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Human activity recognition (HAR) is a promising research issue in ubiquitous and wearable computing. However, there are 
some problems existing in traditional methods: 1) They treat HAR as a single label classification task, and ignore the 
information from other related tasks, which is helpful for the original task. 2) They need to predesign features artificially, 
which are heuristic and not tightly related to HAR task. To address these problems, we propose AROMA (human activity 
recognition using deep multi-task learning). Human activities can be divided into simple and complex activities. They are 
closely linked. Simple and complex activity recognitions are two related tasks in AROMA. For simple activity recognition 
task, AROMA utilizes a convolutional neural network (CNN) to extract deep features, which are task dependent and non-
handcrafted. For complex activity recognition task, AROMA applies a long short-term memory (LSTM) network to learn the 
temporal context of activity data. In addition, there is a shared structure between the two tasks, and the object functions of 
these two tasks are optimized jointly. We evaluate AROMA on two public datasets, and the experimental results show that 
AROMA is able to yield a competitive performance in both simple and complex activity recognitions. 1 
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1 INTRODUCTION 
Human activity recognition (HAR) is one of the most significant and valuable issues in ubiquitous and wearable 
computing, as it can support many real-word applications, e.g., healthcare [5], skills assessment [32], and 
industrial assistant [21]. Although there are a variety of methods that can recognize human activities with high 
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accuracy, they mainly focus on simple activities, e.g., “running”, “sitting”, and “walking”. Simple activities are 
usually characterized by repeated actions [6] or single body posture [14]. Compared with simple activities, 
complex activities are more complicated, and have higher level semantics, e.g., “working”, “having dinner”, and 
“commuting” [25]. They are more reflective of people’s daily lives. 

Most of the prior work treated HAR as a single classification task. Given a sequence of activity data, a HAR 
model generally extracts some predesigned features from the activity data, and then maps the features to an 
activity label. These features are usually designed manually, and the most common ones are statistical features 
[2] and structural features [16]. However, these features are heuristic and not task-dependent [33], which have 
been widely used in many time series problems. Nowadays, some researchers have tried to apply deep learning 
methods to discover deep features for HAR [8, 10, 24, 33, 34]. Deep learning is a class of machine learning 
algorithms that are based on learning data representations [33]. Common deep learning methods, e.g., 
convolutional neural networks (CNNs) [17], recurrent neural networks (RNNs) [28], and long short-term 
memory (LSTM) networks [13], are good at discovering deep features automatically, which can effectively 
characterize the nature of raw data. CNNs are feedforward neural networks, compared with CNNs, RNNs add 
a directed cycle to exhibit dynamic temporal behaviors, i.e., RNNs have “memory” to learn temporal 
relationships on time series data. LSTM networks extend RNNs with more complex memory cells and can 
effectively avoid the long-term dependency problem of RNNs [7]. 

These deep learning based HAR methods still focused only on a single classification task. In this way, 
information coming from related tasks is ignored, which might help HAR models do better [27]. Multi-task 
learning is a technique that can solve multiple tasks jointly. It is a promising way to improve model performance 
by exploiting the commonalities and differences across multiple tasks. There is a shared structure among 
multiple tasks. If the tasks are chosen appropriately, the shared structure can help each task learn more from 
other tasks. There is limited work on multi-task learning based HAR. Sun et al. [29-30] proposed a multi-task 
learning method for personalized HAR, where each task corresponds to a specific person. However, this work 
still relied on traditional statistical features. 

To address the above problems, we propose AROMA (human activity recognition using deep multi-task 
learning) to solve simple and complex activity recognition tasks jointly. In HAR, simple and complex activity 
recognitions are a pair of related tasks. On one hand, simple activities act as the components of complex 
activities [25]. For example, when a user is performing complex activity “commuting”, there are many possible 
simple activities, e.g., “walking”, “standing still”, and “going upstairs”. On the other hand, the features of 
complex activities can reflect the relationships of simple activities, and further help simple activity recognition. 
When recognizing simple and complex activities, multi-task learning can discover the commonalities between 
these two kinds of activities, which are hard to learn by single task learning. Meanwhile, the differences between 
simple and complex activities are a kind of inductive bias, which can help improve the generalization abilities 
of both simple and complex activity recognition models. Specifically, there is a shared structure between these 
two tasks, whose parameters are optimized jointly. 

The main contributions of this work are summarized as follows: 
1) Propose AROMA, a deep multi-task learning based method to solve simple and complex activity 

recognition tasks jointly, which can exploit the commonalities and differences between these two tasks to 
achieve better recognition performance and generalization ability. 

2) Design a CNN for simple activity recognition task, which can extract deep features that are relative to 
HAR task and non-handcrafted. In addition, we combine a deep residual network with the CNN to achieve 
shallower network and better recognition performance. 

3) Apply a LSTM network for complex activity recognition task, which can utilize the temporal context of 
activity data. There is a shared structure between these two tasks, in which the input of the LSTM network is 
the output of the CNN. 

4) Evaluate AROMA on two public datasets and perform comparison with other methods. The experimental 
results show that AROMA is able to yield a competitive performance in both simple and complex activity 
recognitions. 
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The remainder of this paper is organized as follows: Section 2 gives a survey of the related work. Then Section 
3 describes the proposed method AROMA. Section 4 presents the experimental results. Finally, Section 5 
concludes the paper. 

2 RELATED WORK 
This section presents the related work in the area of wearable sensor based HAR, including HAR (simple activity 
recognition and complex activity recognition), as well as deep learning and multi-task learning for HAR. 

2.1 Human Activity Recognition 
Most current HAR studies mainly involve in recognizing simple activities. For instance, Gupta et al. [9] used a 
waist-mounted triaxial accelerometer to recognize simple activities, e.g., “sitting”, “walking”, and “running”. 
Lara et al. [16] used a smartphone and a chest strap to recognize simple activities, e.g., “walking”, “ascending”, 
“descending”, and “sitting”. He et al. [12] recognized four human activities (i.e., “running”, “still”, “jumping”, 
and “walking”) by using a single triaxial accelerometer. 

Compared with simple activity recognition, complex activity recognition has developed much slower. 
Existing studies on complex activity recognition can be classified into two categories. The first one does not 
distinguish complex activities from simple activities, and uses methods designed for simple activities to 
recognize complex activities [2, 6]. For example, Dernbach et al. [6] used a triaxial accelerometer and a 
gyroscope to recognize simple activities (e.g., “standing” and “sitting”) as well as complex activities (e.g., 
“cleaning kitchen” and “cooking”). Bao et al. [2] utilized five biaxial accelerometers to recognize twenty human 
activities, ranging from simple activities (e.g., “walking” and “running”) to complex activities (e.g., “working” 
and “eating”), which demonstrated that the recognition performance of complex activities is far lower than that 
of simple activities. Since the structure of complex activities is more complicated, the methods designed for 
simple activity recognition are weak in classifying complex activities. 

The second one defines complex activities in a hierarchical way, where a complex activity is represented by 
a combination of simple activities [3, 4, 14, 18, 19, 25,]. For example, Huynh et al. [14] used a hierarchical model 
to recognize activity patterns as a probabilistic combination of simple activities, where the simple activities are 
manually labeled. Liu et al. [18, 19] proposed a multilayered model to represent complex activities and employed 
a shapelet-based framework to recognize them. Blanke et al. [3-4] proposed a top-down method, which identifies 
simple activities and reveals them to classify complex activities through a feature selection algorithm. However, 
these methods heavily rely on domain knowledge. They not only have to predefine simple activities, but also 
have to manually design features from simple activity sequences to characterize complex activities. Since there 
are a large number of fine-grained components in complex activities, which may not be represented by 
predefined simple activities, these methods would lose effective and symbolic information of classification. To 
address this problem, Peng et al. [25] generated simple activity labels by clustering, and discovered the latent 
semantics of complex activities based on a topic model. But topic models define a document (i.e., a complex 
activity) based on a bag of words (i.e., components of complex activities) model, which ignores word order. That 
is to say, the temporal context of activity data is lost. 

In addition, all the above methods treated HAR as a single label classification task. They did not consider the 
correlation between simple and complex activities, which could help improve the performance of their HAR 
models. In this work, we regard simple and complex activity recognitions as two related tasks. They are learnt 
jointly, and what is learned for one task can help the other learn better. 

2.2 Deep Learning for HAR 
Deep learning is a kind of machine learning algorithm that uses multiple layers of nonlinear processing units 
to learn data representations. It contains multiple layers, where each successive layer uses the output from the 
previous layer as input. Deep learning methods have been successfully applied in many fields, e.g., computer 
vision, speech recognition, and natural language processing. Some researchers have also tried to apply deep 
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learning methods for HAR [8, 10, 24, 33, 34]. For instance, Zeng et al. [34] utilized a CNN to extract 
discriminative features for HAR, which could capture the local dependency and scale invariance of activity data. 
Yang et al. [33] adopted a deep CNN to extract features automatically from time series data to recognize human 
activities and hand gestures. Ordóñez and Roggen [24] used deep convolutional and LSTM recurrent neural 
networks for wearable sensor based multimodal HAR. Their work demonstrated that combining CNN and LSTM 
network could achieve a higher recognition accuracy than only using a CNN, which inspired our work. Guan 
and Plötz [8] built various LSTM networks and fused them in score-level to improve HAR performance. 
Hammerla et al. [10] investigated the impact of several different deep learning methods (e.g., deep feed-forward 
network, CNN, and bi-directional LSTM network) on HAR. 

All these studies demonstrated the effectiveness of deep learning for HAR. Meanwhile, they also faced a 
problem that deeper networks were able to achieve better performance, but were harder to get convergence. To 
address this problem, we utilize a deep residual network in AROMA, which is shallow and easy to be trained. 
More importantly, it can achieve the same or even better performance than deeper networks. 

2.3 Multi-task Learning for HAR 
Multi-task learning is a technique that multiple tasks are solved jointly using a shared structure. If the tasks are 
chosen well, the shared structure contributes to improving the generalization ability of the model. There are 
two kinds of multi-task learning algorithms. The first one is homogeneous multi-task learning, in which each 
task corresponds to a single output. For example, digit recognition can use multi-task learning methods by 
casting it as 10 binary classification tasks [15]. The second one is heterogeneous multi-task learning that each 
task corresponds to a unique set of outputs. For example, given a face picture, one task is to predict the person’s 
age and the other is to identify the gender [35]. 

Multi-task learning has been used successfully in many applications, e.g., speech recognition, computer 
vision, and drug discovery. There is limited work on multi-task learning based HAR using wearable sensors. 
Sun et al. [29-30] proposed a personalized HAR method by applying multi-task learning, where each task 
corresponds to a specific person. However, this method still relied on traditional statistical features, and each 
task in it had the same structure for HAR. In this work, we build a homogeneous multi-task learning architecture 
and meet a greater challenge, i.e., the structures for different tasks are very different. 

3  METHODOLOGY 
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Fig. 1. The architecture of AROMA. 
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This section gives a detailed description of our method AROMA, which recognizes simple and complex activities 
jointly. AROMA divides raw sensor data to fixed length windows, and each complex activity sample contains 
multiple simple activity samples. As shown in Fig. 1, the biggest blue rectangle refers to a complex activity 
sample, which is divided into multiple segments as simple activity samples (i.e., other blue rectangles). For 
simple activity recognition task, AROMA utilizes a CNN to extract deep features (i.e., the purple rectangles), 
which are then input into a softmax classifier to predict simple activity labels. For complex activity recognition 
task, the deep features after the CNN are concatenated together forming a deep feature layer (i.e., the red 
rectangle), and then input into a LSTM network. After that, a complex activity classifier is trained to predict 
complex activity labels. Simple and complex activity recognitions are two tasks in this work, and they have a 
shared structure. Intuitively, simple activities are the components of a complex activity, thus, we regard the 
CNN and the deep feature layer as the shared structure. 

This work is inspired by other related studies [23, 24], both applied a CNN plus LSTM structure for HAR. 
Softmax is the most commonly used classifier in deep learning methods to represent a probability distribution. 
Thus, we apply softmax as the classifiers for both simple and complex activities, which are trained jointly in 
AROMA. 

3.1 Problem Definition 
The input data utilized in this work are naturally indexed over time dimension, allowing us to segment them 
into fixed length windows. Although, there is not a unified system to define simple and complex activities, we 
give the definitions of them according to [4, 6, 20]. 

Definition 1 (Window) A window is a three-tuple 𝑤𝑖𝑛 = (𝑋, 𝑡𝑠, 𝑡𝑒), in which X denotes the input data, 𝑡𝑠 
and 𝑡𝑒 are the starting and ending time of the window, respectively. 

Definition 2 (Simple activity sample) Simple activities are low-level human activities characterized by body 
actions or posture [6, 20], e.g., “running”, “walking”, and “sitting”. A simple activity sample is defined as a 
window with fixed length 𝑙𝑠, which could be recognized as a simple activity category. Simple activity samples 
are usually obtained by using a fixed length window to segment the raw sensor data [20]. 

Definition 3 (Complex activity sample) Complex activities are high-level human activities with semantic 
meaning of daily lives [4, 6, 20], e.g., “working”, “having dinner”, and “shopping”. Similar with simple activity 
sample, a complex activity sample is defined as a window with fixed length 𝑙𝑐, which could be recognized as a 
complex activity category. Since complex activities are more complicated and non-homogeneous [20], their 
window length should be longer than that of simple activities to capture their features, i.e., 𝑙𝑐 > 𝑙𝑠. 

Definition 4 (Simple activity recognition task) Given a simple activity sample 𝑠𝑎 and its simple activity 
label 𝑦𝑠, the goal is to find a mapping function 𝑓𝑠: 𝑠𝑎 → 𝑦𝑠, and predicted label 𝑓𝑠(𝑠𝑎) should be as similar as 
possible to the actual label. 

Definition 5 (Complex activity recognition task) Similar with simple activity recognition task, complex 
activity recognition task is to find a mapping function 𝑓𝑐: 𝑐𝑎 → 𝑦𝑐 , where 𝑐𝑎  is a complex activity sample 
labeled with 𝑦𝑐. Predicted label 𝑓𝑐(𝑐𝑎) should be as similar as possible to the actual label. 

Definition 6 (Simple and complex activity recognition joint task) Given a set of activity data, and its 
corresponding simple and complex activity labels, train a simple activity classifier 𝑓𝑠 and a complex activity 
classifier 𝑓𝑐 by minimizing total loss 𝐿(𝑓𝑠) + 𝐿(𝑓𝑐), where 𝐿(𝑓𝑠) and 𝐿(𝑓𝑐) denote the classification losses of 𝑓𝑠 
and 𝑓𝑐, respectively. 

3.2 Simple Activity Recognition Task 
AROMA uses a CNN to discover deep features to represent simple activity samples. We first introduce CNN 
and then explain how to use it in AROMA. 

A CNN consists of an input and an output layer, as well as multiple hidden layers. The hidden layers are 
either convolutional, pooling, or fully connected. The input is composed by activity data obtained from wearable 
sensors. Data are processed layer by layer, where each layer uses the output of the previous layer as input. Each 
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layer contains multiple units, and we use 𝑢𝑖
𝑙 to denote the 𝑖th unit in layer 𝑙. In addition, 𝑥𝑖

𝑙 denotes the value 
of 𝑢𝑖

𝑙 . 
Convolutional layer. Convolutional layers act as feature extractors to provide abstract representations of 

the input data. In convolutional layers, the previous layer’s output is convolved with several convolutional 
kernels to yield feature maps. Formally, extracting a feature map using a convolution operation is given by: 

𝑎𝑗
𝑙+1 = 𝜎 (∑ 𝐾𝑗,𝑓

𝑙 𝑎𝑓
𝑙𝐹𝑙

𝑓=1 + 𝑏𝑗
𝑙)  (1) 

where 𝑎𝑗
𝑙 represents the 𝑗th feature map in layer 𝑙, 𝜎() is a non-linear activation function, 𝐹𝑙 is the number of 

feature maps in layer 𝑙, 𝐾𝑗,𝑓
𝑙  is the kernel convolved over feature map 𝑓 in layer 𝑙 to create feature map 𝑗 in layer 

(𝑙 + 1), and 𝑏𝑗
𝑙 is a bias vector. 

Pooling layer. Pooling is a form of non-linear down-sampling. Pooling layers serve to progressively reduce 
the spatial size of representations, and reduce the number of parameters. It is common to periodically insert a 
pooling layer between successive convolutional layers in a CNN. We use max pooling to map the output of the 
previous layer: 

𝑥𝑖
𝑙+1 = 𝑚𝑎𝑥𝑘=1

𝑟 (𝑥𝑖+𝑘
𝑙 ) (2) 

where 𝑥𝑖
𝑙 is the value of the 𝑖th unit in layer 𝑙, and 𝑟 is the length of the pooling region. 

Fully connected layer. Finally, after several convolutional and pooling layers, the high-level reasoning of 
a neural network is done via fully connected layers, which unify the output of feature maps to achieve a 
parametric concatenation by: 

𝒛𝑙+1 = 𝑥𝑖
𝑙°𝒘 (3) 

where vector 𝒛 contains unnormalized log probabilities, and 𝒘 is a weight vector. 
Generally, in order to get better performance for a deep neural network model, researchers often try to add 

more layers. However, deeper networks are not able to achieve expected performance, and might lead to higher 
training error [11]. To address this problem, He et al. [11] proposed a deep residual learning framework, and 
applied it for image recognition. A deep residual network consists of multiple residual units. Under the premise 
of ensuring that the dimension of a residual unit’s input is the same as that of convolutional layers’ outputs, the 
input of the residual unit and the outputs of multiple convolutional layers are summed together and then 
activated by a rectified linear unit (ReLU) function. In this way, the output of the residual unit can be obtained. 

In traditional CNNs, both convolutional and pooling layers can serve as down-sampling functions to reduce 
the dimension of data, i.e., each layer has lossy compression effects and there is the problem of information loss. 
By applying a residual unit, the output of the first layer is skipped directly to the input of the third layer, thus, 
the “clear” data of the first layer and the lossy compressed data of the second layer are put together as the input 
of the third layer, which can reduce the information loss. Compared with adding a large number of layers to 
networks, deep residual networks are shallower and easier to be trained. 

We utilize residual learning in AROMA. Fig. 2 describes the workflow of simple activity recognition task. 
The CNN contains eight convolutional layers, two pooling layers, a fully connected layer, and four residual 
units. In experiments, we compared different numbers of convolutional layers, and found that this network (i.e., 
eight convolutional layers) can achieve the best performance. 

Generally, the activity data from wearable sensors are multi-channel data. Channel represents the dimension 
of data. For instance, triaxial accelerations have three channels. In this work, we use a matrix 𝑋𝛼×𝛽 to denote 
the activity data of a simple activity sample, where 𝛼  is the number of channels, 𝛽  is the length of data. 
Correspondingly, AROMA employs 2D convolutional kernels, whose size is the number before @ in Fig. 2. All 
the activity data are normalized firstly and then input to the CNN. For each layer (except the first layer) in the 
CNN, the number of feature maps is the number of kernels (i.e., the number after @ in Fig. 2) in the previous 
layer. For example, the number of feature maps in the second layer is the number of kernels in the first layer, 
i.e., 32. Note that, when using a CNN for image processing, the input data (e.g., an image) have a depth of 3 (i.e., 
R, G, and B). But in this work, the depth of activity data is 1, thus, we set the number of feature maps at the 
input level 𝐹1 = 1. 
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Fig. 2. The workflow of simple activity recognition task. Symbols “C”, “P”, and “F” refer to convolutional, pooling, and fully 
connected layers, respectively. The numbers before @ refer to the parameters of convolutional kernels or pooling 

operations. The numbers after @ mean the number of convolutional kernels. 

In convolutional layers, ReLUs are employed to compute feature maps. After CNN, the output of the last fully 
connected layer is served as the input of a softmax classifier, which predicts simple activity labels, i.e., the output 
of the last layer is governed by a softmax function: 

𝑓𝑠(𝑥) = 𝑃(𝑦𝑠 = 𝑎𝑙|𝑥) =
𝑒

𝑧𝑦𝑠𝑎𝑙

∑ 𝑒
𝑧𝑗𝑛

𝑗=1

  (4) 

where 𝑎𝑙 is a simple activity label, 𝑦𝑠 is the output of simple activity classifier 𝑓𝑠(𝑥), 𝑛 is the number of simple 
activity labels, and 𝑧𝑗 means the 𝑗th element of unnormalized log probability vector 𝒛. The predicted simple 
activity label is assigned to the one with the highest probability, i.e., 𝑎𝑙 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑙=1

𝑛 𝑃(𝑦𝑠 = 𝑎𝑙|𝑥). Other 
parameters defining the CNN are presented in Fig. 2. 

3.3 Complex Activity Recognition Task 
AROMA applies a LSTM network to recognize complex activities. LSTM networks are an extension of RNNs. A 
RNN is an artificial network where connections between units form a directed cycle, which allows information 
to flow both forward and backward within the network. RNNs can use their memory cells to exhibit dynamic 
temporal behaviours and learn the temporal context of input data. 

A LSTM network is composed of LSTM units, and each unit has a memory cell 𝒄𝑡 , which can be updated, 
erased, and read out [13]. There are three kinds of “gates” that control the reading, writing, and memory 
updating: input gate 𝒊𝑡 , output gate 𝒐𝑡 , and forget gate 𝒇𝑡 . Compared with RNNs, LSTM networks are better at 
learning temporal relationships on long time scales. 

For an exemplary one-layer network, a LSTM unit takes input data 𝒙𝑡 , hidden state 𝒉𝑡−1, and cell state 𝒄𝑡−1 
from the previous LSTM unit. The hidden state is updated at every time step 𝑡. Given the input, the output of a 
LSTM unit can be written as follows: 

𝒊𝑡 = 𝑠𝑖𝑔𝑚(𝑊𝑥𝑖𝒙𝑡 + 𝑊ℎ𝑖𝒉𝑡−1 + 𝒃𝑖) (5) 
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𝒇𝑡 = 𝑠𝑖𝑔𝑚(𝑊𝑥𝑓𝒙𝑡 + 𝑊ℎ𝑓𝒉𝑡−1 + 𝒃𝑓) (6) 

𝒄𝑡 = 𝒇𝑡°𝒄𝑡−1 + 𝒊𝑡°𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝒙𝑡 + 𝑊ℎ𝑐𝒉𝑡−1 + 𝒃𝑐) (7) 

𝒐𝑡 = 𝑠𝑖𝑔𝑚(𝑊𝑥𝑜𝒙𝑡 + 𝑊ℎ𝑜𝒉𝑡−1 + 𝑊𝑐𝑜𝒄𝑡−1 + 𝒃𝑜) (8) 

𝒉𝑡 = 𝒐𝑡°𝑡𝑎𝑛ℎ(𝒄𝑡) (9) 

where 𝒄𝑡  and 𝒉𝑡  are the outputs of the LSTM unit, and can be passed to the next time step to iterate the 
aforementioned process. Operator °  stands for element-wise multiplication. 𝑊  is a weight matrix, with 
subscripts representing from-to relationship. For instance, 𝑊𝑥𝑖 is the input-input gate matrix, and 𝑊ℎ𝑓 is the 
hidden-forget gate matrix. Variables 𝒃𝑖 , 𝒃𝑓 , 𝒃𝑐 , and 𝒃𝑜 are bias vectors. 

Softmax

input data 

LSTM 

units

htht-1

ht

ht+1

LSTM 

units

LSTM 

units

 

Fig. 3. The workflow of complex activity recognition task. The green circles are LSTM units. 

Fig. 3 shows the workflow of complex activity recognition task. We adopt a three-layer LSTM network 
according to [10]. As we know, within a single complex activity sample, there are 𝑙𝑐 𝑙𝑠⁄  simple activity samples. 
Thus, each layer contains 𝑙𝑐 𝑙𝑠⁄  LSTM units. The output of the previous LSTM unit is input to the next unit. In 
this way, the temporal context of activity data can be learnt. The input of the first layer is the output of the fully 
connected layer of the CNN, which is a shared structure between simple and complex activity recognition tasks. 
The output of the LSTM network is served as the input of a softmax classifier, which predicts complex activity 
labels. That is to say, given 𝒉𝑡 , prediction can be performed and the complex activity probability distribution 
vector 𝒑𝒄 = [𝑝𝑐1, 𝑝𝑐2, … , 𝑝𝑐𝑚] is calculated as follows: 

𝒑𝒄 = 𝑠(𝑊ℎ𝑚
𝑇𝒉𝑡 + 𝒃𝑚) (10) 

where 𝑚 is the number of complex activity labels, 𝑊ℎ𝑚 and 𝒃𝑚 are the weight and bias for the output layer (i.e., 
classification layer), respectively. 𝑠() is a softmax function (see Equation (4)). Similar with simple activity 
recognition task, the predicted complex activity label is assigned to the one with the highest probability, i.e., 
𝑎𝑙 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑙=1

𝑚 𝑝𝑐𝑎𝑙 . 

3.4 Multi-task Learning 

Let 𝑓𝑠(𝑠𝑎) and 𝑓𝑐(𝑐𝑎) denote two classifiers on simple activity sample 𝑠𝑎  and complex activity sample 𝑐𝑎 , 
respectively. Both simple and complex activity recognition tasks use softmax (Equation (4)) as classifiers. The 
loss functions of these classifiers are calculated based on their negative log-likelihood: 
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 𝐿(𝑓𝑠) = −𝑙𝑜𝑔𝑓𝑐(𝑠𝑎) (11) 

𝐿(𝑓𝑐) = −𝑙𝑜𝑔𝑓𝑐(𝑐𝑎) (12) 

The goal of AROMA is to train two satisfactory classifiers by minimizing these two loss functions as follows: 

𝑓𝑠 , 𝑓𝑐 ← 𝑎𝑟𝑔𝑚𝑖𝑛 𝐿(𝑓𝑠) + 𝐿(𝑓𝑐)  (13) 

When training AROMA, there is a backpropagation process that the error from recognizing complex 
activities can go back to simple activity classifier, which is described in Algorithm 1. 

Algorithm 1 The updating process of shared weight parameter 

Input: shared weight parameter: 𝒘. 

 learning rate: 𝜃. 

 the number of iterations: 𝜆. 

Output: updated shared weight parameter 𝛻𝒘. 

1. initialize AROMA as given or default network structures 

2. Repeat 

3.  #Forward Propagation 

4.  calculate 𝐿(𝑓𝑠) using Equation (11) 

5.  calculate 𝐿(𝑓𝑐) using Equation (12) 

6.  calculate total loss 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿(𝑓𝑠) + 𝐿(𝑓𝑐) 

7.  #Backward Propagation 

8.  𝛻𝒘 ← 𝜃
𝜕𝐿(𝑓𝑠)

𝜕𝒘
+ 𝜃

𝜕𝐿(𝑓𝑐)

𝜕𝒘
 

9. until converge or reach the number of iterations 𝜆 

10. return updated shared weight 𝛻𝒘 

For each iteration, there are two kinds of steps, i.e., forward propagation (lines 3-6) and backward 
propagation (lines 7-8). When we minimize the total loss of simple and complex activity classifiers, the 
backpropagation process will affect the weight parameter of the shared structure. 

4 EXPERIMENTS 
In this section, we introduce the experiments for evaluating the proposed method AROMA. Firstly, we describe 
datasets and experimental setup. Second, we investigate the impact of parameters (e.g., the number of 
convolutional layers) on classification performance. Then, we give the convergence processes and confusion 
matrices of AROMA. Finally, we compare our method with several state-of-the-art HAR methods. 

4.1 Experimental Dataset 
We use two public HAR datasets in our experiments: Ubicomp 08 dataset [14] and Opportunity dataset [26]. To 
the best of our knowledge, they are the most widely used and latest available wearable sensor based HAR 
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datasets with two-level activity labels (e.g., simple and complex activity labels). The details of two datasets are 
given in Table 1. 

(1) Ubicomp 08 dataset [14] contains two-level activity labels: activities and daily routines, where activities 
are the components of daily routines. Thus, they correspond to simple and complex activities, respectively. The 
dataset contains 84 hours (in seven days) of activity data from only one participant. The participant wore two 
devices, both of which collect triaxial accelerations. One was worn on the right wrist, and the other was put 
into a trousers’ pocket. The dataset does not provide raw data but two statistical features (i.e., mean and variance) 
on triaxial accelerations. There are around 15000 simple activity samples and 1000 complex activity samples in 
the original dataset, but some of them are unlabeled, which are not used in this work. This dataset is publicly 
available and can be downloaded from [31]. 

(2) Opportunity dataset [26] consists of around 6 hours of activity data from 4 participants. The participants 
performed activities of daily living (ADL) with various sensors of different modalities, including 5 commercial 
inertial measurement units (IMU), 2 commercial inertial sensors, and 12 Bluetooth acceleration sensors. Each 
IMU is composed of a 3D accelerometer, a 3D gyroscope, and a 3D magnetic sensor. Each participant performed 
5 ADL sessions and a drill session. During each ADL session, participants performed activities with no constrain. 
During the drill session, participants performed 20 repetitions of a predefined sorted set of 17 activities. Data 
were annotated at several layers, high-level activities, medium-layer activities (i.e., arm movements), low-level 
activities (i.e., left and right arm movements and object usage), and locomotion. In this work, we regard high-
level activities and locomotion as complex and simple activities, respectively. Unlabeled samples are not used 
in this work. This dataset is publicly available and can be downloaded from [22]. 

Table 1. The details of datasets. The numbers in the parentheses mean the number of activity samples. The forward 
slashes mean “or”.  

 Ubicomp 08 Opportunity 
# of participants 1 4 
Sensors 2 triaxial accelerometer 5 IMUs, 2 inertial sensors, 

and 12 acceleration sensors 
Frequency 2.5Hz 30Hz 
Simple activities sitting/ desk activities (9233), lying while reading/ 

using computer (604), having dinner (383), walking 
freely (380), driving car (368), having lunch (229), 
discussing at whiteboard (191), attending a 
presentation (149), driving bike (141), watching a movie 
(129), standing/ talking on phone (75), walking while 
carrying something (70), walking (69), picking up 
cafeteria food (69), sitting/ having a coffee (66), queuing 
in line (60), personal hygiene (52), using the toilet (51), 
fanning barbecue (46), washing dishes (39), kneeling/ 
doing something else (35), sitting/ talking on phone 
(26), kneeling/ making fire for barbecue (25), setting the 
table (24), standing/ having a coffee (20), preparing 
food (14), having breakfast (14), brushing teeth (13), 
standing/ using the toilet (9), standing/ talking (8), 
washing hands (6), making coffee (5), running (3), 
wiping the whiteboard (2) 

stand (10330), walk (6041), 
sit (6545), lie (1338) 

Complex activities dinner activities (44), commuting (58), lunch routine 
(79), office work (579) 

relaxing (661), coffee time 
(1578), early morning 
(1447), cleanup (1304), 
sandwich time (3083) 
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4.2 Experimental Setting 

In the step of dividing raw data into fixed length samples, we set simple activity sample length 𝑙s to 20 seconds 
and complex activity sample length 𝑙𝑐 to 5minutes for Ubicomp 08 dataset. Note that the sample lengths of both 
simple and complex activities are shorter compared to [14], as we apply deep learning methods that require a 
large number of training samples, and shorter sample length can bring more samples. For opportunity dataset, 
𝑙s and 𝑙𝑐 are set to 500ms and 10s referring to [24]. 

In the iteration process of AROMA, the learning rate 𝜃 in Algorithm 1 is dynamically optimized, which is 
usually set from 0.0007 to 0.0001. 

Since Ubicomp 08 dataset was collected from only one person, we apply leave-one-day-out cross validation 
referring to [14], which leaves one day’s data as test data and the remaining six days’ data are training data. 
This is repeated until all days’ activity data have been used as test data. For Opportunity dataset, following [24], 
AROMA is trained on data of all ADL and drill sessions of participant 1 and ADL 1, ADL 2, ADL 3, and drill 
sessions of participants 2 and 3. Data of ADL 4 and ADL 5 sessions of participants 2 and 3 are used as test data. 
As shown in Table 1, two datasets are class-imbalanced. As stated in [25], accuracy usually evaluates the 
performance of a classifier in regard of frequent classes, it often leads to false positive classification while 
keeping high accuracy. Therefore, referring to [1], we take micro-averaged F-score (abbreviated as F-score) as 
the performance measure of our experiments: 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∑ 𝑇𝑃𝑐𝑛

𝐶𝑁
𝑐𝑛=1

2 ∑ 𝑇𝑃𝑐𝑛
𝐶𝑁
𝑐𝑛=1 +∑ 𝐹𝑃𝑐𝑛

𝐶𝑁
𝑐𝑛=1 +∑ 𝐹𝑁𝑐𝑛

𝐶𝑁
𝑐𝑛=1

  (14) 

where 𝐶𝑁 denotes class number. Variables 𝑇𝑃𝑐𝑛 , 𝐹𝑃𝑐𝑛, and 𝐹𝑁𝑐𝑛 are the true positives, false positives, and false 
negatives of class 𝑐𝑛, respectively. F-score is an informative evaluation metric that involves precision and recall. 
When conducting cross-validation, F-score summarizes all true positives, false positives, and false negatives 
over all classes and all folds to evaluate a classifier’s performance [1]. 

4.3 Impact of Parameters 
To obtain a reliable architecture of AROMA, we evaluate the influence of the number of convolutional layers. 
We tune this parameter with the total loss of simple and complex activity classifiers on Ubicomp 08 dataset. We 
compare four structures, whose parameters and performances are given in Table 2 and Fig. 4. It can be found 
that increasing the number of convolutional layers tends to improve the F-score of both complex and simple 
activity recognitions. Thus, we employ eight convolutional layers in the CNN of AROMA. 

Table 2. The parameters of compared four CNN structures. Symbols “C”, “P”, and “F” refer to convolutional, pooling, and 
fully connected layers, respectively. The numbers before @ refer to the parameters of convolutional kernels or pooling 

operations. The numbers after @ mean the number of convolutional kernels. 

#of convolutional layers Parameters of CNN 
2 C (1×3@64)→C (1×3@64)→P (1×5@64)→F 
4 C (1×3@32)→C (1×3@32)→P (1×2@64)→C (1×3@64)→C (1×3@64)→P 

(1×5@64)→F 
6 C (1×3@32)→C (1×3@32)→C (1×3@32)→C (1×3@32)→P (1×2@64)→ C 

(1×3@64)→C (1×3@64)→P (1×5@64)→F 
8 C (1×3@32)→C (1×3@32)→C (1×3@32)→C (1×3@32)→P (1×2@64)→ C 

(1×3@64)→C (1×3@64)→ C (1×3@64)→C (1×3@64)→P (1×5@64)→F 
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Fig. 4. The performance of complex and simple activity recognitions under different numbers of convolutional layers. 

4.4 Convergence Processes 
Fig. 5 illustrates the convergence processes of AROMA on Ubicomp 08 dataset. It can be seen that the 
classification losses on training and test datasets are extremely close to each other. They decrease along with 
the increase of 𝜆 and become stable gradually, which shows the stability and effectiveness of AROMA. 
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Fig. 5. The change of losses on the training and test datasets with the increase of λ. 
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4.5 The Experimental Results of AROMA 
To evaluate the effectiveness of AROMA, we apply it on Ubicomp 08 and Opportunity datasets with parameters 
described earlier. Fig. 6. shows the confusion matrices of AROMA on classifying complex activities. The value 
in the 𝑖th row and the 𝑗th column is the proportion of complex activity samples with the 𝑖th category that are 
classified as the 𝑗 th category. For Ubicomp 08 dataset, AROMA has better performance on classifying 
“commuting” and “office work” compared to “dinner activities” and “lunch routine”. Both “dinner activities” 
and “lunch routine” tend to be misclassified as “office work”. A possible reason for this behavior is that all of 
the three complex activities have a basic simple activity “sitting”. In addition, AROMA also tends to confuse 
“dinner activities” with “lunch routine”. It is obvious that these two complex activities usually contain many 
same simple activities, e.g., “fanning barbecue” and “sitting/ having a coffee”, which make them difficult to be 
distinguished. 

For Opportunity dataset, AROMA performs worse on “cleanup” and “coffee time” compared to the other 
three activities. Activity “cleanup” tends to be misclassified as “sandwich time”, because they are based on a 
series of kitchen activities. Activities “coffee time” also tends to be misclassified as “sandwich time”, as both of 
them are based on a simple activity “sitting”. In addition, some samples of “coffee time” are recognized as “early 
morning”, a possible reason for this behavior is that these two activities are both related to preparing food, 
including components like pouring water. 
 

 1 2 3 4 
1 70.5% 0 6.8% 22.7% 
2 0 93.8% 3.1% 3.1% 
3 2.5%  76.0% 21.5% 
4 0.6% 0 1.1% 98.3% 

(a) Ubicomp 08 dataset. 1=dinner activities, 
2=commuting, 3=lunch routine, 4=office work. 
 

 1 2 3 4 5 
1 91.4% 0 6.9% 1.7% 0 
2 0 78.7% 10.2% 1.5% 9.6% 
3 0.3% 0.9% 95.2% 1.8% 1.8% 
4 0 1.0% 7.9% 71.7% 19.4% 
5 0 3.4% 2.6% 3.9% 90.1% 

(b) Opportunity dataset. 1=relaxing, 2=coffee time, 
3=early morning, 4=cleanup, 5=sandwich time. 

Fig. 6. The confusion matrices on classifying complex activities. 

4.6 Comparison with Other Methods 
To demonstrate the competitive performance of AROMA, we compare it with the following methods. For fair 
comparison, all methods set the sample lengths of simple and complex activities the same as AROMA. 

STL. STL is the single task learning version of AROMA, which optimizes the loss functions of two tasks 
separately. STL utilizes the same network and parameters with AROMA, but there is no shared structure. 

LSTM. LSTM employs a three-layer LSTM network for both simple and complex activity recognitions. 
Normalized activity data are input to the LSTM network directly, and then classified by a softmax. 

CNN. CNN [33] recognizes simple and complex activities using a single CNN, which contains four 
convolutional layers, a pooling layer, and a fully connected layer. 

DeepConvLSTM. DeepConvLSTM [24] recognizes activities based on convolution operations and LSTM 
units. There are four convolutional layers and two layers of LSTM units, but no pooling layers. Parameters of 
LSTM, CNN, and DeepConvLSTM are optimized and given in Table 3. 

TM. TM stands for topic model. Referring to [14], TM treats a complex activity sample as a “document”, 
which is composed of a corpus of “words” (i.e., simple activity samples). TM firstly recognizes simple activities 
using a Naive Bayes based classifier, which is built on two statistical features (i.e., mean and variance) of raw 
data. In this way, TM can obtain 𝑙𝑐 𝑙𝑠⁄  words for each document, and form a document-word matrix. Then TM 
applies a LDA topic model on this document-word matrix to learn a document-topic matrix, which shows the 
topic distributions of all documents. These topic distributions are the underlying features of complex activities. 
According to [14], the number of topics is set to 10. 
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Table 3. The parameters used in LSTM, CNN, and DeepConvLSTM for each layer. The numbers before @ refer to the 
parameters of convolutional kernels or pooling operations. The numbers after @ mean the number of convolutional 

kernels. The parameters of LSTM and DeepConvLSTM are the length of gate vectors in LSTM units. 

Parameters in Convolutional layer Pooling layer LSTM units 

LSTM -- -- 128 

CNN 5*1@ 64 2*1@64 -- 

DeepConvLSTM 5*1@ 64 -- 128 

Table 4. The F-score of all compared methods on simple activity recognition (mean±std). * indicates that our method is 
statistically superior to the compared method (pairwise t-test at 95% significance level). 

 AROMA STL LSTM CNN DeepConvLSTM TM 

Ubicomp 08 0.901±0.044 0.899±0.046* 0.842±0.059* 0.883±0.051* 0.875±0.056* 0.846±0.062* 

Opportunity 0.927±0.004 0.892±0.128* 0.865±0.021* 0.899±0.005* 0.926±0.001* 0.770±0.063* 

Table 5. The F-score of all compared methods on complex activity recognition (mean±std). * indicates that our method is 
statistically superior to the compared method (pairwise t-test at 95% significance level). 

 AROMA STL LSTM CNN DeepConvLSTM TM 

Ubicomp 08 0.901±0.047 0.880±0.035* 0.848±0.032* 0.827±0.087* 0.871±0.042* 0.823±0.043* 

Opportunity 0.838±0.016 0.800±0.094* 0.731±0.016* 0.711±0.025* 0.791±0.002* 0.700±0.032* 

To statistically measure the significance of performance differences, pairwise t-tests at 95% significance level 
are conducted between AROMA and compared methods. The classification performance of these methods is 
given in Tables 4 and 5, and following tendencies could be discerned: 

1) On two datasets, the F-score of AROMA is higher than that of STL. It demonstrates that by exploiting the 
commonalities and differences between two tasks, multi-task learning can improve a model’s generalization 
ability and performance for both simple and complex activity recognitions. In addition, the comparison between 
AROMA and other methods (i.e., LSTM, CNN, DeepConvLSTM, and TM, which are also single task learning 
based methods) can also show the superiority of multi-task learning. 

2) Comparing LSTM and CNN, the former is better on complex activity recognition, and the latter is better 
on simple activity recognition. Simple activities are generally characterized by repeated actions or single body 
posture, which have limited temporal dependencies, and CNNs are proper to process. Complex activities are 
more complicated and have temporal dependencies, and LSTM networks are an attractive choice. 

3) DeepConvLSTM is one of the latest deep learning models for HAR. The performance of STL is superior 
over that of DeepConvLSTM. It not only shows AROMA has a better architecture than DeepConvLSTM, but 
also justifies the benefits of deep residual networks. 

4) TM gets worse performance compared to deep learning methods. It indicates that manually designed 
features are poorer at capturing internal data properties compared to deep features. Deep learning methods can 
discover deep features automatically, which can own more discriminative power. 

By using a CNN, a LSTM network, and a shared structure, AROMA can recognize simple and complex 
activities jointly, but it has a high demand on datasets, i.e., having two-level activity labels. In addition, our 
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work also has some limitations. First, the design space of shared structure is not fully explored. Second, 
multimodal data are not processed specifically. Third, the performance of AROMA is not systematically 
investigated. 

5 CONCLUSIONS AND FUTURE WORK 
In this paper, we propose AROMA, a deep multi-task learning method to solve simple and complex activity 
recognition tasks jointly. For simple activity recognition task, AROMA uses a CNN to discover deep features 
automatically, which are discriminative and task dependent. For complex activity recognition task, the deep 
features after the CNN are input into a LSTM network. In this way, AROMA can make full use of the temporal 
context of activity data. The two tasks have a shared structure (i.e., the CNN and the deep feature layer), which 
can benefit both tasks and improve the generalization ability of AROMA. We evaluate AROMA on two public 
datasets, and the experimental results show that AROMA is able to yield a competitive performance in both 
simple and complex activity recognitions. 

In the future, we will extend our work in the following directions. First, the shared structure of two tasks can 
be set in any hidden layer of the network, and we will improve our model by applying a more intelligent network 
(e.g., cross-stitch network), which can learn the shared structure automatically. Second, we will employ specific 
sub-structures for different modality data. Third, we will study the performance of AROMA with more datasets 
and investigate the effects of other factors (e.g., the position and number of sensors). 
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