm
c =

wc

∥wc∥
(9)

where wc is the output weight vector of class c. The output-layer weights’ vectors are normalised after calculating
gradients and before the weight update. For the re-scaling part, after learning a batch, the weights wi of class i are re-scaled
based on the sample ratio of old and new classes:

w′i =
nmax

ni

γ

∗ wi (10)

here nmax is the number of samples of the class with the most samples so far and ni is the number of samples in class i.
he scaling factor γ is a hyperparameter, indicating the scaling strength [63]. The larger γ the stronger the influence of
nfrequent classes. In the online setting, as we deal with streaming sensor data and we do not assume prior knowledge
f the number of training data on all the classes, then ni varies on each batch. Therefore, we will have to re-scale the
eights on each batch update.
At the end of each update, we update a replay memory with a small number of samples for each class for memory

eplay. The size of the memory buffer is fixed and each of the seen classes is allocated with the same size. The sample
election is performed randomly as more complex strategies like herding [64] need access to many class samples to select
representative set. Algorithm 1 summarises the overall algorithm. Compared to retraining a model from scratch, this
ay of continually and incrementally updating the model is computationally efficient.
7
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Table 1
Characteristics of the used Datasets.
Dataset Nr. samples Nr. features Nr. classes Nr. users Removals Class balanced User balanced

PAMAP2 5624 243 11 6 1 class, 3 users No No
DSADS 9120 405 19 8 None Yes Yes
HAPT 10184 561 11 28 1 class, 2 users Yes No
WISDM 23074 91 18 44 None No No

5. Experiment setup

In the following we present our experimental setup for OCL. Section 5.1 introduces the used datasets, Section 5.2
xplains the evaluation metrics, Section 5.3 defines our protocol and experiment design, Section 5.4 describes the
ompared techniques and our reasoning for choosing them and Section 5.5 illustrates the hyperparameter settings.

.1. Datasets

To evaluate our online continual learning scenario, we are looking for datasets that satisfy the following criteria: (1)
hey have a large set of classes so that we can introduce new classes over time; (2) they exhibit diverse patterns in each
lass so that we can simulate distribution shifts; for example, a dataset has multiple users; and (3) they use different
ensing technologies so that we can assess the generality of our approach. According to these criteria, we have reviewed
he existing, publicly available HAR datasets and selected the following four datasets.

• Physical Activity Monitoring (PAMAP2) [65] was collected for activity recognition and intensity estimation purposes.
It contains 18 physical activities, including a wide range of everyday, household and sport activities, from 9 users.
The sensor data is collected on accelerometers worn on the chest, dominant arm and side ankle, totalling 10 h of
data with a sampling frequency of 100 Hz. We use features generated by [66] which contain 12 classes and 6 users.
Their feature generation protocol is that 27 features are extracted per sensor on each body part which results in 81
per body part, including mean, standard deviation, and spectrum peak position.

• Daily and Sports Activities Dataset (DSADS) [67] contains 19 activity classes such as running, rowing, and sitting. Each
user performs each of these activities for 5 min at a 25 Hz sampling frequency. The data samples are collected on 8
users with 5 accelerometer units on each user’s torso and extremities. The subjects were not instructed on how the
activities should be performed. Here we use the same set of feature generation protocol as PAMAP2 [66].

• Human Activity Recognition Dataset (HAPT) [68] contains 12 activities such as standing or walking and postural
transitions such as stand-to-sit. It is collected from 30 subjects wearing a smartphone (Samsung Galaxy S II) on
their waist with a 50 Hz sampling frequency. The data is split with a fixed-width sliding window of 2.56 s and
50% overlapping. After filters and transformations, features like mean, absolute difference, skewness and more
are generated. In the end, Reyes-Ortiz et al. [68] extracted 561 features from accelerometer and gyroscope sensor
readings.

• The Smartphone and Smartwatch Activity and Biometrics dataset (WISDM) [69] dataset was collected from 51 sub-
jects performing 18 daily activities including walking, jogging, brushing teeth, eating and drinking, each performed
for 3 min. During the data collection each subject either wore a smartwatch; i.e., a LG G Watch on their dominant
wrist, or had a smartphone i.e., Samsung Galaxy or Google Nexus 5/5X in their pocket. The accelerometer and
gyroscopic data from both watches and phones were collected at a rate of 20 Hz. We use the generated features
of [69], where 10-second non-overlapping time windows were used to split the data. The derived features include
average, peak, absolute difference, and variances.

We present the characteristics of each dataset in Table 1. Except for DSADS, all the other datasets are imbalanced
o various degrees. WISDM is relatively balanced in terms of activity classes but data on each user is imbalanced. For
AMAP2 and HAPT, data is balanced on users but not on the classes. Fig. 3 shows the class distribution for datasets. We
an observe user diversity on each class, which allows us to simulate data distribution shifts effectively by iteratively
dding new users to the learn-able pool. To allow for consistent evaluation on all users and classes, we filter each dataset
uch that users that do not have all classes and classes that are severely underrepresented are removed (see Fig. 4).

.2. Evaluation metrics

We consider F1-scores as a balanced measure of both precision and recall. Because our datasets are imbalanced, we
se both micro-F1 and macro-F1 scores.
In continual learning, a commonly-considered metric is forgetting [70]. It indicates how much knowledge can be

etained. The higher the forgetting score, the less knowledge is retained. The forgetting score is measured on a class
8
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Fig. 3. t-SNE plots for users and activity ids on all the datasets.

Fig. 4. Histograms of user and activity distribution on all the datasets.

c at each updating step t as the difference between the current accuracy and the highest accuracy achieved so far. We
verage the score on all the seen classes at each step t as below:

F t
=

1
|C |

C∑
c=1

max
l∈1,...,t−1

(alc) − atc .

.3. Evaluation protocol

Our goal is to investigate online continual learning with distribution shift. Here distribution shift is simulated as
ddition of new users’ behaviour patterns on known classes. We have designed a systematic evaluation methodology
here we can blend new class samples with new users’ samples on the seen classes in the incoming batches.
9
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Fig. 5. Train-test splits for our OCL scenario.

For each experiment, we first apply stratified train and test splitting on each user’s data, as shown in Fig. 5. Then we
huffle the user list and split the users into train and test users. The training data Train consists of the training data on
he users in the train set. We have two test data: Testall consisting of the test data on all users and Testunseen consisting of
ata from the users in the test set. Testunseen and Testall is not used in any training process, and only for testing different
urposes: the model’s ability to perform on unseen users with Testunseen and the forgetting effect on seen users with Testall.
hat is, with distribution shift, whether the OCL algorithm will still be able to recognise activities on all the seen users or
nly the recently encountered. We perform the following three different types of experiments:

• Within-subject: We take each user’s training data Trainu for simulating OCL: streaming their data to our technique
for batch processing. That is, the initial batch b0 contains a subset of the data of a subset of all classes. Incoming
batches bi contain samples of the remaining known classes or new classes. We evaluate the final model on the test
data on each user Testu. This is the simplest scenario for learning individual users’ activities over time.

• Between-subject: We mix all users’ training data for simulating OCL in the same way as above. This is a more common
setting for a HAR system that infers activities collectively from a large set of users.

• Between-subject-with-distribution-shift: This is similar to the above but the main difference is that we do not expose
all the training users in one go and we introduce them incrementally in order to model distribution shifts of activity
classes; that is, the activity patterns can change over time. Algorithm 2 in Appendix presents how to simulate
distribution shifts in OCL.

For all these evaluations, we only use labels in the initial batch, and for all the incoming batches, we perform
emi-supervised learning to acquire labels.

.4. Comparison techniques

As mentioned in Section 2, we will focus on memory replay-based techniques and select the ones that have shown
romising results in a recent survey [45] and are commonly used as baselines for similar works [32,36]: iCaRL [28],
LOS [29], GDumb [30], and DGR-RtF [34]. In addition, we include the fine-tuning Baseline in which we only naively
pdate the classifier with newly labelled data, without the use of regularisation nor memory replay. We also add a Replay
echnique that simply adds all samples from the memory buffer to the current batch during training and only employs
ross-entropy loss without any other regularisation. As all of these comparison techniques are not originally designed for
nline continual learning, especially unable to deal with unlabelled data, we will update them with the same output from
ur semi-supervised learning step.

.5. Hyperparameter settings and implementation details

For all experiments we are using fully connected neural networks with 2 hidden linear layers and the number of
eurons for all layers is the same as the number of input features for each dataset (e.g. 243 neurons for each layer for
AMAP2). The output-layer has as many neurons as there are currently found classes. ReLU is used as as activation
unction. The initial training batch is trained for 500 epochs and the incoming streaming batches for 100 epochs to
ccommodate the smaller streaming data batches. We use the ADAM optimiser with an initial learning rate of 0.0001,
eta values of 0.9 and 0.999, epsilon 1e-08 and no weight decay. We reset the optimiser for each incoming batch, because
e do not want to consider data to be of different importance. The λ value for all the distillation methods is set to 1. The

and β values for the beta distribution to sample the mix ratio λ in Eq (7) are set to 1.

10



M. Schiemer, L. Fang, S. Dobson et al. Pervasive and Mobile Computing 93 (2023) 101817
Table 2
The mean and standard deviation of micro and macro F1 scores of OCL-HAR and other comparison techniques on the
within-subject experiment. The highest scores are highlighted in bold.

PAMAP2 DSADS HAPT WISDM
Micro/Macro F1 Micro/Macro F1 Micro/Macro F1 Micro/Macro F1

Baseline 0.21(0.06)/0.11(0.05) 0.11(0.03)/0.06(0.02) 0.23(0.08)/0.09(0.05) 0.12(0.04)/0.06(0.04)
Replay 0.68(0.10)/0.65(0.11) 0.73(0.07)/0.67(0.08) 0.81(0.11)/0.76(0.16) 0.68(0.15)/0.62(0.14)
iCaRL 0.71(0.13)/0.67(0.14) 0.72(0.05)/0.67(0.06) 0.90(0.07)/0.85(0.1) 0.68(0.15)/0.63(0.17)
ILOS 0.56(0.15)/0.47(0.16) 0.62(0.08)/0.54(0.1) 0.72(0.19)/0.68(0.19) 0.58(0.19)/0.50(0.22)
GDumb 0.42(0.2)/0.34(0.23) 0.58(0.13)/0.51(0.14) 0.79(0.26)/0.74(0.29) 0.47(0.14)/0.37(0.11)
DGR-RtF 0.39(0.14)/0.23(0.10) 0.21(0.08)/0.11(0.06) 0.53(0.27)/0.37(0.28) 0.13(0.07)/0.05(0.05)

OCL-HAR 0.85(0.04)/0.84(0.05) 0.88(0.05)/0.87(0.05) 0.89(0.1)/0.79(0.17) 0.74(0.13)/0.69(0.15)

Table 3
The mean and standard deviation of micro and macro F1 scores of OCL-HAR and other comparison techniques on the
between-subject experiment; evaluating on the test data Testall of all the subjects. The highest scores are highlighted
in bold.

PAMAP2 DSADS HAPT WISDM
Micro/Macro F1 Micro/Macro F1 Micro/Macro F1 Micro/Macro F1

Baseline 0.23(0.06)/0.14(0.05) 0.15(0.05)/0.09(0.03) 0.29(0.13)/0.14(0.12) 0.20(0.03)/0.12(0.03)
Replay 0.54(0.07)/0.46(0.07) 0.50(0.06)/0.44(0.07) 0.53(0.08)/0.42(0.10) 0.22(0.03)/0.15(0.03)
iCaRL 0.52(0.06)/0.44(0.07) 0.50(0.06)/0.43(0.05) 0.56(0.08)/0.45(0.10) 0.22(0.03)/0.15(0.03)
ILOS 0.47(0.11)/0.38(0.11) 0.37(0.06)/0.29(0.04) 0.47(0.09)/0.35(0.08) 0.20(0.02)/0.12(0.02)
GDumb 0.26(0.14)/0.18(0.14) 0.14(0.06)/0.06(0.05) 0.41(0.12)/0.33(0.16) 0.06(0.01)/0.01(0.01)
DGR-RtF 0.52(0.06)/0.44(0.09) 0.20(0.04)/0.11(0.04) 0.56(0.04)/0.29(0.05) 0.15(0.03)/0.08(0.02)

OCL-HAR 0.67(0.06)/0.64(0.06) 0.68(0.04)/0.67(0.06) 0.60(0.10)/0.52(0.11) 0.19(0.03)/0.11(0.02)

We adopt the implementations of the comparison techniques [31], and for iCaRL, we use a neural network as a classifier,
rather than nearest-of-mean classifier, because the results with nearest-of-mean classifiers are very poor on our sensor
data. For DGR-RtF [34] the z-layer size is set to 1/10 of the input features and 300 samples are generated for each step.
All the implementations are in PyTorch [71] and will be made available.

6. Results and discussion

In this section, we present and discuss the results of our experiments.

6.1. Overall performance of OCL on between-subject-with distribution

This subsection will report the results of the three experiments listed in Section 5.3. For this part, we set up 20 training
steps after the initial training, 1 labelling query per training step, and a total of 20 samples for memory replay of the seen
classes. Table 2 presents the micro and macro F1 scores of the within-subject experiment. OCL-HAR outperforms the other
comparison techniques; specifically, the improvement over the second best-performing techniques is 0.14 and 0.17 on
PAMAP2, 0.15 and 0.2 on DSADS, and 0.06 and 0.06 on WISDM in micro and macro F1 respectively. It scores lower on
HAPT than iCaRL with 0.01 and 0.06 in micro and macro F1.

Table 3 presents the performance on the between-subject experiment. OCL-HAR outperforms the other techniques on
most of the datasets; more specifically, 0.13 and 0.18 on PAMAP2, 0.18 and 0.23 on DSADS, and 0.04 and 0.07 on HAPT
in micro and macro F1. On WISDM, all techniques struggle to learn the diverse user patterns. OCL-HAR is slightly lower
than Replay and iCaRL within 0.03 and 0.04 of micro and macro F1.

Tables 4 and 5 present the performance of the between-subject-with-distribution-shift experiment, where we system-
atically increase the subset of available users and classes to simulate distribution shifts. Table 4 refers to the results on
Testall and Table 5 on Testunseen. Similar to the above, OCL-HAR outperforms the other techniques with large margins on
both: for example, 0.17 and 0.23 on PAMAP2 in micro and macro F1 for Testunseen.

Cross these three experiments, the within-subject experiment is about continual learning on individual users’ activities,
while the other two experiments are more challenging. Between-subject introduces more users with diverse patterns and
between-subject-with-distribution-shift requires to take into account generalisation on unseen users and distribution shift
of the activity classes. We can see that the overall results for the techniques are affected by the increasing harshness in
our scenarios. This highlights the advantage of studying HAR data for online continual learning scenarios: the simulated
distribution shift compromises the training for all methods noticeably; for example, all the methods achieve lower
11
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Table 4
The mean and standard deviation of micro and macro F1 scores of OCL-HAR and other comparison techniques on the
between-subject-with-distribution-shift experiment; evaluating on the test data Testall of all the subjects. The highest
scores are highlighted in bold.

PAMAP2 DSADS HAPT WISDM
Micro/Macro F1 Micro/Macro F1 Micro/Macro F1 Micro/Macro F1

Baseline 0.21(0.06)/0.14(0.06) 0.18(0.1)/0.12(0.09) 0.24(0.09)/0.1(0.04) 0.17(0.02)/0.09(0.02)
Replay 0.53(0.08)/0.46(0.09) 0.46(0.04)/0.39(0.05) 0.52(0.08)/0.39(0.09) 0.21(0.02)/0.13(0.02)
iCaRL 0.54(0.07)/0.45(0.08) 0.49(0.02)/0.41(0.02) 0.50(0.10)/0.42(0.11) 0.19(0.02)/0.10(0.02)
ILOS 0.42(0.09)/0.35(0.09) 0.35(0.06)/0.25(0.06) 0.44(0.09)/0.32(0.1) 0.17(0.02)/0.09(0.02)
GDumb 0.19(0.09)/0.11(0.09) 0.17(0.10)/0.09(0.09) 0.39(0.17)/0.28(0.16) 0.07(0.01)/0.02(0.01)
DGR-RtF 0.30(0.08)/0.25(0.1) 0.17(0.05)/0.08(0.04) 0.41(0.07)/0.22(0.05) 0.15(0.02)/0.07(0.02)

OCL-HAR 0.66(0.06)/0.64(0.06) 0.66(0.03)/0.63(0.04) 0.59(0.06)/0.47(0.10) 0.17(0.02)/0.10(0.02)

Table 5
The mean and standard deviation of micro and macro F1 scores of OCL-HAR and other comparison techniques on the
between-subject-with-distribution-shift experiment and the results are evaluated on the test data Testunseen of the test
subjects. The highest scores are highlighted in bold.

PAMAP2 DSADS HAPT WISDM
Micro/Macro F1 Micro/Macro F1 Micro/Macro F1 Micro/Macro F1

Baseline 0.25(0.06)/0.16(0.06) 0.16(0.11)/0.10(0.10) 0.36(0.06)/0.15(0.04) 0.13(0.03)/0.07(0.02)
Replay 0.49(0.09)/0.4(0.09) 0.43(0.07)/0.36(0.06) 0.53(0.08)/0.42(0.10) 0.17(0.03)/0.10(0.02)
iCaRL 0.49(0.05)/0.4(0.06) 0.48(0.04)/0.39(0.06) 0.50(0.11)/0.44(0.10) 0.17(0.02)/0.10(0.03)
ILOS 0.42(0.09)/0.35(0.09) 0.33(0.06)/0.24(0.06) 0.44(0.13)/0.30(0.11) 0.16(0.02)/0.09(0.02)
GDumb 0.21(0.10)/0.11(0.11) 0.16(0.09)/0.08(0.07) 0.41(0.16)/0.32(0.17) 0.07(0.01)/0.01(0.01)
DGR-RtF 0.29(0.06)/0.16(0.05) 0.20(0.05)/0.11(0.04) 0.50(0.11)/0.28(0.11) 0.13(0.01)/0.05(0.01)

OCL-HAR 0.66(0.08)/0.63(0.1) 0.61(0.04)/0.56(0.04) 0.67(0.05)/0.59(0.05) 0.17(0.03)/0.09(0.03)

accuracies on the between-subject-with-distribution-shift experiment. Thus, exemplifying that the standard data split
revalent in previous research may not be able to reflect the domain shift challenge in continual learning.
Between these comparison techniques, Replay boosts the performance even only with a small memory budget, while

he impact of knowledge distillation is not significant in that the scores of iCaRL and ILOS are not much better than
eplay. Even though demonstrating good performance on computer vision datasets, GDumb does not work well on the
AR datasets, which might be caused by the largely overlapping class patterns between activities such as sitting and
tanding. Also, it is challenged by fewer training data overall and in the memory buffer than in image scenarios. DGR-
tF, as a generative technique, works well on the majority classes in an imbalanced dataset, but struggles to generate
epresentations that can separate overlapping activities. This can be seen by comparing the performance of the imbalanced
AMAP2 and HAPT with the one on DSADS.
On WISDM, the results from all the techniques on the within-subject experiment reported in Table 2 are significantly

igher than the results on the other two experiments. The reason might be that WISDM has a much more diverse set of
sers (e.g. 44) as shown in Fig. 3(h) so that the models that we learnt over time cannot be generalised across them in
he harsher scenarios. Besides, WISDM has a large number of activity classes and the subtle difference between some of
hese classes can lead to poorer performance.

As our goal is online continual learning with distribution shift, the following results will be only reported in the
etween-subjects-with-distribution-shift experiment and evaluated on the test data Testunseen of the unseen users.

.2. Incremental update

Following the same setup, here we look at the degradation of performance over each training step. Fig. 6 compares
icro F1, macro F1, and forgetting scores of our technique and the other comparison techniques on four datasets. On
AMAP2 and DSADS, our technique achieves the highest micro and macro F1 scores (0.66/0.63 and 0.61/0.56), and has
he lowest forgetting scores (0.24 and 0.28). It demonstrates that our technique can quickly adapt to newly discovered
lasses while not suffering much from forgetting. On HAPT, our technique achieves the highest final scores (0.67/0.59).
e can see that all methods struggle with HAPT’s class imbalance as the macro F1 score is significantly weaker than

he micro F1 score. For example, DGR-RtF learns to only generate samples for the majority classes; therefore, it produces
elatively strong micro scores (0.54) but much lower macro F1 (0.31) scores. GDumb performs very poorly, because there
s very little data to replay, mostly not even better than the baseline. OCL-HAR’s curve fluctuates only slightly. Hence, it
emonstrates good performance at each inference step.
On WISDM, all models struggle in this harsher setting and only achieve performance slightly better than the baseline.
12
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a

Fig. 6. Comparison of micro F1, macro F1, and forgetting scores between our technique and the comparison techniques on four datasets. The scores
re obtained on the test data Testunseen of the unseen subjects. For F1 scores the higher and for forgetting the lower the better.

6.3. Computation cost

Table 6 displays the average training time for each model across all datasets. Not surprisingly, the least expensive
models are Baseline and Replay, as they require no additional computation other than a larger batch size due to replay. The
second fastest group is iCaRL and ILOS, where only knowledge distillation has been used for regularisation. DGR-RtF learns
a generator and a classifier, which has incurred much longer training time. Our technique, OCL-HAR, has also a longer
training time, which is due to learning prototypes and generating low-level features for feature replay. Overall, the total
training time after 20 steps to learn up to 19 classes is between 2 and 4.25 min (3.3 and 6.7 s per step after the initial step).
The inference time is similar between OCL-HAR and the other techniques, as they share the same network architecture,
which is around 0.0002 s per sample. Both training and inference are considered acceptable for HAR applications.
13



M. Schiemer, L. Fang, S. Dobson et al. Pervasive and Mobile Computing 93 (2023) 101817

l
b

Table 6
Mean and standard deviation of training times (in seconds) on all datasets.

PAMAP2 DSADS HAPT WISDM

Baseline 58.59(1.7) 92.98(7.9) 73.73(2.17) 113.73(3.72)
Replay 60.19(0.66) 99.41(9.15) 75.56(1.87) 117.08(6.06)
iCaRL 67.62(1.45) 114.51(12.34) 81.57(2.37) 122.48(4.36)
ILOS 68.99(1.73) 105.88(7.61) 83.45(2.19) 126.52(4.75)
GDumb 60.3(1.01) 103.94(5.97) 74.74(2.49) 125.14(5.81)
DGR-RtF 144.32(3.66) 165.01(2.24) 147.11(4.84) 206.62(4.36)

OCL-HAR 125.81(1.43) 151.91(4.87) 136.76(4.88) 255.69(8.39)

Fig. 7. The comparison of micro F1, macro F1, and forgetting scores between OCL-HAR and two best performing baselines on different memory
sizes. Average final values marked with X.

6.4. Impact of memory sizes

The number of replay samples stored in memory can have a significant impact on the performance of continual
earning, as the greater the number of available samples on the seen classes, the less forgetting occurs. Fig. 7 depicts the
ox-plots2 of micro F1, macro F1, and forgetting scores for OCL-HAR and two representative techniques. DGR-RtF does not

2 The data for all the box-plots are aggregated over each time step for all the runs.
14
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Fig. 8. Micro F1, macro F1, and forgetting scores of OCL-HAR, iCaRL, DGR-RtF on different numbers of labels being acquired. Average final values
marked with X.

use any real samples for replay, so its results are only present in the first box where the memory size is 0. When there are
no replay samples, DGR-RtF performs the best for PAMAP2 and HAPT. OCL-HAR consistently outperforms iCaRL due to its
usage of feature replay. When we increase the memory size to 20, which corresponds to one or two samples per class, our
method consistently achieves the highest performance. OCL-HAR has a larger improvement than iCaRL; from (0.32/0.24)
to (0.66/0.63) on PAMAP2, from (0.22/0.15) to (0.61/0.56) on DSADS, and from (0.44/0.24) to (0.67/0.59) on HAPT in
micro and macro F1. The forgetting scores of OCL-HAR drop largely, too. This result is consistent with the theoretical
conclusions [59], indicating that memory replay plays an important role in achieving optimal continuous learning.

In addition, OCL-HAR does not fluctuate significantly as memory size increases, indicating that it does not require a
arge number of replay samples. Similarly, iCaRL converges when the memory increases to 20 or 40.

.5. Impact of labels being queried

To obtain labels for new classes, our method uses a semi-supervised learning strategy. Fewer queries are preferable;
herefore, we evaluate how performance is impacted by the number of labels queried. Fig. 8 presents the performance for
arious numbers of queries, where all denotes that labels are acquired for all samples in the buffer. The results demonstrate

that our semi-supervised method does not require a large number of queries and that a single query per training step is
sufficient to achieve high performance.
15
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Table 7
The mean and standard deviation of micro and macro F1 scores, when all the labels at each training step are available.
OCL-HAR-A assumes that all labels are available, while OCL-HAR-1 only acquires 1 label per step.

PAMAP2 DSADS HAPT WISDM
Micro/Macro F1 Micro/Macro F1 Micro/Macro F1 Micro/Macro F1

Baseline 0.24(0.13)/0.13(0.11) 0.21(0.06)/0.11(0.06) 0.71(0.21)/0.45(0.16) 0.10(0.06)/0.05(0.05)
iCaRL 0.59(0.10)/0.55(0.11) 0.60(0.07)/0.53(0.08) 0.84(0.05)/0.67(0.06) 0.13(0.03)/0.08(0.02)
DGR-RtF 0.24(0.08)/0.14(0.05) 0.19(0.04)/0.08(0.04) 0.66(0.17)/0.36(0.11) 0.09(0.03)/0.04(0.02)

OCL-HAR-A 0.71(0.08)/0.67(0.09) 0.71(0.05)/0.68(0.07) 0.83(0.10)/0.67(0.08) 0.17(0.03)/0.13(0.03)
OCL-HAR-1 0.66(0.08)/0.63(0.10) 0.61(0.04)/0.56(0.04) 0.67(0.05)/0.59(0.05) 0.17(0.03)/0.09(0.03)

Fig. 9. Micro F1, macro F1, and forgetting scores of OCL-HAR, iCaRL, and DGR-RtF on different numbers of training steps. Average final values marked
with X.

Additionally, we conduct a sanity check on a scenario in which all labels for each training step are available. This
ituation resembles class-incremental learning or previous online learning scenarios. As shown in Table 7, OCL-HAR
utperforms the other techniques in three out of four datasets. When only querying one label per training step, it achieves
omparable but worse scores for PAMAP2, DSADS and HAPT compared to having all the labels available; 0.71/0.67 versus
.66/0.63, 0.71/0.68 versus 0.61/0.56 and 0.83/0.67 versus 0.67/0.59 for micro and macro F1, respectively. Compared to
he results in Table 3, the availability of all the labels improves iCaRL’s performance; for example, 0.10, 0.12, and 0.34 in
icro F1 on PAMAP2, DSADS, and HAPT respectively. This demonstrates that OCL-HAR can tackle insufficient, noisy labels
etter than the comparison techniques.

.6. Impact of the number of training steps

In most cases, neural networks are highly plastic, and their performance degrades after a series of incremental updates.
e now assess the impact of the number of training steps on performance. As shown in Fig. 9, our technique performs

onsistently well over training steps ranging from 5 to 100. The forgetting scores increase slightly when the training step
ncreases, suggesting that after many iterations of update the model is more likely to forget the seen classes; especially,
he classes learnt at the beginning. DGR-RtF suffers more than OCL-HAR and iCaRL as it needs to update the generator
nd model, which both may have the forgetting effect.

.7. Impact of initial classes

Here, we examine the effect of the number of initial classes on performance, assuming that the more classes fed to
he network in the first task, the better it can learn. Fig. 10 shows that OCL-HAR can still perform well when only 10%
f classes are included in the first batch. This shows that the size of the to information to be integrated over time only
ffects the performance marginally.

.8. Ablation study

As OCL-HAR consists of multiple components to mitigate the forgetting effect, an ablation study is conducted to
etermine which components contribute the most. As shown in Table 8, when we do not store any replay samples (i.e., the
emory size is 0), feature replay and distillation will improve performance by 0.06 and 0.03 in micro and macro F1. Mixup
nd vector normalisation will nearly double the performance, from 0.21 to 0.41 in micro F1 and 0.14 to 0.30 in macro
1. When we begin to use the replay samples during the model update, the performance improves by a factor of three;
herefore, we conclude that real sample replay techniques result in significantly better performance than prototype-based
eature replay techniques. Mixup and vector normalisation also contribute significantly. Lastly, adding vector re-scaling
ives an additional performance boost.
16
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Fig. 10. Micro, macro F1, and forgetting scores of OCL-HAR on PAMAP2 on different percentages of classes in the first batch. Average final values
arked with X.

Table 8
Ablation Study of components in OCL-HAR. F.R refers to feature replay, F.D to feature distillation, M.R to memory replay, K.D
to knowledge distillation, V.N to vector normalisation, and V.S to vector re-scaling.

Micro F1 Macro F1 Training time (in seconds)

Baseline 0.21 0.14 58.59
F.R. + F.D (memory = 0) 0.27 0.17 73.84
F.R. + F.D + mixup + V.N + V.S (memory = 0) 0.41 0.30 125.5
M.R + K.D (memory = 20) 0.49 0.4 67.62
M.R + K.D + mixup + V.N (memory = 20) 0.60 0.54 72.53
F.R. + F.D + M.R + K.D + mixup + V.N (memory = 20) 0.62 0.58 102.49

F.R. + F.D + M.R + K.D + mixup + V.N + V.S (memory = 20) 0.66 0.63 125.81

7. Conclusion and future work

This paper presents an online continual learning setting that is currently under-investigated in the field of continual
earning. It neither assumes explicit task boundaries nor has abundant labelled samples, which makes it challenging for
he existing continual learning techniques. Even though motivated from HAR systems, this OCL setting can be applicable
o other real-world applications that process streaming data and experience constant change in class distribution.

To tackle the problem, we have proposed an OCL-HAR technique that combines semi-supervised learning with effective
ractices from continual learning including real sample and feature replay, knowledge distillation, and weight vector
ormalisation and re-scaling. This leads to an efficient HAR model that only needs to acquire few labels on selected
amples and can be extended over time while mitigating the forgetting effect. To accommodate sparse, potentially
orrupted labels, we have employed the mixup technique that has further improved the robustness of the technique. The
valuation results have shown that our technique has outperformed the state-of-the-art continual learning techniques on
he OCL setting and is less sensitive to the initial class set and training steps. The training time is slightly higher than
ome of the baselines but still acceptable for HAR applications; that is, up to 7 s per update. Therefore, we consider it
uitable for frequent, incremental updates over long-term deployment.
In the future, we will look into few-shot learning techniques [72] to improve the prediction accuracy on scarcely

abelled data. More advanced sample selection techniques to reserve more representative samples for replay will be
xplored. We will also deploy the technique on devices for online and practical evaluation.
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Appendix

Sampling Algorithm

ALGORITHM 2: Sampling Online Continual Learning Tasks

input : Training Data D = {(xj, yj, uj)|yj ∈ C, uj
∈ U}

m
j=1, where C is the whole class set and U is the training users

input : p1 is the percentage of classes in the first task
input : p is the percentage of training data on each user to be sampled in the first task
input : τ is the probability threshold to decide distribution shift and/or class addition

1 // sample the first task’s data
2 sample p1% classes Ca from the whole class set C (Ca ⊂ C)
3 sample initial available users Ua (Ua ⊂ U)
4 sample p% labelled instances for each available user in Ua for each class in CN1 and add them to Da

5 remove Dt1 from D
6 // simulate incoming streaming data
7 while True do
8 // use a random probability Prob to decide whether to add a new user or a new class.
9 if ProbU > τ then

10 add a new user u ∈ U − Ua to Ua
11 end
12 if ProbC > τ then
13 add a new class c ∈ C − Ca to Ca
14 end
15 sample a batch with size b from any available class on any available user Dt

= {(xj, uj)|uj
∈ Ua}

|b|
j=1

16 remove Dt from D
17 end
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