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ABSTRACT
Audio-signal acquisition as part of wearable sensing adds an im-

portant dimension for applications such as understanding human be-
haviors. As part of a large study on work place behaviours, we col-
lected audio data from individual hospital staff using custom wear-
able recorders. The audio features collected were limited to preserve
privacy of the interactions in the hospital. A first step towards audio
processing is to identify the foreground speech of the person wearing
the audio badge. This task is challenging because of the multi-party
nature of possible ambulatory interactions, lack of access to speaker
information and varying channel and ambient conditions. In this
paper, we present a speaker-agnostic approach to foreground detec-
tion. We propose a convolutional neural network model to predict
foreground regions using a limited set of audio features. We show
that these models generalize across the proxy corpora we collected
in house to approximately match the deployment environment. The
proxy corpora contained full audio and was used as a test-bed to an-
alyze our models in greater detail. We also evaluated the models in
the workplace setting to measure speech activity. Our experimental
results show promising direction for analyzing workplace behaviors
with privacy protected sensing.

Index Terms— speaking patterns, foreground detection, Speech
Activity Detector, wearable sensing, audio

1. INTRODUCTION

Advances in wearable sensing have changed the way we think about
audio signal acquisition. The availability of portable miniaturized,
self powered systems [1, 2, 3] has enabled acquiring speech data in
naturalistic settings. It offers ecologically-valid ways of studying
social communication and interaction in rich real-world contexts.
As we move towards wearable means to record audio data in un-
known environments, we have potentially multi-party interactions
with multiple, often unknown ambient sources. This move, away
from clean and controlled recording environments presents interest-
ing audio processing challenges.

Privacy concerns also arise with enabling sensing in naturalistic
settings, especially when collecting data in sensitive environments
such as one’s home and workplace. Digital recorders approach this
issue by allowing users to control the recorded content. The users
can control what to record by deleting the recordings retroactively
[1] or collect select features (e.g., energy to determine duration of
voice activity). This eliminates the need to save raw audio record-
ings [3, 2]. In the former case, the cognitive load of the participant
increases, but we have access to raw audio for further analysis. In
the latter case, we can perform (limited) online feature extraction to
extract pre-designed features to perform audio analysis. As a conse-
quence of not having access to raw audio, we cannot obtain human
annotations to develop downstream machine learning tasks.

As we move into naturalistic settings and privacy-protected
sensing of the participant, we need to rethink the design of funda-
mental audio signal processing modules. Separating speech from
different ambient sources comes naturally to humans. But, this be-
comes an arduous task from a computational perspective, especially
when the number of sources is unknown. This is compounded due
to the lack of prior information on the environment characteristics.

In this paper, we focus on the problem of foreground speech de-
tection in data collected from wearable audio recorders. The specific
experimental use case is based on recordings (from a first person
view) using “audio badges” worn by clinical staff in a large hospital
setting as a part of a larger study focused on workplace behavior and
performance [3].

1.1. Foreground - definition

A close-talk audio recording, typically in a multiparty conversation
can be categorized into four types of segments based on content [4]:
1) speech from the person wearing the audio recorder, 2) cross talk
or speech from other people nearby, 3) ambient sounds and noise,
and 4) silence. These segments can co-occur in different combina-
tions (except silence). Following [4], we define foreground speech
(foreground) as speech regions captured by the recording device that
belong to the person wearing the recording device. Speech segments
other than the foreground belong to cross talk. Non-speech regions
either belong to silence or noise.

Depending on the application, foreground has been defined in
several ways:

def.1 any speech [5]
def.2 speech from a person of interest, usually the one wearing the

audio recorder [4]
def.3 anything that is not ambient audio (which we term back-

ground) [6]

According to def.1, a foreground (FG) detector would just be a
speech activity detector (SAD), def.3, would be a general auditory
scene descriptor – an indirect way to detect foreground regions. As
will be described in Section 2, we are ultimately interested in using
features from the wearer’s speech to predict psychological/affective
measures of individuals in workplace. Thus, def.2 would be the
most appropriate way to define FG for our experimental setup.

A canonical approach to detect FG would be to use a speaker
verification system [7] with a SAD, assuming that the voice charac-
teristics of the wearer of device are known apriori. But, often in large
scale behavioral studies, we are not always privy to this information.
Hence, in this paper we present a speaker-agnostic approach to FG
detection. In Section 5 we show how the deep learning network de-
signed is able to perform reliably well without a priori knowledge of
the speaker i.e, speaker agnostic.
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1.2. Background on foreground detection

Identifying FG speech is relatively an easier task when we have
information on the speaker identity, clean recording conditions or
known multi-speaker setting because speaker specific models can
be effectively designed. Most prior work has examined audio data
where two or more of these conditions have been satisfied. In this
section, we primarily focus on prior work with def. 2 of FG.

In known multi-channel conditions, HMMs and GMMs have
been used (e.g., [8, 4]) for detecting FG. Short-time correlation of
all channel priors were used to reliably extract FG regions in [9].
Deep learning methods work exceptionally well on supervised FG
detection when we have raw audio information. The survey paper
by Wang et. al., [10] showed different approaches to address this
problem, such as estimating an ideal binary mask, target binary mask
to localize the speech regions in a spectrogram. Specifically, CNNs
have also been shown to work well with musical background [11]
to extract FG. [12] used ensemble of DNN models for monoaural
source separation. A common theme in all these works is that they
use some form of speaker or channel information for modelling FG.

In contrast, there have been fewer approaches that detect FG in
a speaker-agnostic manner. Speaker-adapted eigen faces was used
in [13, 14] for FG detection without prior information on speaker
wearing the mic. However, these methods still need access to the
raw audio. Our work examines FG detection when it is not feasible
to collect raw audio data.

In the domain of wearable sensing, FG detection largely remains
unexplored. A robust VAD using dictionary learning approach was
designed for audio collected using smartphones in [15]. A speech
detection and localization algorithm for smart headphones was de-
signed in [16]. As described in Section 1, the problem we address
however is compounded by unknown multi-party interactions in a
wearable recording setup without access to raw audio or apriori
speaker information.

2. DATASETS

2.1. Deployment dataset

As described in Section 1, the foreground (FG) Detector was de-
signed to be deployed in audio recorded in a highly sensitive hos-
pital environment [3]. In this section, we briefly describe the study
where the audio was collected. As a part of MOSAIC1 program,
in early 2018, we collected a preliminary set of multimodal sen-
sory data for “TILES: Tracking Individual Performance with Sen-
sors” to study how workplace stressors affect the overall health, per-
sonality, workplace behavior and affect of hospital employees (be-
longing to the clinical population at the USC Keck Hospital, Los
Angeles, CA). Data was collected for a period of ten weeks from
213 nurses/hospital workers using specially designed audio badges
called TAR [3] that employees wore during work-shift hours. From
this sample, we chose a subset of N=50 (32 Female, 18 Male, 30 day
shift, 20 night shift nurses) for our analysis. The average number
of audio files (each of length 20 seconds) per subject was 6138.3 ±
3300.52. For the 50 participants, about 1220 hours of data was col-
lected. The participants answered self reports daily or once in two
days pertaining to psychological measures like affect, personality,
workplace behavior and health - some of which included daily sur-
veys on affect, stress and anxiety.

Because the experimental environment was a hospital, our study
and practices complied with HIPAA regulations [17]. As such, we
had no access to raw audio or ground-truth annotations (e.g., FG

1https://www.iarpa.gov/index.php/research-programs/mosaic

labels). Hence, we adopted a three step approach to design a robust
FG detector, as described below. 1) We train our models on ICSI
corpus (a generic, multi-party meetings based corpus) 2) We select
the top-performing models in step 1, to test/validate and fine tune
on an in-house dataset collected using TAR [3] 3) We deploy the
best model on TILES data to get frame level predictions, use the
speaking activity estimates in Section 3.3 and assess the validity of
these estimates in predicting workplace behaviours.

2.2. Datasets for training/validation

2.2.1. Public audio dataset: ICSI meeting corpus

We chose a publicly released dataset, the ICSI meeting corpus [18]
(ICSI), to train an FG detector (See Section 3.1 for model details).
We chose ICSI because it has natural conversations with multi-party
interactions (close talk and far field). ICSI also provides densely
annotated audio and transcriptions from which FG regions can be
reliably obtained. [18].

2.2.2. In-house dataset: SAIL Meeting Corpus (SMC)

We also collected in-house data which we call SAIL Meeting Corpus
(SMC) where we recorded multi-party conversation during weekly
research meetings. The participants in the research meetings wore
the same audio badges as that of the participants in the TILES study.
We also ensured that the positioning of the recording device on the
individual was similar to that of our deployment data. In addition,
we also recorded raw audio which we annotated in-house for four
labels: FG (def.2 as defined in Section 1.1), cross talk, noise and
silence. The data was labelled using Sonic Visualizer 2 at a 100ms
time precision. This labelled dataset enabled us to fine-tune and val-
idate models trained on ICSI data for deployment.

Next, we defined two FG activity estimates as described in Sec-
tion 1.1. Because we had ground truth labels on SMC, we can eval-
uate the robustness of these estimates. We hypothesized that these
activity estimates may be related to some of the ground truth avail-
able for the deployment dataset.

Table 1. Datasets and their train/validation/test split information

Dataset % # speakers # sessions

ICSI
train 60 26 247
test 20 12 100
val 20 11 81

SMC 100 9 12

3. METHODS

As described before, deep learning methods have been effective in a
variety of audio processing tasks including automatic speech recog-
nition and audio event detection (AED); for example, log-Mel fea-
tures with CNN models have been shown to effectively classify over
500 audio event classes on Audioset data [19]. We can consider
modeling log-Mel features with CNN analogous to learning custom
filters over hand-designed filter banks like MFCCs to maximize a
task-specific objective. The network architecture used in [20], was
referred to as VGG-slim because it is a simplified version of the im-
age classification architecture, VGG [21]. Based on our initial ex-
periments with VGG-slim for FG task, we further modified the ar-
chitecture by reducing the number of convolutional layers and tuned
the number of nodes in the fully connected layers. This resulted in
a simpler version of the model, which we refer to as VGG-slimmer.

2https://www.sonicvisualiser.org/
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Note that, as part of TAR feature extraction [3], we only had ac-
cess to MFCCs which we used as input features instead of log-Mel
features.

3.1. VGG-slimmer Architecture

For brevity, we describe the CNN architecture using a simplified
notation: Let conv block[K] denote sequence of a 1) convolutional
layer with K number of filters (kernel size=3x3, strides=1x1), 2)
Maxpooling (kernel size=2x2, strides=2x2), and 3) Dropout layer;
FC[n] denotes a fully connected layer of n nodes followed by a
Dropout layer. We set the dropout rate at 0.2 (increasing it to 0.5 did
not improve our performance).
VGG slimmer :: INP → conv block[64] → conv block[128] →
conv block[256] → conv block[512] → FC[1024] → FC[128] →
Sigmoid[1]
where INP = Input of dimension 51xM, where M is the time context
window for the input with 51 features. The context was tuned over
different choices for M ranging from 0.2s (M=19) to 1s (M=95)
with 0.2s increments. To satisfy dimensionality constraints, we use
a kernel of 1x3 for the final convolutional layer. The output of the
final conv block was vectorized before input to the FC layer. The
last layer consists of one node with sigmoid activation.

3.2. Features

The audio badges we used for study deployment used OpenSmile
[22] to extract audio features referred to as low-level descriptors
(LLDs). These contain canonical audio features such as pitch, in-
tensity, spectral descriptors and auditory filter bank coefficients (like
MFCC, PLP). A sampling frequency of 16kHz and a frame-length of
60ms with 50ms overlap were used to extract features. These param-
eters were pre-set in the configuration of the audio badges at the time
of deployment for the study [3]. Hence, we used this configuration
across all our experiments.

The input to the network was a 51 dimensional feature vector
(per frame) where 42 of those are the 14 MFCCs and their first
and second differences. The 9 other features were fundamental
frequency, intensity, loudness and their deltas, voicing probability,
RMS energy and zero crossing rate. The input features were nor-
malized by substracting mean and dividing by standard deviation.
We applied a median filter for post processing on the predictions
at frame-level. The kernel size of the median filter was chosen to
maximize F1 score on the validation set.

3.3. Foreground speech estimates
We compute two speaking activity estimates from the FG speech
regions predicted by our model: 1) foreground activation (FGA),
the percentage of recording time that foreground speech is present
and 2) foreground activation frequency (FGAF): the frequency of
foreground speech activation in a recording.

Formally, let S ∈ Rd×N be the matrix with d-dimensional fea-
tures as columns for N frames. Let p[n] be the frame level posterior
from the network with p[n] ∈ [0, 1] ∀n. Then,

ρ[n] = 1
(
Mk(p[n]) > ε

)
(1)

whereMk is the median filter of length k, 1 is the indicator func-
tion: 1(z > ε) = 1 if z > ε, 0 else. ρ(n) having a value of 0
denotes BG (background) and 1 denotes FG. In practice, ε of 0.5 is
used. Now, we define FGA and FGAF as follows:

FGA(S) =
1

N

N−1∑
k=0

ρ[k] (2)

FGAF(S) =
1

l

N−1∑
k=1

1((ρ[k]− ρ[k − 1]) > 0) (3)

where 1 is the indicator function, l = N/t is the segment length
and t is the number of frames in each segment. Due to the preset
configuration of TAR, t = 1900 corresponds to 20s.

Note, that t can be chosen arbitrarily to control the segment
length, such that l ≤ N . Given an audio segment, FGA can be
viewed as a proxy for speaking time of the person of interest, and
FGAF for the number of times a person starts speaking.

4. EXPERIMENTS

We conducted several experiments to select an architecture across
the two datasets described in Section 2. We conducted experiments
with the original VGG slim architecture, a smaller (fewer number
of nodes per layer) version of VGG slim and a smaller version of
VGG slim without double convolutions. We also varied the number
of dense layers (decreasing number of nodes).

We also experimented with varying input using just 14 MFCC
features but the task performance significantly improved with the
51-dimensional feature set described in Section 3.2. We tested dif-
ferent normalization methods: min-max, max-absolute scaling and
z-standardization of which z-standardization worked best. For the
input, we also vary context: ranging from 0.2 to 1 second. We found
that increasing context improves performance and generalizability
across datasets. The final model we chose had a context of 1 second.

The models were all trained in Keras with TensorFlow backend.
We used RMSprop for optimizing the network with an initial learn-
ing rate of 1e-4, ρ = 0.9, ε = 0 and decay = 0.

4.1. Baseline Models and adapting for SMC
We compare performance of the proposed architecture with two
baselines. We use a fully connected (FC) DNN consisting of 5 lay-
ers with decreasing number of nodes as one of our baselines. Each
FC layer was followed by a dropout layer (0.2 dropout). Because
our model was a modified version of VGG slim, we use this network
as the CNN baseline. We used class balanced ICSI data for training
as we had adequate number of samples (N=784000) for each class.

Because we cannot collect labels for TILES audio data, we used
the SMC corpus (See Section 2.2.2) as a test-bed to evaluate and un-
derstand our models to a greater detail. For fine-tuning, we used a
k-fold validation on SMC because we only had 9 speakers, and we
wanted to test our models for speaker variability. We re-partition
the data into 4 splits to fine-tune the models trained on close talk
speech from ICSI, each split with data from 3 speakers for training
and 6 speakers for validation. We ensure the splits have no common
speakers. We used a smaller proportion of the data for fine-tuning
to ensure generalizability. We chose the model that performed con-
sistently (least variance of F1-score) across the different splits. We
used an early stopping criteria on the validation loss (stop training if
the loss did not improve by 1e-4 for at least five consecutive epochs).

4.2. Statistical testing for FGA and FGAF

We then compared the estimates from the predicted FG mask and
the GT measures with a Welch two sample t-test to test for statistical
differences. The ground truth FGA and FGAF were computed on
SMC dataset. For all tests, we chose α = 0.05 to decide statistical
significance. In the context of our deployment environment, differ-
ent subjects may start wearing the TAR devices at different times
during the day. To simulate this, we recreated the recording set up
of [3] where the recorder is active for 20 seconds and inactive for
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Table 2. Performance evaluation of different models; Precision (P),
Recall(R), EER(Equal error rate), F1(F1 score)

ICSI accuracy (%) SMC accuracy (%)
Model train val test P R EER F1
FC-DNN 88.4 78.5 75.1 87.0 3.6 48.5 11
VGG slim 94.1 89.3 87.1 24.6 94.5 50.6 57
VGG slimmer 93.3 90.1 90.4 46.0 85.1 27.0 78

fine-tuning results
VGG slimmer - - - 81.2 76.9 18.6 84

40 seconds. Since we do not know when the participant chooses to
turn on the recorder, we simulated this with random offsets to begin
turning on the recorder. The random offset was chosen uniformly
over the range (0,60) seconds in 10s intervals. We repeat this 3700
times for each recording file in the SMC corpus. For each simula-
tion, we estimated the FGA and FGAF measures from the predicted
FG labels, as well the ground-truth measures.

We refer to this simulation as random-offset-simulation. For
each of the 3700 simulations, we computed t-statistic from the
Welch-corrected t-test and examined the p-values corresponding to
the 5th and 95th percentile of the distribution. This gives us the
confidence intervals (CI) of differences between the predicted and
true activity measures for the random-offset-simulation.

5. RESULTS

The performance of different networks trained on ICSI and tested
on SMC corpus is shown in Table 2. The VGG-slimmer model out-
performs all the other models we tested suggesting that the modifi-
cations we made to the VGG-slim architecture are effective for the
FG detection task. It is important to note that the design choices
we made to VGG-slim were solely guided by the ICSI validation
accuracy, and not the SMC data. This indicates that our models gen-
eralize across-datasets.

Notice that although the recall and EER are significantly lower
for a simple FC-DNN model, than the VGG-slimmer, the precision
is high (row 1 vs 3 in Table 5). In other words, FC-DNN can clas-
sify very few frames as FG (low recall) accurately (high precision).
However, fine-tuning the VGG-slimmer models on SMC data im-
proves the precision from 46% to 81.2% with a minimal loss in recall
suggesting that fine-tuning is an important step in adapting models
across datasets. This is consistent with prior literature which recom-
mends fine-tuning for models to generalize better in the test domain
[23].

In order to assess the stability of the proposed system, we per-
formed 4-fold validation as described in Section 4, and fine-tuned to
adapt the model. To adapt the models for SMC data, we initialized
the weights of VGG-slimmer from the ICSI model, and retrained
with SMC data. We then experimented with freezing the weights of
the conv. layers with the ICSI model and trained only the FC layers
with SMC data. The models trained end-to-end perform consistently
better across different splits with an average F-measure of 77.1 and
a standard deviation of 0.1. Of the 4 different models, we picked the
model that showed the best performance on train and test splits.

5.1. Reliability of speaking activity estimates

Overall, we found no statistical differences between the GT and es-
timates of FGA and FGAF (p-value = 0.2299 and 0.1461) computed
across the entire length of the audio file.

Results from the random-offset simulation across 3700 simula-
tions: For FGA, the average t-statistic for µtrue − µpred,DF = 7

Fig. 1. Distribution of foreground activity (FGA) for each subject
with respect to gender and work shift (day/night shift worker)

was t = −1.29 ± 0.18 with (0.05, 0.95) CI were (−1.62,−1.00)
with corresponding p-values of 0.1498 and 0.3492 respectively. This
indicates that our predicted model does not significantly overesti-
mate FGA. For FGAF: t = 1.94 ± 0.27 with (0.05, 0.95) CI of
(2.39, 1.51) with p-values of 0.1737 and 0.0478 respectively. At an
α = 0.05 for statistical significance, we note that FGAF is slightly
underestimated by our FG models. These results suggest that the
FGA and FGAF measures can be reliably estimated by our FG mod-
els.

5.2. FGA and FGAF estimates to predict MOSAIC constructs
We performed preliminary analysis of the speaking activity estimates
on the TILES (deployment) dataset. Figure 1 shows the distribu-
tion of FGA for different work shifts for male and female subjects.
Welch’s t-test on FGA by gender showed that Female subjects have
significantly higher foreground activity (t = −6.9, p << 0.01).
We also tested if the FGA estimates explain positive and negative
affect from self-reports (two of the MOSAIC constructs) using lin-
ear mixed effects (LME) models. We chose LME because we have
repeated measurements of subjects’ self-report evaluations. A null
model was built with positive/negative affect as outcome and sub-
ject as a fixed effect (repeating measurement), and controlling for
gender. The alternate model included FGA as an additional vari-
able. We used a chi-squared test to test if the LME model with FGA
was performing significantly better than the null model. For pos-
itive affect: LME with FGA performed better than the null model
(χ2 ≈ 7.5, p = 0.006). For negative affect, the LME model with
FGA did not perform significantly better than the null model (χ2 ≈
1.4, p = 0.237). These observations were consistent with LME in-
cluding FGAF estimates as well. These initial results suggest that
the speech activity estimates can explain some of the variance in pre-
dicting positive affect measure. A detailed analysis of FGA/FGAF
estimates to predict other behavioral measures is a focus of our fu-
ture work.
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