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A routine clinic visit consists of a physical examination with 
vital sign measurements and blood and urine tests to 
examine overall health and detect abnormalities due to ill-

nesses such as infection or chronic disease1,2. Although vital signs 
like heart rate, body temperature, blood pressure, respiration rate, 
height and weight do not generally enable a specific diagnosis, they 
are useful for assessing overall health and triaging patients rapidly 
in both routine and emergency settings. Laboratory evaluation of 
blood and urine, referred to as ‘clinical labs’, is a less rapid and often 
more specific method to quantitatively assess health3. Traditional 
clinical examinations have drawbacks that include requirements for 
in-person visits, potentially invasive tests, infrequent sampling, a 
highly controlled setting, a lack of tools to systematically incorpo-
rate past visit information, and challenges with interpreting clini-
cal measurements at the boundaries of normal values. Studies that 
examine the relationship between vital signs and clinical labs have 
been limited.

Over the past several years, interest in assessing consumer wear-
ables (wearables) for healthcare and longitudinal monitoring has 
increased4–6. Several groups have demonstrated that it is possible to 
extract accurate information from wearables in both a clinical and 
‘real-world’ environment7–9. Wearables can capture vital signs con-
tinuously and longitudinally during daily life, but the utility of this 
continuous information remains in question. Recent studies applied 
machine learning to wearables data to predict cardiovascular10–13 
(for example, the presence of arrhythmias like atrial fibrillation), 
diabetic14 and infection statuses15 using electrocardiogram (ECG) 

or photoplethysmogram (PPG) signals from wearables. Moreover, 
individual baselines can be established and deviations assessed as 
possible signs of acute and chronic disease rather than relying on 
population-based norms8. This prior work suggests that wearables 
may have clinical utility, particularly when incorporated into per-
sonalized, predictive models. However, the ability of vital signs, and 
particularly those measured by wearables, to predict clinical labs 
has not been evaluated.

In this study, we explored parameters that would hasten the 
adoption of wearables into healthcare. We first examined whether 
vital signs measured continuously and remotely by wearables (wVS) 
can accurately represent vital signs measured in the clinic (cVS). We 
further explored whether vital signs can be used as a non-invasive 
proxy measurement of clinical labs by developing models of the 
relationship between wVS and clinical labs. Finally, we investigated 
whether increasing model and feature complexity, increasing the 
amount of time monitored, or personalizing models would improve 
their prediction accuracy (Fig. 1a).

Results
Vital signs collected by wearables versus in the clinic. We first 
explored how well wearables capture baseline physiology by com-
paring routine vital sign measurements from a smart watch with 
vital signs measured in the clinic using our integrative personal 
omics profiling (iPOP) cohort8,16–19. Fifty-four iPOP participants 
wore an Intel Basis smart watch measuring heart rate, skin tempera-
ture, accelerometry and electrodermal activity (EDA). The diverse 
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cohort (Supplementary Table 1d) comprising 30 females (aged 40 to 
70 years; mean 56 years) and 24 males (aged 35 to 76 years; mean 
58 years) was clinically monitored for an average of 3.3 years with 
an average of 42 clinic visits per individual during the clinical moni-
toring period (Fig. 1b)8,16,17. Participants wore the smart watch for 
343 days on average (s.d. 241 days); an average of 313 days over-
lapped the clinical monitoring period. In the clinic we measured 
six vital signs (cVS), including heart rate and oral temperature 
(Supplementary Table 1a and Fig. 1c).

We first compared watch-based measurements of resting heart 
rate (wRHR; Fig. 1c) with clinic-based measurements of heart rate 
(cHR) by aggregating watch measurements from the same time 
as the clinic visits (7:00 to 9:00) for 1 week, 2 weeks or 1 month 
before the date of the clinic visit. We explored multiple definitions 
of rest by varying the time windows for capturing inactivity (5-, 10- 
and 60-min intervals with no steps) and found that shorter win-
dows were associated with higher wRHR (Fig. 1d), as expected for  

residual effects of activity on heart rate. Intermediate resting peri-
ods with no steps for 10 consecutive minutes during the 2 weeks 
before the clinic visit was chosen for all subsequent analyses. For 
wRHR, the median was 71 (s.d. 6.7) beats per minute (bpm) and for 
cHR, the median was 71 (s.d. 9.4) bpm (n = 226). For all resting defi-
nitions tested, our estimates had negligible bias and the variance in 
wRHR was significantly lower than that in cHR (Fig. 1c,e and asso-
ciated source data), indicating that wRHR are more consistent in 
measuring the typical resting heart rate than the intermittent cHR, 
presumably because many observations of resting heart rate mea-
sured longitudinally capture more consistent heart rate values than 
a single measurement in the clinic. Longer wRHR monitoring peri-
ods prior to the clinic visit resulted in lower variance of wRHR, as 
expected, and increased similarity between wRHR and cHR values 
(Fig. 1e and associated source data).

Watch-based measurements of resting skin temperature 
(wRTemp) at the wrist were lower than oral temperatures measured 
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Fig. 1 | Overview of the iPOP wearables study. a, Study design. b, Timespan of clinical monitoring per participant in the iPOP wearables cohort (left), and 
the total number of clinic visits per person (right). Each clinic visit included clinical lab tests. n = 54 study participants in each plot. c, Distribution of vital 
signs measured in the clinic and by the watch in the iPOP wearables cohort (n = 226 measurements). The values of wRHR and wRTemp were computed 
by averaging the wHR and wTemp during periods in which no steps were taken, including all such periods that occurred 2 weeks before clinic visits during 
the same time period as the clinic visits (7:00 to 9:00). Median values are indicated by dark blue vertical lines. d, Daily variation in median wRHR using 
multiple resting definitions (no steps or steps < 50 for a duration of 10 or 60 min) (n = 54 participants with at least one cHR and cTemp measurement 
(2,145 observations in total) during wearables monitoring). e, Variance of wRHR using multiple resting definitions (no steps for a duration of 60, 10 or 
5 consecutive min). Measurements of wRHR are taken from hours of the day corresponding to typical clinic visit times for a duration of either 1 week, 2 
weeks or 1 month before the clinic visit. The average variance of wRHR across the nine different resting definitions is 53.2 and the variance of cHR is shown 
as a horizontal line at 93.2 bpm. n = 54 participants.
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in the clinic (cTemp): cTemp = 97.9 ± 0.4 °F; wRTemp = 89.2 ± 2.2 °F 
(Fig. 1c and Supplementary Table 1a,c). In contrast to heart rate, 
clinically measured oral temperature was a more consistent and sta-
ble physiological temperature metric than wearable-measured skin 
temperature, which, even at rest and with correction for ambient 
temperature, is much more variable. We conjecture that differences 
between cTemp and wRTemp reflect differences due to the mea-
surement location at the wrist as well as a variety of environmental 
and physiological factors.

wRHR and wRTemp exhibited daily circadian patterns (Fig. 1d 
and Extended Data Fig. 1a); this variation was consistent across 
resting definitions, indicating that time of day is a key factor that 
affects the variance of day-to-day clinic measurements within an 
individual, consistent with other studies20. Overall, our results indi-
cate that wRHR provide more consistent heart rate measurements 
than do cHR, whereas cTemp are more consistent than wRTemp.

Predicting clinical laboratory measurements from wearables. As 
our findings indicated that heart rate, skin temperature and physi-
cal activity were associated with infection and insulin sensitivity8; 
we explored the concept that clinical labs could be modeled using 
vital signs from wearables or clinic visits. Given that PPG detects 
differences in subcutaneous blood volume, wearable PPG is poten-
tially capable of measuring hemoglobin and glycated hemoglobin 
(HbA1c) levels21,22. Furthermore, EDA measures the electrical prop-
erties of the skin, which change with epidermal hydration status23. 
Therefore, we examined to what extent wVS can be used to pre-
dict specific clinical labs (Fig. 1a) using the iPOP cohort. The wVS 
included heart rate, skin temperature, EDA and physical activity 
(Supplementary Table 1c). The 44 clinical laboratory panels included 
those with diagnostic utility in a primary care setting, such as the 
complete blood count with differential, comprehensive metabolic 
panel, and cholesterol panel (Fig. 3a and Supplementary Table 1b).

We developed a feature engineering pipeline (Fig. 2a) that con-
verted the longitudinal wVS measurements into 153 features (for 
example, mean heart rate during high intensity activity, overnight 
variability in skin temperature; see Methods and Supplementary 
Table 2a) and used statistical learning models (that is, random for-
est, Lasso and canonical correlation analysis (CCA)) to combine 
these features and predict clinical labs (Fig. 2b). Of the 44 clinical 
labs, we found the highest correlation between the observed and 
predicted values for four hematologic tests (Extended Data Fig. 
1b,c). Specifically, the wVS random forest models explained 6–21% 
of the variation in hematocrit (HCT), red blood cell count (RBC), 
hemoglobin (HGB) and platelet count (PLT) values (P < 0.05 with 
Bonferroni correction; Fig. 3b, red triangles). As the random forest 
models significantly outperformed the Lasso (two-sided Wilcoxon 
signed rank test, P < 1 × 10−5), we chose the random forest models 
for subsequent analysis due to their robustness and performance.

The best predictive features in the wVS models are depicted in 
Fig. 3c (see also Supplementary Table 2b). Surprisingly, the five 
most important features for predicting HCT, HGB and RBC were 
all, except for one, permutations of EDA. EDA is a wVS that cur-
rently does not have a corollary clinical vital sign and is measured 
clinically only in highly specialized settings. The non-EDA feature, 
kurtosis of heart rate during daytime low intensity activity, had rela-
tively high importance for predicting HGB. Kurtosis is a measure 
of how many outliers are in the distribution and how extreme these 
are. The five features that best predicted PLT were all based on heart 
rate, that best predicted absolute monocyte counts (MONOAB) 
were based on steps and skin temperature, and that best predicted 
HbA1c, fasting plasma glucose, and serum chloride were a com-
bination of skin temperature, steps and heart rate, indicating that 
diverse features from physiological signals are predictive of different 
clinical measures, and that prediction performance is improved by 
integrating the diverse features into a single model.

As individual clinical labs are often correlated, particularly those 
with related physiological processes, we generated summary scores 
for each of these physiological processes by projecting related labs 
onto a single index. We assigned labs to physiological groups (elec-
trolytes, metabolic, cardiovascular, hepatic, immune, hematologic; 
Fig. 3a) used as the outcomes in regularized CCA using the 153 
wVS features as predictors (Fig. 3d, Supplementary Table 2a and 
source data for Fig. 3d). The hepatic and hematologic CCA models 
performed best, with wVS explaining 12% and 7% of the variance, 
respectively (P < 0.05) (Fig. 3d). Interestingly, the wVS random 
forest models performed better for the four individual hemato-
logic tests compared to the overall hematologic physiology group, 
indicating that there are nonlinear relationships between wVS and 
HCT, RBC, HGB and PLT that are captured by the random forest 
models but not by CCA. Taken together, these results demonstrate 
that the complex physiological features and indices that we devel-
oped can reduce a large number of variables to summarize the cat-
egorical health24.

Predicting clinical laboratory measurements from wVS and cVS. 
The previous analysis revealed a correlation between physiologi-
cal wearables measurements and clinical biochemical and cellular 
measurements. To determine whether these relationships also exist 
between clinically measured vital signs and clinical labs, and how 
they compare to the wVS and clinical labs associations, we next built 
models to predict clinical labs using cVS measurements (cHR and 
cTemp) as predictors instead of wVS measurements. The number of 
cVS variables (2) was dramatically lower than the number of wVS 
variables (153) due to the intermittent cVS sampling, compared to 
the longitudinal and continuous wVS sampling and the additional 
watch sensors (accelerometry and EDA). We therefore developed 
bivariate linear regression and random forest models using the 
iPOP cVS data (Fig. 3b). We found that wVS random forest models 
significantly outperformed cVS random forest and linear models for 
the vast majority (37) of the 44 clinical labs (two-sided Wilcoxon 
rank sum test, P < 1 × 10−5) (Extended Data Fig. 1b,c and source 
data for Fig. 3a), presumably because wearables capture variation in 
vital signs for an extended period before the laboratory test, whereas 
clinical vital signs provide only a single moment snapshot. Different 
time windows for computing wVS features yield substantially dif-
ferent model performance (Fig. 4a). Moreover, features such as 
standard deviation or kurtosis are highly predictive in several of the 
wVS models (Supplementary Table 3b), and these metrics do not 
exist in cVS models.

Timing and personalization improve accuracy of models. We rea-
soned that temporal change in physiology was a likely contributor 
to unexplained variance in our models. Hence, we explored whether 
varying the duration or proximity of monitoring improved the pre-
diction of clinical labs from wVS. Relevant time scales for monitor-
ing clinical laboratory biomarkers vary by physiological processes. 
For example, blood glucose responds to dietary stimulus within 
minutes, whereas HbA1c reflects overall blood glucose over several 
months. Therefore, to find the optimal duration of monitoring by 
wearables, we analyzed clinical laboratory models using wVS col-
lected at set time windows proximal to the clinical laboratory test 
date (Fig. 4a). We found that most of the top models perform best 
with features calculated from shorter time periods before the labo-
ratory test date (for example, HCT, RBC, HGB and MONOAB ran-
dom forests), and for some laboratory tests the time window has 
only a minor impact on model accuracy (for example, HGB Lasso 
model) (Fig. 4a and Extended Data Fig. 2a). The Lasso model per-
formed slightly better with longer timescales than the random for-
est model (Fig. 4a and Extended Data Fig. 2a). Of the physiological 
categories (Fig. 3a), the hematologic category performed best using 
a shorter monitoring period, with R values of 0, 0.093, 0.130 and 
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0.411 with wVS from 1 month, 1 week, 3 days and 1 day before the 
clinic visit, respectively.

Another likely source of unexplained variance in the clinical 
laboratory models is inter-subject variability (Extended Data Fig. 
3a). To address the potential reduction in performance caused 
by inter-subject variability, we developed personalized models 
to account for differing individual baselines (Figs. 4 and 5a). As 
more historical data (simultaneous clinical labs and vital signs) 
were required to build personalized models than were available 
in the iPOP cohort, we used the Stanford EHR (SEHR) dataset 
(28,694 individuals, 38,058 observations) to build models that used 
longitudinal data for an individual (213 patients with ≥50 obser-
vations). We developed cVS personalized models (multivariate lin-
ear and random forest) that used a patient’s personal mean of the 
clinical labs as a baseline prediction for that patient, and calculated 
patient-specific parameters to model individual variability around 
that personal baseline (Fig. 5a,b). Personalized models explained, 
on average, 43% more variance than population-level models 
(two-sided Wilcoxon signed rank test, P < 1 × 10−5).

As a proof of principle for building personalized health models, 
we conducted a case study with a relatively healthy and frequently 
sampled iPOP participant who had sufficient wearables and clinical 
vital sign measurements to potentially establish accurate person-
alized cVS and wVS models of HCT (Fig. 4b). We explored how 
the number of observations and the duration of monitoring affect 
the variance explained by a personalized model, how personalized 
model accuracy changes over time, and how the change in accuracy 
is related to the dynamically changing health of an individual.

As expected, the performance of the personalized models for 
the case study varied over time, and health events caused shifts 
that required updated clinical information to re-establish high 

performance (Fig. 4b). The individual’s personalized HCT wVS 
model outperformed the personalized cVS model 84% of the time 
(Fig. 4b). We found that personalized models built using more 
observations or from a dense monitoring period had increased 
accuracy if the monitoring period was of appropriate length. For 
the HCT cVS model, 10 sequential clinic visits were needed to 
observe an R improvement from near zero to 0.74 (Fig. 4c). We 
also found that the personalized models often performed com-
parably to the population-level models if the prior observations 
were not in close proximity to the test that we aimed to predict 
(Fig. 4c). Thus, in contrast to our initial hypothesis, more vis-
its did not always equate to more accurate models because the 
timespan of observations was often longer and therefore included 
observations that were more distanced in time from the clinic 
visit with the relevant laboratory test. A more complex modeling 
scheme is required to effectively incorporate all available data; for 
example, by down-weighting observations that are distant from 
the clinical visit.

Another key finding was that the ability to build an accurate 
model for an individual varied based on their health fluctuations. 
In the SEHR dataset, individuals with the most clinic visits are also 
those that are the most sick, and the dynamic nature of their per-
sonalized model performance may reflect their dynamic health sta-
tus (Extended Data Fig. 2b)25. Interestingly, dramatic decreases in 
personalized model accuracy coincided with major health events 
(for example, myocardial infarction, emergency department visit or 
viral illness), suggesting that major shifts in physiology can influ-
ence the quality of the model (Fig. 4b and Extended Data Fig. 2b), 
and in turn that changes in model performance can signal major 
health events. So far, such large-scale analysis of variability in health 
has been possible only in sick populations, because data on healthy 
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individuals are usually sparse. With wearables, we can also analyze 
health variations in healthy populations.

Discussion
Here we demonstrate that (1) heart rate vital signs collected from 
wearables provide a more consistent depiction of resting heart rate 
than measurements taken in the clinic; (2) wVS are associated with 
several clinical labs, with hematologic clinical laboratory tests most 
consistently predictable using wVS models; (3) specific physiologi-
cal features are associated with clinical features (for example, EDA 
and HCT) providing insights into links between clinical biochemi-
cal tests and physiology; (4) in the majority of cases, wVS models 

outperform cVS models; (5) the amount of time monitored, the 
proximity of the monitoring period to the date of prediction, and 
health events play a critical role in the accuracy of the models; 
and that (6) personalized models perform significantly better than 
population-level models. These findings build upon our previous 
study in which we found that it is possible to determine personal 
vital sign baselines and detect illness from wearables8, and hence are 
a starting point for improved diagnostics using wearables.

cHR are used to monitor acute and chronic health status, includ-
ing infection, anemia, hypoxia and cardiovascular disease risk26. 
Previous studies demonstrated that single clinic visits do not suffi-
ciently capture average heart rate among patients with cardiovascular  

0.6
b

c

d

a

wVS RF
cVS RF
cVS LM

0.4

0.2

0.5

0.4

0.3

C
C

A 
m

ul
tip

le
 c

or
re

la
tio

n
co

ef
fic

ie
nt

 (R
)

0.2

0.1

0.0

Hep
ati

c

Hem
ato

log
ic

Meta
bo

lic

Card
iov

as
cu

lar

Im
mun

e

Elec
tro

lyte
s

M
ul

tip
le

 c
or

re
la

tio
n

co
ef

fic
ie

nt
 (R

)

0.0
Fe

at
ur

e 
ra

nk

HCT

Median Median Median

Median Median Median

Median Median Median

Mean Mean Mean

Median Mean Kurtosis

s.d. Kurtosis Kurtosis Mean Mean

Mean Median Kurtosis Mean

s.d. s.d. Kurtosis Mean

s.d. Mean Kurtosis Mean

s.d. Median s.d. Mean

s.d.

Kurtosis

s.d.

s.d.

RBC

Electrolytes Ca2+ , K+ , CI– , CO2, Na+, AG 

HbA1c, ALB, GLU, UALB, CR, ALCRU

CHOL, LDLHDL, HDL, CHOLHDL, NHDL, TGL, LDL

ALKP, BUN, ALT, TBIL, AST

LYM, LYMAB, MONO, MONOAB, NEUT, NEUTAB,
IGM, EOS, EOSAB, BASO, BASOAB,

WBC, HSCRP

PLT, GLOB, TP, HGB, HCT, RDW, MCH, MCV,
RBC, MCHC

Diabetes

Cardiovascular
disease

Hepatic

Immune
system

Hematologic

HGB PLT MONOAB GLU HbA1c CL

1

2

3

4

5

HCT
RBC

HGB

MONOAB
HbA

1c
GLU PLT

UALB CL

Fig. 3 | Predicting clinical laboratory measurements from vital signs collected using wearables. a, Physiological categories of clinical laboratory 
tests performed at clinic visits. ALB, albumin; ALKP, alkaline phosphatase; ALRCU, aluminum/creatinine ratio; ALT, alanine aminotransferase; AST, 
aminotransferase; BASO, relative basophil count; BASOAB, absolute basophil count; BUN, blood urea nitrogen; CHOL, total cholesterol; CHOLHDL, 
high-density lipoprotein/total cholesterol ratio; CR, creatinine; EOS, relative eosinophil count; EOSAB, absolute eosinophil count; GLOB, globulin; 
HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; HSCRP, high-sensitivity C-reactive protein; IGM, immunoglobulin M; LDL, low-density 
lipoprotein; LDLHDL, LDL/HDL ratio; LYM, relative lymphocyte count; LYMAB, absolute lymphocyte count; NEUT, relative neutrophil count; NEUTAB, 
absolute neutrophil count; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; 
NHDL, non-HDL cholesterol; RDW, red-cell distribution width; TBIL, total bilirubin; TGL, triglycerides; TP, total protein; UALB, urine albumin; WBC, 
white-blood-cell count. b, The models that most accurately predict clinical laboratory tests using vital signs measured by the watch (wVS, red triangles) 
compared to the clinic (cVS, blue and green circles) (P < 0.05 for all except serum chloride (CL); correlation between observed and predicted values with 
Bonferroni correction). Points correspond to the mean R statistic derived by leave-one-person-out cross validation for n = 54 study participants, and error 
bars represent the 95% confidence intervals derived by bootstrap with the procedure repeated 1,000 times. The wVS are random forest models using the 
153 digital biomarkers from part c calculated on watch data from the day before the clinic visit. The cVS models are bivariate linear (blue) or random forest 
(green) models with cHR and cTemp as model features. All of the models are cross validated using leave-one-person-out cross validation and confidence 
intervals are established using bootstrapping (P < 0.05). Clinical laboratory test colors correspond to physiology subsets from part a. c, The most accurate 
digital biomarkers selected out of the 153 features in the wVS models in part b. The colors and large icon in the background of the squares correspond to 
the different wVS in the left side of Fig. 2a (pink heart, heart rate; blue droplet, EDA; tan thermometer, skin temperature; gray footprints, steps), and the 
foreground icons correspond to the thresholding criteria on the right side of Fig. 2a. Interpretations of colors and symbols are provided in part a. d, CCA 
using physiology categories from part a as outcome variables and the 153 digital biomarkers from Fig. 2a as model features (P < 0.05 for all CCA models). 
Points correspond to the mean correlation derived by leave-one-person-out cross validation for n = 54 study participants, and error bars represent 95% 
confidence intervals derived by bootstrap with the procedure repeated 1,000 times.
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disease and hypertension20,27. We demonstrate that circadian heart 
rate variations cannot be captured through intermittent clinic visits, 
and therefore cHR taken at different times of day are of limited util-
ity for tracking health over time. Heart rate variations throughout 
the course of the day are an important consideration given that most 
clinic visits do not occur at the same time of day, complicating the 
interpretation of cHR20.

Calculating wRHR over varying time and activity thresholds 
revealed that wRHR decrease with longer durations of inactiv-
ity. Current cHR guidelines only require 5 min of rest and do not 
account for physical activity or stress levels immediately prior to 
the clinic visit. We also found that wRHR are more representative 
of typical resting heart rate than intermittent cHR, and that longer 
monitoring periods for capturing wRHR decreased variance. This 
underscores the importance of time window selection for individual 
‘baselining’. This window will vary for different types of physiologi-
cal measurements depending on how much variability is expected, 
how variation occurs over time, and how measurements covary with 
other factors (for example seasonality). This information can be col-
lected and factored into wearables measurements in the future.

Although in the past clinical labs were routinely collected at 
annual visits, there has been a shift from routine collection due to 
lack of evidence of benefit28. Using prediction models to pre-screen 
for risk of abnormal labs may enable providers to better identify 
those who might benefit from laboratory testing, avoiding the cost 
and effort of performing routine clinical laboratory testing on all 
patients. Presently, we do not anticipate diagnostic use of the cur-
rent models; however, they can be used to suggest further clinical 
testing. These models could also be extremely useful in an emer-
gency room setting, as information about the risk for abnormal 
clinical labs could be available the moment that the patient arrives.

We found that the majority of wVS models outperform cVS mod-
els, presumably because wVS provide more measurements through-
out the duration of monitoring and the ability to engineer more 
complex model features (Extended Data Fig. 3b). The finding that 
the variance of wRHR is lower than that of cHR, combined with our 
previous validation studies that compared wRHR with simultane-
ous clinical gold standard measurements5,8, demonstrates that many 
longitudinal observations of resting heart rate enable us to capture 
more consistent HR values than could be captured in a clinic.

Among the 44 laboratory tests, there are a few groups of tests 
that are strongly correlated, and several models were found to pre-
dict the correlated tests. However, no laboratory tests are redundant, 
and even strongly correlated laboratory tests have distinct clini-
cal applications. For example, although there is great heterogene-
ity among our predictive models of clinical labs, we consistently 
found that two components of the complete blood count clinical lab 
panel—HCT and HGB—were best predicted from vital signs alone.  

These two tests are strongly correlated, but they are derived dif-
ferently and contain complementary information. HGB is a direct 
measurement of hemoglobin, whereas HCT is calculated from RBC 
count and mean corpuscular volume. Wearable-measured EDA was 
a strong predictor of HCT, HGB and RBC, consistent with existing 
literature on sympathetic activation and hemoconcentration29. In 
the outpatient setting these models may help to identify individu-
als who would benefit from screening for anemia as well as those 
suffering from dehydration. The potential to detect dehydration 
using wearables may be particularly useful in older adults who are 
at heightened risk of dehydration due to age-related physiological 
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changes, including decreased thirst30. Hospitalizations for dehydra-
tion are extremely costly and are considered by US Medicare to be 
preventable31. The potential of wearables to establish a reliable base-
line and detect changes from the baseline may be a valuable tool 
to address this problem and other emerging uses in older people 
(for example, fall detection). Given that one in five people in the 
United States regularly wears a smartwatch, and their use is increas-
ing, there will often be sufficient data for practical implementation 
of these methods by physicians.

PPG uses light absorption by hemoglobin to calculate heart rate, 
and therefore we expected that HGB would be the most likely test 
to be predictable by PPG-based heart rate measurements. Indeed, 
we found that the wVS heart rate features comprised 20–40% of 
the most-predictive features in our best HGB model, whereas cVS, 
which does not use PPG, could only explain 2–7% of the variance in 
HGB measurements.

Daytime and night-time high intensity activity were strong pre-
dictors of fasting plasma glucose, as were wRHR and wRTemp. This 
is consistent with our previous work showing that the difference 
between daytime and night-time wRHR and daily steps are associ-
ated with insulin resistance8. Although the random forest method 
does not illustrate direction of prediction and only ranks the feature 
importance, we infer that high daytime activity may be associated 
with better fitness, an important factor in glucose control. On the 
other hand, high night-time activity may be disruptive of circadian 
rhythms, which is also important to blood glucose control. Daytime 
physical activity and skin temperature changes during physical 
activity were predictive of MONOAB, as might be expected given 
that these become disrupted during infection. Additional research 

will help to uncover the underlying biological mechanisms of the 
relationship between biomolecular measurements and physiologi-
cal signals.

Although we were able to build useful models of clinical chem-
istry from wearables data in our relatively small iPOP cohort, the 
cohort size was limited. Therefore the models that we developed 
here, although predictive, are less generalizable to the overall 
population. To obtain similar results in another specified group 
of patients, models should be trained on data from those cohorts 
in which the model is intended to be applied. In the future, larger 
datasets like the Health eHeart Study32 and the All of Us Research 
Initiative that capture both clinical information and simultaneous 
wearables information will dramatically improve the field of digital 
biomarker development and training of models on specific popu-
lations. Such datasets may also support the development of more 
accurate, but also more complex and potentially less interpretable 
deep learning models. Here, we aimed to develop accurate yet inter-
pretable models because understanding the logic underlying a mod-
el’s output is critical in the clinical setting.

As technology advances, present-day clinical labs may be fre-
quently measured outside of the clinic33,34. There have been several 
successful examples of continuous monitoring of clinical labs via 
wearable biosensors; for example, continuous blood glucose35,36, 
cortisol37, and sweat analyte38 monitors. These sensors are not with-
out challenges as they require access to bodily fluids, often through 
invasive methods, and usually require frequent recalibration. We 
anticipate that in the future, using new wearables that measure 
additional parameters such as systolic and diastolic blood pres-
sure and respiration rate will further improve the wVS personalized  
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models. Moreover, a combination of clinical and wearable metrics 
may provide a more holistic picture of the patient, with intermittent 
but precise measurements in the clinic and noisier but continuous 
monitoring using wearables, complementing clinical practice.

Overall, our findings suggest that wearables enable continuous 
health monitoring, health monitoring outside of the clinic, and 
detection of deviations from personal healthy baselines that can be 
used to identify the need for more formal clinical laboratory evalu-
ation. The personalized monitoring and modeling framework pre-
sented here can be readily generalized to other types of data and 
clinical measurements, enabling broad implementation of personal-
ized health monitoring through wearables.
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Methods
Wearables cohort. Participants were enrolled in the iPOP study under institutional 
review board (IRB)-approved protocols (IRB-23602 and IRB-34907 at Stanford 
University) with written consent. All clinical measurements were covered by 
IRB-23602, the enrollment criterion of which is a minimum age of 18 years. All 
wearable measurements were covered by IRB-34907, the enrollment criterion 
of which is a minimum age of 13 years. Cohort demographics are reported in 
Supplementary Table 1d. Participants were recruited with efforts to enroll those at 
risk for type 2 diabetes (SSPG ≥150 mg dl−1, fasting plasma glucose ≥ 100 mg dl−1, 
oral glucose tolerance test ≥ 140 mg dl−1, HbA1c > 5.6%) and healthy controls. We 
simultaneously collected wearables data from a subset of our cohort consisting of 
54 individuals. Clinical laboratory tests were performed at every clinic visit, which 
occurred roughly four times per year for ‘healthy visits’ (regular check-ins with no 
specific reason for the visit; e.g., no reported illness, stressful event, travel, etc.). 
Clinic visits were performed in the mornings between 7:00 and 9:00, and resting 
heart rate was measured after 5 min of sitting, according to American College of 
Cardiology (ACC) and American Heart Association (AHA) guidelines20,39. The 
data collected included 44,402 clinical laboratory test results and 3,987 vital sign 
measurements (2,391 cHR and 1,596 cTemp) using the gold standard Welch Allyn 
6000 series instrument, which is routinely used at the clinical laboratory services 
at Stanford University (average values and number of observations for each test are 
given in Supplementary Table 1a,b). Participants wore a smart watch for an average 
of 343 days. Average values for the smart watch are reported in Supplementary 
Table 1c. For each individual, the number of days monitored by the clinic and by 
the wearable were calculated by the time between the date of the first and the final 
clinic visit, and the total amount of time that the watch was worn, respectively.

Retrospective clinical record cohort. Overall, we analyzed clinical records 
from 28,694 patients at Stanford Hospital (IRB-37859). The records contained 
31,543,209 laboratory test results (87,972 from our 44 clinical labs of interest 
that have corresponding vital signs measurements) and 885,966 vital signs 
measurements (552,145 cHR and 333,821 cTemp, 86,515 and 75,187 of which, 
respectively, have corresponding clinical laboratory tests from our 44 tests of 
interest) (average values and numbers of observations for each test are given in 
Supplementary Table 3a,b, and cohort demographics are given in Supplementary 
Table 3c)3. These records were from 10,000 individuals with prediabetes, 8,694 with 
type II diabetes, and 10,000 individuals who were normoglycemic based on fasting 
plasma glucose. We used clinical vital signs that occurred on the same date as our 
clinical laboratory tests of interest, using only observations between 20–230 bpm 
(heart rate), 90–115°F (oral temperature), 70–220 mmHg (systolic blood pressure), 
35–130 mmHg (diastolic blood pressure) and 2–130 breaths per min (respiration 
rate). The average cHR was 77.51 (s.d. 14.12) (n = 86,515 cHR observations) 
and the average cTemp was 97.96 (s.d. 0.50) (n = 75,187 cTemp observations) 
(Supplementary Table 3a). These numbers are similar to the clinical measures from 
the iPOP wearables cohort (mean cHR = 71, cTemp = 97.9) although the cHR in 
the large cohort is elevated.

Clinical record data cleaning. To address possible data entry errors, for each 
of the clinical laboratory tests we removed outliers (values greater than three 
standard deviations from the mean for that laboratory). We compiled a list of 44 
clinical laboratory tests based on their ubiquity in standard clinical practice, their 
frequency in our clinical records, and their relevance to physiology (Supplementary 
Tables 1b and 3b). The number of days monitored by the clinic was calculated by 
the time between the date of the first and the final visit.

wVS data pre-processing steps. We collected a total of 157,068,268 wearables 
measurements using four sensors (heart rate photoplethysmography, skin 
temperature thermopile, EDA and accelerometer at a rate of 1 measurement 
per sensor per min) from 54 individuals over a total of 18,522 days of recording using 
the Intel Basis smart watch. We removed outliers using the same method as above.

Evaluating the relationship between cVS and wVS. Previous research shows that 
the Intel Basis watch accurately measures heart rate in the resting range7,8,40. To 
explore the correspondence between clinically measured vital signs and vital signs 
measured using the wearable (cVS and wVS, respectively), we calculated the resting 
values of heart rate and skin temperature measured from the smart watch (wRHR 
and wRTemp, respectively) during 5-, 10-, and 60-min rolling windows during the 
24 hours prior to the clinic visit, for which there were no steps taken or the number 
of steps was less than 50. We averaged the wRHR during each hour of the day to 
explore the circadian variation in wRHR and to compare wRHR at each hour of the 
day to the average of the single clinic cHR. To compare the variation in wRHR with 
the variation cHR, we used the watch measurements during 1 week, 2 weeks and 1 
month prior to the date of the clinic visit during the same time as the clinic visits 
(7:00 to 9:00). In the clinic, participants are required to rest by sitting upright for 
5 min before the cHR measurement according to ACC and AHA guidelines39. We 
had n = 54 participants with cHR and cRTemp taken during smart watch wear (that 
is, with simultaneous clinical and wearables measurements). We compared the 
mean and variance of wRHR and wRTemp to cHR and cTemp and calculated the 
correlation coefficient between wRHR and cHR, and wRTemp and cTemp.

Wearable data feature engineering. Our wVS feature engineering pipeline used a 
systematic, unbiased approach for subsetting and calculating standard descriptive 
statistics (eight statistical moments) on the continuous wearables data. From 
this pipeline we compiled a list of 5,736 possible features in our model. Based on 
discussion with five clinicians, we selected 153 features out of the 5,736 that were 
most likely to be directly altered in a physiological state change that could be 
detected by the 44 clinical laboratory tests (Supplementary Table 2a). The digital 
biomarkers generated using the schema in Fig. 2a were used as inputs into the 
model development pipeline (Fig. 2b). The time window of wVS measurements 
used in the feature calculations can vary. We first chose the 24-h period 
immediately preceding the clinic visit where the clinical laboratory test was done. 
Below, we demonstrate how the choice of time window affects the model accuracy.

Evaluating the relationship between wVS and clinical laboratory tests. We 
built and tested models of varying complexity to predict clinical laboratory test 
values from wVS. We evaluate model performance as a function of the observed 
and predicted values of the dependent variable using the multiple correlation 
coefficient R corrected for leave-one-person-out cross validation.41,42 More 
specifically, we calculate the square root of the per cent variance explained by the 
model using the formula:

R =

√

1 −

RSSm
RSS0

(1)

where RSSm is the residual sum of squares of the trained model on the test data and 
RSS0 is the equivalent for the null model. We define RSS as:

RSS =
∑

i
(oi − pi)2 (2)

where oi are observed values and equation (1) is equivalent to the classical 
coefficient of determination, R2. For nonlinear models this value can be similarly 
interpreted as the proportion of variance of the dependent variable that is 
explained by the model. Moreover, the quantity RSSm/n, where n is the number of 
observations, is equivalent to the mean squared error.

We chose to report the R2 statistic rather than absolute errors in order to make 
all models presented in the study compatible, regardless of the machine learning 
methods used and the clinical labs being predicted. Algebraic transformations 
enable conversion from R2 to units of the laboratory test by computing

RMSE = σ
√

(1 − R2) (3)

where RMSE is the root mean squared error and σ is the standard deviation 
of the laboratory test. We provide standard deviations of all laboratory tests 
in Supplementary Table 1b. Models were initially generated using only wVS, 
excluding demographic covariation, because we were interested in understanding 
how much of the variation in clinical laboratory tests could be explained directly 
by vital signs when no additional information is available (Fig. 3b). We also later 
tested the same models including demographic covariation. Testing models with 
and without demographic covariation is important for determining the robustness 
of the models and whether they can use sensor data alone to generate insights. 
Models that operate well with fewer inputs are more useful in low resource settings 
or in high privacy environments where gathering additional information about a 
patient can be difficult. To test and compare the wVS models, we built univariate 
and multivariate linear regression, least absolute shrinkage and selection operator 
(Lasso) regularized regression, random forest, and canonical correlation models 
using the stats, glmnet, randomForest and PMA packages, respectively (R version 
3.3.3). The univariate used only mean wRHR or mean wRTemp to predict each 
clinical laboratory test. The bivariate model included both wRHR and wRTemp, 
and the multivariate model included both the mean and standard deviation of 
these values. The 153 wVS engineered features were used in the Lasso and random 
forest models (Supplementary Table 3a). We used leave-one-person-out cross 
validation (LOPOCV) and the R reporting statistic to assess the accuracy of the 
models. In LOPOCV, for each subject in the dataset we train a model using a 
dataset without that subject and then we test model performance on that subject. 
Next, we average the errors across all subjects to obtain an estimate of the error 
outside of the training set.

Lasso. To develop a regression model that can take advantage of the higher feature 
complexity made possible by using wVS as opposed to cVS, we used Lasso43,44 with 
the 153 wVS features as predictors and each of the 44 clinical laboratory tests as 
outcomes (Supplementary Table 3a)44. We used the glmnet package (R version 
3.3.3) to build each Lasso model LOPOCV loop to develop the overall model 
and an internal n-fold cross-validation loop in which the model training data 
set from the outer loop is decomposed into a subsequent training or validation 
set to tune the lambda shrinkage parameter over 100 possible values for lambda 
(nlambda = 100). We explored lambdas that minimize the cross-validated error 
(lambda.min) or that minimize the cross-validated error plus one standard 
deviation (lambda.1se), which generally results in a more robust and parsimonious 
model. We determined the best fit Lasso models for each of the 44 clinical 
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laboratory tests and explored the features that appeared the most frequently among 
the 44 Lasso models as well as features with the highest coefficients overall and in 
particular models. We also explored how varying the timespan used to calculate 
the model features affected the overall accuracy of the Lasso models (Extended 
Data Fig. 2a).

Random forest. Given our finding that the slopes of the relationships between cVS 
and clinical labs often vary oppositely, we decided to use random forest nonlinear 
models45. We used the randomForest package in R to build separate models for 
each test. We evaluated the model following the same LOPOCV method and R 
reporting statistic. We used the default package parameters of 500 trees and 51 
variables randomly chosen at each split (the number of features divided by 3).

Canonical correlation analysis. An extension of linear models in the context of 
high-dimensional data is to predict a weighted sum of tests rather than individual 
tests. Conceptually, this is motivated by the fact that variability in individual 
clinical laboratory tests from a certain group (for example, metabolic tests) can 
be correlated and therefore we may want to project them onto a single index 
to summarize this variability. To accomplish this, we searched to maximize the 
correlation between a linear combination of a subset of clinical laboratory tests 
and a linear combination of predictors. We grouped the clinical laboratory tests 
by physiological groups (Fig. 3a), which we use as the outcomes in the regularized 
CCA models, where the wVS features are the same as were used in the random 
forest and lasso models46. We used internal cross-validation over combinations 
c1, c2 ∈ (0.1, 0.5, 0.7) corresponding to aggressive, medium and conservative 
penalties, respectively, to choose the optimal parameters for each groups of tests46. 
We used LOPOCV and the R reporting statistic to assess the canonical correlation. 
CCA is a useful tool for finding relations between sets of variables, however it can 
handle only linear relations and, while we attempted to use a regularized version of 
CCA, there is no gold standard technique for solving the problem of sparse CCA. 
In light of recent developments in this area of high-dimensional statistics we may 
expect further improvements in the robustness of these tools46,47.

Evaluating relationship between cVS and clinical laboratory tests. We also built 
and tested models of varying complexity to predict clinical laboratory test values 
from cVS. For direct comparability with the wVS models built for the iPOP cohort, 
we built random forest and bivariate linear cVS models in the iPOP cohort using 
LOPOCV, using only individuals with ten or more observations of that clinical 
lab test. These cVS models used cHR and cTemp as variables, which are the two 
vital signs that were measurable both in the clinic and by the watch. We ran 1,000 
bootstrapping trials to establish confidence bounds of the reporting statistic R. 
In each bootstrapping trial i we sampled observations with replacement, ran the 
training procedure, and recorded the Ri statistic on the test set. We report the mean 
of Ri as our R statistic and use the standard deviation of R to establish confidence 
bounds and P values. We defined the most accurate cVS models as those with 
P < 0.05 for correlation between observed and predicted values using Bonferroni 
correction for multiple hypothesis testing. For the Bonferroni correction we 
multiply the P values of models of all clinical tests by 44 (the number of models).

Exploring the importance of duration and proximity of monitoring. We 
sought to discover whether there is an optimal number of observations, length 
of monitoring period, and proximity of monitoring to the date of the test being 
predicted to achieve the most accurate possible predictions. To explore how time 
affects the accuracy of the model predictions, we analyzed how the cVS mixed 
effects model accuracy changes with respect to the number of observations used 
to generate the model and the proximity of those observations to the date of the 
test being predicted. We used a relatively healthy iPOP participant with more than 
60 clinic visits to test this concept. For the personal cVS model, we divided the 
number of visits in half and on each half we built models to predict the last three 
observations (test set). We trained the model using the last K observations prior 
to the observation that we want to predict. We varied K between 1 and 25 to find 
the number of observations optimal for predictions. We computed R from all six 
test values (three from each half). We used this approach to evaluate the models 
predicting HCT from cVS for this subject.

For the individual with the largest number of observations in both datasets 
we analyzed temporal variability of accuracy of cVS and iPOP models. Beginning 
from the tenth visit, we built a linear model to predict HCT for each subsequent 
visit using the last 10 visits. Given a small number of observations we aimed at 
building parsimonious models. For the cVS model we use pulse, temp, systolic and 
diastolic blood pressure, and respiration. For the iPOP model we use mean heart 
rate, skin temperature, galvanic skin response, step count and resting heart rate. 
We predicted values of HCT using that model for the current and subsequent time 
points, and we computed the R statistic.

To explore the importance of the overall amount of wearables data from 
each individual used to develop the wVS model features, and the timespan of 
monitoring relative to the date of the clinical test, we developed retrospectively 
expanding windows of time from the date of the clinical laboratory test (1 day, 
3 days, 1 week and 1 month before the date of the clinical laboratory test) where 
the data collected in that time window was used to calculate the wVS features. 

We also created a time window containing all wVS data collected before the 
clinical laboratory test. For each prediction, we tested five sets of wVS features, 
one per timespan, to regenerate the lasso and random forest models including 
demographics, and compared the accuracy of the models.

Personalized models. To explore the capabilities of cVS models at the population 
level, we developed univariate and multivariate linear models and random forest 
models using the large population-level clinical dataset (n = 28,694 patients at 
Stanford Hospital). The most complex cVS multivariate linear model included 
all vital signs measured in the clinic (cHR, cTemp, systolic and diastolic blood 
pressure, and respiration rate), and we tested this model with and without 
demographic covariation. We also performed random forests using the same 
features from the complex multivariate model (see Methods, section on wVS 
model building). As the number of features in the cVS models was significantly 
lower than in the wVS models (5 cVS features versus 153 wVS features), we did 
not perform the Lasso regression on the cVS models because it was not necessary 
to perform feature selection. We estimated the R reporting statistic used through 
cross-validation, dividing data into 50 equal partitions at the patient level, where 
each laboratory test in each partition was separated into 60% training data and 
40% test data. To derive confidence bounds we repeated the procedure 1,000 times, 
sampling data with replacement.

We enhanced the most accurate wVS and cVS models that we developed 
previously, through design of personalized models that use the historical data from 
an individual as an additional input into the model. For the wVS and cVS random 
forest models, we included the personal identifier as a categorical feature. For the 
cVS linear regression models, we explored three methods of personalizing the 
models. First, we explored the personal mean; a simple intercept-only model using 
the personal mean (for example the mean of all previous results for the clinical 
laboratory test for that individual). Second, we examined cVS + personal mean; 
a model combining the personal mean and the multivariate cVS model. Last, we 
examined cVS + personal mean + personal slope; a mixed effects model allowing 
for variability of slope coefficients for each individual to account for random 
effects. To ensure a sufficient amount of historical data per individual in the cVS 
models, we chose only individuals with more than 50 clinic visits (213 people, 
mean of 111 and median of 117 patients per test). The second and the last of these 
models were generated using the loess function from the stats package in R for 
local polynomial regression and personal slopes in the mixed effects models were 
generated using the lmer function from the lme4 package in R. To test the accuracy 
of the personal cVS linear models, we performed leave-one-test-result-out cross 
validation, holding out the last observation for each patient to be predicted using 
the model trained on all patients (including the one from which the observation 
was held out). We used bootstrapping to calculate the confidence bounds of R, the 
multiple correlation coefficient between the observed and predicted values.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Intel Basis watch data are available on the Stanford iPOP site (http://ipop-data.
stanford.edu/wearable_data/Stanford_Wearables_data.tar) and in the Digital 
Health Data Repository48 (https://github.com/DigitalBiomarkerDiscoveryPipeline/
Digital_Health_Data_Repository/tree/main/Dataset_StanfordWearables). Data 
that are unique to this study are included as source data and in the supplementary 
tables. Source data are provided with this paper.

Code availability
R version 3.3.3 was used with the base packages and the following additional 
CRAN packages: stats, glmnet, lme4, randomForest and PMA. Custom scripts 
were used for data analysis and are open source via github.com/jessilyn/
wearables_vitalsigns (https://doi.org/10.5281/zenodo.4661493), and wearables data 
pre-processing scripts are available on the Digital Biomarker Discovery Pipeline 
(https://DBDP.org)48.
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Extended Data Fig. 1 | Wearables temperature variations and extended modeling results. a, Variations in wRTemp over course of the day. b, R statistics 
based on LOOCV for all tests from Fig. 3b. c, R statistics based on K-fold CV for all tests from Fig. 3b.
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Extended Data Fig. 2 | Model accuracy changes over time based on window of historical data from an individual. a, Lasso regularized regression using 
features calculated using different windows of wearable device monitoring. b, Accuracy of the HCT cVS mixed effects models over time for two example 
patients that were monitored between 2.5–5 years at Stanford hospital with >50 HCT observations at separate clinic visits. The HCT cVS mixed effects 
models demonstrate that the model accuracy changes over time, and particularly with a dramatic health event like a myocardial infarction (ICD code I21.4) 
(red vertical line) or a life-threatening ED visit (blue vertical line; CPT code 99285).
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Extended Data Fig. 3 | Increasing amounts of personalized data open up new study and model possibilities. a, Summary of different biomedical data 
collection modalities and the typical amount of data they result in. b, Demonstration of how the amount and modality of data collection (longitudinal 
continuous vs. discrete measurements) constrain the type and complexity of models that can be built from the data.
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