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1 INTRODUCTION

On-body sensor-based human activity recognition (HAR) is widely utilized for behavioral analysis, such as user
authentication, healthcare, and tracking everyday activities [5, 14, 50, 78, 97]. Regardless of its utility, the HAR
field has yet to experience significant improvements in recognition accuracy, in contrast to the breakthroughs in
other fields, such as speech recognition [34], natural language processing [19], and computer vision [32]. In those
domains it is possible to collect huge amounts of labeled data, the key for deriving robust recognition models
that strongly generalize across application boundaries. In contrast, collecting large-scale, labeled data sets has
so far been limited in sensor-based human activity recognition. Labeled data in human activity recognition is
scarce and hard to come by, as sensor data collection is expensive, and the annotation is time-consuming and
sometimes even impossible for privacy or other practical reasons. A model derived from such a sparse dataset is
not likely to generalize well.

Despite the numerous efforts in improving human activity dataset collection, the scale of typical datasets
remains small, thereby only covering limited sets of activities [14, 35, 88, 97]. Even the largest sensor-based
activity dataset only spans a few dozen users and relatively short durations [5, 72], which is in stark contrast to
the massive datasets in other domains that are often several orders of magnitude larger. For example, Daphnet
freezing of gait dataset [5] has 5 hours of sensor data from 10 subjects, and PAMAP?2 dataset [72] has 7.5 hours of
sensor data from 9 subjects. However, for reference, the ImageNet dataset [18] has approx. 14 million images, and
the "One billion words" benchmark [15] contains literally one billion words.

In this work, we develop a framework that can potentially alleviate the sparse data problem in sensor-based
human activity recognition. We aim at harvesting existing video data from large-scale repositories, such as
YouTube, and automatically generate data for virtual, body-worn movement sensors (IMUs) that will then be
used for deriving sensor-based human activity recognition systems that can be used in real-world settings. The
overarching idea is appealing due to the sheer size of common video repositories and the availability of labels
in the form of video titles and descriptions. Having access to such data repositories opens up possibilities for
more robust and potentially more complex activity recognition models that can be employed in entirely new
application scenarios, which so far could not have been targeted due to limited robustness of the learned models.
The challenges for making these vast amounts of existing data usable for sensor-based activity recognition are
manyfold, though: i) the datasets need to be curated and filtered towards the actual activities of interest; ii) even
though video data capture the same information about activities in principle, sophisticated preprocessing is
required to match the source and target sensing domains; iii) the opportunistic use of activity videos requires
adaptations to account for contextual factors such as multiple scene changes, rapid camera orientation changes
(landscape/portrait), the scale of the performer in the far sight, or multiple background people not involved in
the activity; and iv) new forms of features and activity recognition models will need to be designed to overcome
the short-comings of learning from video-sourced motion information for eventual IMU-based inference.

Our work is part of a growing number of exciting recent research results that explore the generation of cross-
modality sensor data from "data-rich" sources such as video and motion capture in various domains [36, 74, 87, 92].
For example, in [36] IMU data was synthesized from high-fidelity motion capture data with high temporal and
spatial resolutions for computing human pose in real-time. On a similar vein, [87, 92] generate sensory data from
motion capture datasets and demonstrate their effectiveness for activity recognition. Most similar to our work,
[74] showed in principle that motion information can be extracted from video and utilized for sensor-based HAR.

In this paper, we present a method that allows us to effectively use video data for training sensor-based activity
recognizers, and as such demonstrates the first step towards larger-scale, and more complex deployment scenarios
than what is considered the state-of-the-art in the field. Our approach extracts motion information from arbitrary
human activity videos, and is thereby not limited to specific scenes or viewpoints. We have developed IMUTube,
an automated processing pipeline that: i) applies standard pose tracking and 3D scene understanding techniques
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to estimate full 3D human motion from a video segment that captures a target activity; ii) translates the visual
tracking information into virtual motion sensors (IMU) that are placed on dedicated body positions; iii) adapts the
virtual IMU data towards the target domain through distribution matching; and iv) derives activity recognizers
from the generated virtual sensor data, potentially enriched with small amounts of real sensor data. Our pipeline
integrates a number of off-the-shelf computer vision and graphics techniques, so that IMUTube is fully automated
and thus directly applicable to a rich variety of existing videos. One notable limitation from our current prototype
is that it still requires human curation of videos to select appropriate activity content. However, with advances in
computer vision the potential of our approach can be further increased towards complete automation.

The work presented in this paper is our first step towards the greater vision of automatically deriving robust
activity recognition systems for body-worn sensing systems. The key idea is to opportunistically utilize as much
existing data and information as possible thereby not being limited to the particular target sensing modalities. We
present the overall approach and relevant technical details and explore the potential of the approach on practical
recognition scenarios. Through a series of experiments on three benchmark datasets—RealWorld [86], PAMAP2
[72], and Opportunity [14]—we demonstrate the effectiveness of our approach. We discuss the overall potential
of models trained purely on virtual sensor data, which in certain cases can even reach recognition accuracies
that are comparable to models that are trained only on actual sensor data. Moreover, we show that when adding
only small portions of real sensor data during model training we are even able to outperform those models that
were trained on real sensor data alone. As such, our experiments show the potential of the proposed approach, a
paradigm shift for deriving sensor-based human activity recognition systems.

This work opens up the opportunity for the human activity recognition community to expand the general
focus towards more complex and more challenging recognition scenarios. We expect the proposed approach
to dramatically accelerate the progress of human activity recognition research. With the proposed method it
will also be possible to freely experiment with and optimize on-body sensor configurations, which will have a
substantial impact on real-world deployments. We discuss possible extensions to the presented approach, and
thus define a research agenda towards next-generation sensor-based human activity recognition.

2 EXTRACTING VIRTUAL IMU DATA FROM VIDEOS

The key idea of our work is to replace the conventional data collection procedure that is typically employed
for the development of sensor-based human activity recognition (HAR) systems. Our approach aims at making
existing, large-scale video repositories accessible for the HAR domain, leading to training datasets of sensor data,
such as IMUs, that are potentially multiple orders of magnitude larger than what is standard today. With such a
massively increased volume of real movement data—in contrast to simulated or generated samples, that often do
not exhibit the required quality nor variability—it will become possible to develop substantially more complex
and more robust activity recognition systems with a potentially much broader scope than the state-of-the-art
in the field. In what follows, we first give an overview of the general approach before we provide the technical
details of our procedure that converts videos into virtual IMU data.

2.1 IMUTube Overview

Figure 1 gives on overview of our framework for deriving sensor-based human activity recognition systems. The
top left part ("conventional") summarizes the currently predominant protocol. Study participants are recruited and
invited for data collection in a laboratory environment. There they wear sensing platforms, such as a wrist-worn
IMU, and engage in the activities of interest, typically in front of a camera. Human annotators provide ground
truth labeling either directly, i.e., while the activities are performed, or based on the video footage from the
recording session. This procedure is very labor-intensive and often error-prone, and, as such, labeled datasets of
only limited size can typically be recorded with reasonable efforts.
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Fig. 1. The proposed IMUTube system replaces the conventional data recording and annotation protocol (upper left) for
developing sensor-based human activity recognition (HAR) systems (upper right). We utilize existing, large-scale video
repositories from which we generate virtual IMU data that are then used for training the HAR system (bottom part).

In contrast, our approach aims at utilizing existing, large-scale repositories of videos that capture activities of
interest (bottom left part of Figure 1 labeled "IMUTube"). With the explosive growth of social media platforms, a
virtually unlimited supply of labeled video is available online that we aim to utilize for training sensor-based
HAR systems. In our envisioned application, a query for a specific activity delivers a (large) set of videos that
seemingly capture the target activity. These results (currently) need to be curated in order to eliminate obvious
outliers etc. such that the videos are actually relevant to the task (see discussion in Section 6). Our processing
pipeline then converts the video data into usable virtual sensor (IMU) data. The procedure is based on a computer
vision pipeline that first extracts 2D pose information, which is then lifted to 3D. Through tracking individual
joints of the extracted 3D poses, we are then able to generate sensor data, such as tri-axial acceleration values, at
many locations on the body. These values are then post-processed to match the target application domain.

Our work aims at replacing the data collection phase of HAR development. It is universal as it does not impose
constraints on model training (top center in Figure 1) nor deployment (right part of Figure 1). In what follows, we
describe the technical details of our processing pipeline that make videos usable for training IMU-based activity
recognition systems. This description assumes direct access to a video that captures a target activity, i.e., here we
do not focus on the logistics and practicalities of querying video repositories and curating the search results.

2.2 Motion Estimation for 3D Joints

On-body movement sensors capture local 3D joint motion, and, as such, our processing pipeline aims at reproduc-
ing this information but from 2D video. As shown in Figure 2 we employ a two-step approach. First, we estimate
2D pose skeletons for potentially multiple people in a scene using a state-of-the-art pose extractor, namely the
OpenPose model [10]. Then, each 2D pose is lifted to 3D by estimating the depth information that is missing in
2D videos. Without limiting the general applicability we assume here that all people in a scene are performing
the same activity. Although fast and accurate, the OpenPose model estimates 2D poses of people on a frame by
frame basis only, i.e., no tracking is included which requires post-processing to establish and maintain person
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Fig. 2. 3D joint orientation estimation and pose calibration. The multi-person 2D poses are estimated with OpenPose followed
by lifting to 3D through VideoPose3D. The camera intrinsic parameters are estimated using the DeepCalib model. Jointly
with the pose and camera related parameters, we calibrate the orientation and translation in the 3D scene for each frame.

correspondences across frames. In response, we apply the SORT tracking algorithm [7] to track each person across
the video sequence. SORT utilizes bipartite graph matching with the edge weights as the intersection-over-union
(IOU) distance between boundary boxes of people from consecutive frames. The boundary boxes are derived as
tight boxes including the 2D keypoints for each person.

To increase the reliability of the 2D pose detection and tracking, we remove 2D poses where over half of the
joints are missing, and also drop sequences that are shorter than one second. For each sequence of a tracked
person, we also interpolate and smooth missing or noisy keypoints in each frame using a Kalman filter, as poses
cannot be dramatically different between subsequent frames. Finally, each 2D pose sequence is lifted to 3D pose
by employing the VideoPose3D model [63]. Capturing the inherent smooth transition of 2D poses across the
frames encourages more natural 3D motion in the final estimated (lifted) 3D pose.

2.3 Global Body Tracking in 3D

Inertial measurement units capture the acceleration from global body movement in 3D, and additionally local
joint motion in 3D. Thus, we also have to extract global 3D scene information from the 2D video to track a
person’s movement in the whole scene. Typical 3D pose estimation models do not localize the global 3D position
and orientation of the pose in the scene. Tracking the 3D position of a person in 2D video requires two pieces of
information: i) 3D localization in each 2D frame; and ii) the camera viewpoint changes (ego-motion) between
subsequent 3D scenes. We map the 3D pose of a frame to the corresponding position within the whole 3D scene
in the video, compensating for the camera viewpoint of the frame. The sequence of the location and orientation
of 3D pose is the global body movement in the whole 3D space. For the virtual sensor, the global acceleration
from the tracked sequence will be extracted along with local joint acceleration.

2.3.1 3D Pose Calibration. First, we estimate the 3D rotation and translation of the 3D pose within a frame, as
shown in Figure 2. For each frame, we calibrate each 3D pose from a previously estimated 3D joint according
to the perspective projection between corresponding 3D and 2D keypoints. The perspective projection can be
estimated with the Perspective-n-Point (PnP) algorithm [38]. Additionally to 3D and 2D correspondences, the
PnP algorithm requires the camera intrinsic parameters for the projection, which include focal length, image
center, and the lens distortion parameters [11, 79]. Since arbitrary online videos typically do not come with
such metadata, the camera intrinsic parameters are estimated from the video with the DeepCalib model [8]. The
DeepCalib model is a frame-based model that considers a single image at a time so that the estimated intrinsic
parameter for each frame slightly differs across the frame according to its scene structure. Hence, we assume that
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a given video clip sequence is recorded with a single camera, and aggregate the intrinsic parameter predictions
by calculating the average from all frames:

T
cint — Z C;nt 1)

t=1

~ =

where ¢ = [ f,p,d] is the averaged camera intrinsic parameters from each frame, x; at time ¢, predictions,

i = DeepCalib(x;). f = [fx, fy] is the focal length and p = [px,py] is the optical center for the x and y axis,
and d denotes the lense distortion. Once the camera intrinsic parameter is calculated, the PnP algorithm regresses
global pose rotation and translation by minimizing the following objective function:

N
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Realib ¢ R3%3 ig the extrinsic rotation matrix,

where p, € R? and p; € R? are corresponding 2D and 3D keypoints.
Tealib ¢ R3 is the extrinsic translation vector, and s € R denotes the scaling factor [98, 101]. For the temporally
smooth rotation and translation of a 3D pose across frames, we initialize the extrinsic parameter, R, and T, with
the result from the previous frame. The 3D pose for each person, p; € R3*N, at each frame is calibrated (or
localized) with the estimated corresponding extrinsic parameter.

calib — Rcalib

s D3 + Tcalib (3)

From the calibrated 3D poses, pg“lib € R¥™N we remove people considered as the background. For example,
in a rope jumping competition scene, a set of people may rope jump while others are sitting and watching.
Depending on the scene, not all people captured may partake in an activity (e.g., bystanders). To effectively collect
3D pose and motion that belongs to a target activity, we thus remove those people in the (estimated) background.
We first calculate the pose variation across the frames as the summation of the variance of each joint location
across time. Subsequently, we only keep those people with the pose variation larger than the median of all people.

2.3.2  Estimation of Camera Ego-motion. In an arbitrary video, the camera can move around the scene freely.
However, the pipeline should not confuse the camera motion with human motion. For example, a person who
does not move (much) may appear at a different location in subsequent frames due to the camera movement,
which is misleading for our purpose. Also, a moving person can always appear in the center of the frame, and
thus erroneously appear static, if the camera follows that person and therefore the movements are effectively
compensated for in the video. In these two cases, the virtual sensor should capture no motion (static), or the
global body acceleration only, respectively, independently from camera motion. Hence, before generating the
virtual sensor data, the 3D poses, which were previously calibrated per frame, need to be corrected for camera
ego-motion, i.e., potential viewpoint changes, across the frames.

Camera ego-motion estimation from one viewpoint to another requires 3D point clouds of both scenes [6, 66, 76].
Deriving a 3D point cloud of a scene requires two pieces of information: i) the depth map; and ii) camera intrinsic
parameters. For camera intrinsic parameters, we reuse the parameters previously estimated. The depth map
is the distances of pixels in the 2D scene from a given camera center, which we estimate with the DepthWild
model [25] for each frame. Once we have obtained the depth map and the camera intrinsic parameters, we can
geometrically inverse the mapping of each pixel in the image to the 3D point cloud of the original 3D scene. With
basic trigonometry, the point cloud can be derived from the depth map using the previously estimated camera
intrinsic parameter, ¢!’ = [fx, fy, px, py, d]. For a depth value Z at image position (x, y), the point cloud value,
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Fig. 3. 3D pose and motion tracking with compensation of the camera motion. The camera motion is estimated through the
iterative closest point (ICP) algorithm between subsequent point clouds. Then, calibrated 3D poses per frame are mapped to
the location in the entire 3D scene, compensating for camera motion. The calibrated 3D poses from both frames are initially
centered in the 3D world origin as the camera follows the cyclists. After incorporating ego-motion information, we can see
that two cyclists are moving from right to left, moving closer to each other as in the video (most right figure).

[X.Y,Z], is:

[X,Y,Z z (4)

1= [(x—px)-Z Y-py)-Z
oo
Once point clouds are calculated across frames, we can derive the camera ego-motion (rotation and translation)
parameters between two consecutive frame point clouds. A popular method for registering groups of point clouds
is the Iterative Closest Points (ICP) algorithm [6, 66, 76]. Fixing a point cloud as a reference, ICP iteratively finds
closest point pairs between two point clouds and estimates rotation and translation for the other point cloud that
minimizes the positional error between matched points [6]. Since we extract color point clouds from video frames,
we adopted Park et al’s variant of the ICP algorithm [62], which considers color matching between matched
points in addition to the surface normals to enhance color consistency after registration. More specifically, we
utilize background point clouds instead of the entire point cloud from a scene because the observational changes
for the stationary background objects in the scene are more relevant to the camera movement. We consider
humans in the scene as foreground objects, and remove points that belong to human bounding boxes determined
from 2D pose detection. The reason for this step is that we noticed that including foreground objects, such as
humans, leads to the ICP algorithm confusing movements of moving objects, i.e., the humans, and of the camera.
With the background point clouds, we apply the color ICP algorithm between point clouds at time ¢t — 1 and ¢,
q:—1 and q; respectively. As such, we iteratively solve:

{R{9°,T{%°} = arg min Z (1= 9)1Cq,-,(f(Rq: + T)) = C(qe-1)ll + 6lI(Rqe + T = q¢-1) - ng,, 1 (5)
’ (q:-1,9:)€K

where C(q) is the color of point g, ng is the normal of point g. K is the correspondence set between g;_; and ¢,
and R}’ € R¥3 and TTeg € R3 are fitted rotation and translation vectors in the current iteration. § € [0, 1] is the
weight parameter that balances the emphasis given to positional or color matches.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 3, Article 87. Publication date: September 2020.



87:8 « Kwon and Tong, et al.

The estimated sequence of translation and rotation of a point cloud represents the resulting ego-motion of the
camera. As the last step, we integrate the calibrated 3D pose and ego-motion across the video to fully track 3D

human motion. Previously calibrated 3D pose sequences, pg“l i are rotated and translated according to their
ego-motion at frame t:
track ego lib ego
pireck = R pselit 4 719 ©)

where p}” ack ¢ RTXNX3 js the resulting 3D human pose and motion tracked in the scene for the video, T is

the number of frames, and N is the number of joint keypoints. The overall process of compensating camera
ego-motion is illustrated in Figure 3.

2.4 Generating Virtual Sensor Data

Once full 3D motion information has been extracted for each person in a video, we can extract virtual IMU
sensor streams from specific body locations. The estimated 3D motion only tracks the locations of joint keypoints,
i.e., those dedicated joints that are part of the 3D skeleton as it has been determined by the pose estimation
process. However, in order to track how a virtual IMU sensor that is attached to such joints rotates while the
person is moving, we also need to track the orientation change of that local joint. This tracking needs to be done
from the perspective of the body coordinates. The local joint orientation changes can be calculated through
forward kinematics based from the hip, i.e., the body center, to each joint. We utilize state-of-the-art 3D animation
software — Blender [16], to estimate and track these orientation changes. Using the orientation derived from
forward kinematics, the acceleration of joint movements in the world coordinate system is then transformed into
the local sensor coordinate system. The angular velocity of the virtual sensor (i.e., a gyroscope) is calculated by
tracking orientation changes.

We employ our video processing pipeline on raw 2D videos that can readily be retrieved by, for example,
querying public repositories such as YouTube, and combined with subsequent curation (not within the focus of
this paper). The pipeline produces virtual IMU, for example, tri-axial accelerometer data. This data effectively
captures the recorded activities, yet the characteristics of the generated sensor data will still differ from real
IMU data, for instance it will lack any MEMS noise. In order to compensate for this mismatch, we employ the
IMUSim [95] model to extract realistic sensor behavior for each on-body location. IMUSim estimates sensor output
considering mechanical and electronic components in the device, as well as the changes of a simulated magnetic
field in the environment. As such, this post-processing step leads to more realistic IMU data [4, 42, 64].

2.5 Distribution Mapping for Virtual Sensor Data

As the last step before using the virtual IMU dataset for HAR model training, we define a calibration operation to
account for any potential mismatch between the source (virtual) and target (real) domains [13]. We employ a
distribution mapping technique to fix such mismatch, where we transfer the distribution of the virtual sensor to
that of the target sensor. For computational efficiency, the rank transformation approach [17] is utilized:

X =G (F(X < xp)) ™)
where, G(X < x,) = f_ xl:‘lf g(x)dx and F(X < x,,) = f_ x;: f(x)dx are cumulative density functions for real, x,, and
virtual, x,, sensor samples, respectively. In our experiments (Section 4.2), we show that only a few seconds to
minutes of real sensor data is sufficient to calibrate the virtual sensor effectively for successful activity recognition.

3 TRAINING ACTIVITY RECOGNITION CLASSIFIERS WITH VIRTUAL IMU DATA

We now describe a series of experiments to examine the viability of using IMUTube to produce virtual IMU data
useful for HAR. Our first set of experiments consider the performance of virtual IMU data on a HAR dataset
providing both video and real IMU data, which enables a fair comparison between virtual and real IMU data. Here,
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we see promising results suggesting that training activity classifiers from virtual IMU data alone can perform
well on real IMU data. We then move on to show that activity classifiers trained using this virtual IMU data can
also perform well on real IMU data coming from common HAR datasets, namely Opportunity [14] and PAMAP2
[72]. Finally, we describe how we curate a video dataset comprising of online videos (e.g., YouTube) in order to
extract virtual IMU data for complex activities.

In each experiment, we compare the performances of models on real IMU data (i.e., the test data is from real
IMUs), when trained from real IMUs (R2R), trained from virtual IMUs (V2R), or trained from a mixture of virtual
and real (Mix2R) IMU data. Throughout our experiments, we consider the Random Forest classifier as our main
machine learning back-end for activity recognition, evaluated via leave-one-subject-out scheme. We supplement
this primary result by also demonstrating the feasibility to apply deep learning with a hold-out evaluation scheme;
in doing so we show our approach is agnostic to the choice of the learning algorithm.

3.1 Feasibility Experiment under Controlled Conditions

There are many potential sources of noise which may impact the activity recognition performance; therefore, in
our first experiment we hold constant as many factors as possible. We accomplish this by using the RealWorld
dataset [86], an activity recognition dataset that contains not only IMU data but also provides videos of the
subjects performing the activities.

Data. The Realworld dataset covers 15 subjects performing eight locomotion-style activities, namely climbing
up, climbing down, jumping, lying, running, sitting, standing, and walking. Each subject wears the sensors for
approximately ten minutes for each activity except for jumping (<2 minutes). The video and accelerometer data
are not time-synchronized, as each video starts some time (under one minute) before each activity begins. The
video is recorded using a hand-held device by the experiment’s administrator, who follows the subject as they
perform the activity (e.g., running through the city alongside the subject). The videos do not always present a
full-body view of the subject, and the video-taker sometimes makes arbitrary changes to the video scene (e.g.,
he/she might walk past the subject, or rotate the camera from landscape to portrait mode halfway). These factors
present extra difficulty in extracting virtual IMU for the full duration of the activities; nonetheless we are able to
extract 12 hours of virtual IMU data, this is compared to 20 hours of available real IMU data. As a preprocessing
step, we remove the first ten seconds of each video and divide the remainder into two-minute chunks for efficient
running of IMUTube. Virtual IMU data are extracted from 7 body locations, i.e. forearm, head, shin, thigh, upper
arm and waist/chest, corresponding to where real sensors are placed in Realworld. We assume all IMU data to
have a frequency of 30Hz and use sliding windows to generate training samples of duration 1 second and 50%
overlap. The resulting real and virtual IMU dataset contains 221k and 86k windows, respectively.

Method. Our primary evaluations are performed with the Random Forest classifier using ECDF features [28]
(15 components), trained using a leave-one-subject-out scheme. On Realworld, we use a train set of 13 subjects,
validation set of 1 subject and test set of 1 subject in each fold. This scheme is followed in R2R (where training
data is real IMU data), V2R (where training data is virtual, and distribution-mapped only using data from train
users), and Mix2R (which contains a mixture of both real and virtual IMU data). We calibrate hyperparameters on
the validation subjects by varying the number of trees from 3 to 50 and the minimum number of samples in leaf
node from 1 to 50. We report the mean F1-score of the test subjects computed after the completion of all folds.
Separate from this, we train DeepConvLSTM [61] on a hold-out evaluation scheme, where subject 15 is
randomly selected as validation, 14 as test, and the rest as the training set. DeepConvLSTM is trained on raw
data for a maximum of 100 epochs with an Adam optimizer [43] and early stopping on the validation set with a
patience of ten epochs; learning rate is searched from 107 to 1073, and weight decay from 10™* to 107> via grid
search. We further regularize model training by employing augmentation techniques from [91] with a probability
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Table 1. Recognition results on the Realworld dataset (8 classes) when training models from real IMU data (R2R), from
virtual IMU data (V2R), and from a mixture of both (Mix2R). Wilson score confidence intervals are shown. For Random
Forest models, V2R achieves 98% of the R2R F1-score, while a Mix2R setup surpasses R2R by 12%.

(a) Random Forest (leave-one-subject-out) (b) DeepConvLSTM (random single-subject hold-out)
R2R \ V2R | Mix2R R2R \ V2R | Mix2R
0.5779+0.0025 ‘ 0.5675+0.0025 ‘ 0.6444+0.0024 0.7305+0.0073 ‘ 0.5465+0.0082 ‘ 0.7785+0.0068

of application set at either 0 and 0.5 depending on validation set result. We average over 3 runs initiated with
different random seeds and report the mean F1-score.

In both cases, we report the highest test F1-score achieved using any amount of training data, along with the
Wilson score interval with 95% confidence. We discuss the effect of training set size in Section 4.3. We reuse these
settings throughout the paper unless stated otherwise.

Results. In Table 1a, we see convincing evidence that human activity classifiers can learn from virtual IMU data
alone. When learning from virtual IMU data alone (V2R), the 8-class model achieves an F1-score of 0.57, which is
within 2% of that achieved by learning from real IMU data (R2R). This result is remarkable as the difference in
recognition performance of R2R and V2R is small notwithstanding the change in data source and the introduction
of noise while going through our pipeline.

Furthermore, when we use a mixture of virtual and real IMU data to train the model, it is even able to surpass
R2R performance with a significant relative performance gain of 12%, reaching an F1-score of 0.64. This showcases
an additional potential of IMUTube — we can build activity classifiers using both virtual and real IMU data to
push recognition capabilities beyond that achieved by either.

Our DeepConvLSTM results (evaluated on a random subject, Table 1b) offers another perspective into modeling
virtual IMU data when deep learning models are used. Although learning from virtual IMU data alone is seen
to pose more challenges (V2R achieves 75% of R2R), this is possibly related to the setup of learning directly
from raw data, in contrast to processed features in the Random Forest case. As a consequence, DeepConvLSTM
may be learning feature representations highly specific to the virtual IMU domain, which prevents immediate
generalization to real IMU data. This issue is diminished when using a mixture of virtual and real IMU data
for training, as Mix2R even outperforms R2R by 6.6%. We presume that the improvement is related to the
complementary benefits of both real and virtual data, as well as the feature learning capabilities of deep learning
models, which learn better when more data is available.

This set of results provide promising signs for IMUTube — we can learn capable activity classifiers with virtual
IMU data alone, despite having only so far considered relatively straightforward techniques in extracting and
modeling the virtual IMU data. We delve into these concerns about the quality of virtual IMU data in Section 4 to
provide a more complete view.

3.2 Performance on Common Activity Recognition Datasets

We have achieved promising results under the controlled conditions of Realworld, which simultaneously gathers
video and IMU together. We now seek to relax these conditions, and establish the viability of IMUTube when the
exact actions performed in the video data and the real IMU data do not completely align. Imagine a scenario
where we want to build a classifier for ‘standing’ vs. ‘sitting’. Instead of collecting simultaneous video and real
IMU data of people standing and sitting, we want to leverage existing videos of people standing and sitting and
train the classifier using the derived virtual data.
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Table 2. Recognition results (mean F1-score) on Opportunity dataset (4 classes) and locomotion activities found in PAMAP2
(8 classes) when using different training data. For Random Forest models, V2R achieves 95% of R2R F1-scores on average,
while Mix2R outperforms R2R by 5% on average.

(a) Random Forest (leave-one-subject-out)

Dataset I R2R \ V2R | Mix2R

Opportunity 0.8271+0.0034 | 0.7757+0.0037 | 0.8820+0.0029
PAMAP2 (8-class) || 0.7029+0.0055 | 0.6728+0.0058 | 0.7284+0.0053

(b) DeepConvLSTM (random single-subject hold-out)

Dataset I R2R V2R | Mix2R

Opportunity 0.8871+0.0074 | 0.7882+0.0096 | 0.8838+0.0075
PAMAP2 (8-class) || 0.7002+0.0161 | 0.5524+0.0175 | 0.7020+0.0161

In the following, we test this scenario by re-using the video data from Realworld and learning models from its
virtual data to test on two common HAR datasets, Opportunity and PAMAP2. These datasets are considered as
they contain activity labels that roughly correspond to those in Realworld.

Data. We consider activities in Opportunity and PAMAP2 which are overlapping with those in Realworld, i.e.,
four classes (stand, walk, sit, lie) in Opportunity, and eight classes (ascending stairs, descending stairs, rope jumping,
lying, running, sitting, standing, walking) in PAMAP2. We use 1-second sliding windows with 50% overlap.

For Opportunity, we re-extracted virtual data from the Realworld videos in eleven body positions (left and
right feet, left shin and thigh, hip, back, left and right arms, left and right forearms), which resulted in 40k and
46k real and virtual IMU windows respectively. For DeepConvLSTM, we used random subject 3 for validation, 4
for test, and the rest for training.

For PAMAP2, the activities are slightly different from those in Realworld so we equated the labels with the
closest meaning (e.g., using jumping Realworld videos as the source for rope jumping virtual IMU in PAMAP2.
The PAMAP2 dataset specifies that sensors were placed in three locations (dominant wrist, dominant ankle,
chest), which gives rise to a total of four possible combinations for arm and chest location when we extract virtual
IMU data from a single video (i.e., left-left, right-right, left-right, right-left). We took advantage of this ambiguity
and extracted 4x as much virtual IMU per video, resulting in 24k and 152k windows for real and virtual IMU
respectively. For DeepConvLSTM, we followed the same setup as [29] and use subject 5 for validation, 6 for test,
and the rest for training,.

Results. Table 2a shows the classification performance for R2R, V2R and Mix2R. We observe encouraging results,
where learning from virtual IMU data alone can recover high levels of R2R performance, despite data collection
conditions not being held constant. A Random Forest classifier trained from virtual IMU data achieves 94% and
96% of R2R performance on Opportunity and PAMAP2 respectively. While this good performance might be
related to the simplicity of the motions classified (mainly locomotive activities), we highlight that the conditions
of data collection in Realworld and Opportunity are very different-subjects could be walking through the forest
or city in Realworld, but all subjects perform activities inside a laboratory in Opportunity; Likewise for Realworld
and PAMAP2-subjects could also be climbing down the streets of a city (a mixture of pavement and stairs) in
Realworld whereas all subjects are climbing up the same building in PAMAP2. Thus, being able to utilize virtual
data from one scenario and test it on another is not a trivial task. These results suggest that, on these two tasks,
virtual IMU data can provide salient features that are generalizable and robust across testing scenarios.
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Table 3. Recognition results (mean F1-score) on PAMAP2 (11-classes) when using different training data. The Random Forest
model trained with virtual IMU data including YouTube videos (for four complex activities) recovered 80% of R2R model
performance. For Mix2R, additional real IMU data helped the Random Forest model increase performance up to 98% of R2R
model performance.

(a) Random Forest (leave-one-subject-out) (b) DeepConvLSTM (random single-subject hold-out)
R2R \ V2R | Mix2R R2R \ V2R | Mix2R
0.7225+0.0044 | 0.5792+0.0049 | 0.7111:£0.0044 0.6977+0.0129 [ 0.532620.0140 | 0.7095+0.0128

We also observe performance gains when training with a mixture of real and virtual IMU data, which exceeds
R2R F1-scores by 5% on average. Not only does this observation solidify the argument that virtual and real IMU
data can bring complementary benefits to activity recognition, but such performance gains are also a positive
sign especially since the two types of data are collected under rather different circumstances. We argue that,
adding virtual IMU data - in this case, virtual data generated from a related different scenario — can help expand
the variety of motions seen by the classifier and as a result improve model generalization.

As before, we provide the performance by DeepConvLSTM on a random test subject as additional results in
Table 2b, where V2R recovers 84% of R2R F1-scores, while Mix2R and R2R scores are statistically comparable.

Overall, this set of results presents strong evidence supporting the usefulness of virtual IMU data, either used
standalone or in combination with real IMU data for activity recognition. Beyond this, these results also imply an
encouraging view that aligns well with our vision for IMUTube - that virtual data, even when collected under
vastly different settings, can be useful in building capable or even better models for activity recognition.

3.3 Virtual IMU Data for Complex Activity Recognition

Encouraged by the results so far, we now try to apply IMUTube onto activity recognition scenarios with even
more challenging conditions and test its ability in building classifiers for complex activities. Our ultimate vision
for IMUTube is to extract virtual data from any video, especially those freely available in large online repositories
such as YouTube. To test the feasibility of doing so, we first need to curate a dataset with activity videos originating
from the web. In the following, we attempt to source these videos for complex activities present in PAMAP2, and
train classifiers with the extracted virtual IMU data.

Data. We curated a dataset of virtual data covering four complex activities present in PAMAP2, namely vacuum
cleaning, ironing, rope jumping and cycling. To efficiently locate such videos, we extract annotated video seg-
ments from activity video datasets in the computer vision domain, including ActivityNet [9], Kinetics700 [12],
HMDBS51 [44], MPITHPD [3], UCF101 [84], Charades [83], AVA [26], MSRdailyactivity3D [49], and NTU RGB-
D [51]. The resulting video dataset consists of a mix of videos collected in experiment scenarios and in-the-wild
(e.g., from YouTube). In total, we collected ~ 10 hours of virtual data from 7,255 videos. To extend our activity
recognition task to as many classes in PAMAP2 as possible, we also reuse the other seven videos from Realworld
(we do not use the jumping videos); this allows us to consider an 11-class activity recognition problem in PAMAP2.
As mentioned for the PAMAP2 (8-class) task, we face an ambiguity in sensor location which led us to extract 4x
virtual data per video. Using sliding windows of 1-second size and 50% overlap, resulted in 38k real and 390k
virtual IMU windows in total.

Results. For these challenging conditions (using in-the-wild videos, learning complex activities), Table 3a shows
that virtual IMU data can still be useful for training activity classifiers. With the Random Forest classifier, training
from virtual IMU data alone achieves a 0.58 F1-score under V2R, which is 80% of that achieved with R2R (0.72
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F1-score). This is a weaker result compared to those achieved on previous datasets (where V2R achieved 96% of
R2R on average). However, this is because there is an even more drastic difference in the data sources and activity
label interpretations between the real and virtual IMU data. Another likely factor causing the weaker performance
is the quality of virtual IMU data that IMUTube is currently able to produce, which might be amplified by the
complex activities introduced in this experiment. In Section 4.1 we will examine the fidelity of virtual IMU data,
and provide directions to improve its quality in Section 6.2. Finally, one must consider as a factor the greater
domain shift that is probably present between train and test scenarios, which we will discuss in Section 4.2.

When real IMU data is added to virtual IMU data for training, the Random Forest model gains 23% and achieves
a F1-score of 0.71 in Mix2R versus 0.58 in V2R, though Mix2R is still 2% worse than R2R performance. We believe
these results are related to the domain shift within the training data. To better cope with the scenario where we
want to make use of both real and virtual IMU data, we investigate the effect of mixing data in Section 4.3 and
investigate more sophisticated methods beyond simple mixing in Section 5. Our evaluation under DeepConvLSTM
is shown in Table 3b, and results align with those of the Random Forest.

Through this set of experiments, we have demonstrated that, despite very challenging conditions—in-the-wild
videos and complex activity recognition, it is still feasible to learn capable classifiers using virtual IMU data. The
results overwhelmingly support that virtual IMU data generated via IMUTube are useful for even real-world
instances of activity recognition. Demonstrated over a range of locomotion and more complex activities, virtual
IMU data is seen to effectively capture motion information, such that classifiers can be trained from them alone
and still perform well on real IMU data. In addition, mixing real and virtual IMU data for training is also shown
to be a potential source of performance gain.

4 UNDERSTANDING VIRTUAL IMU DATA

Across multiple datasets, the model trained on the virtual IMU dataset (V2R) performed well on the real IMU
test datasets. The V2R performance varies between 80% - 90% compared to R2R models, and only matches or
outperforms R2R when trained alongside real IMU data (Mix2R). Although notably, for the experiment on PAMAP2
(11-class), the V2R model could not outperform R2R even when trained with the larger virtual dataset extracted
from multiple video sources. Thus, in this section, we investigate the potential sources of such performance gaps
in detail. First, we analyze the extracted virtual IMU data by inspecting the sample-level similarity in IMU signals
using synced sequences of real and virtual IMU data. Then, at a distribution level, we investigate the effects of
domain shift, along with the impact of our distribution mapping technique (Section 2.5). Finally, we investigate
the mixing of real and virtual IMU data for model training (Mix2R), which was seen to give comparable, if not
superior, performance relative to R2R in Section 3. Through our analysis, we aim to provide key insights into the
IMUTube pipeline and the use of virtual IMU data for human activity recognition. All experiments presented in
this section are carried out using Random Forest in the leave-on-subject-out setting unless otherwise specified.

4.1 Comparing Virtual and Real IMU

We do not expect IMUTube to function flawlessly. Given the complexity of the process, the translation from video
to virtual IMU data will naturally contain errors. Despite this, we observe promising results of competitive V2R
performance in the prior section. This seems to suggest that perfect sample-level realism in the virtual IMU data
is not necessary to train capable human activity classifiers. In the following, we compare virtual and real IMU
samples to better understand the limits of IMUTube and argue that, the focus, during virtual IMU generation,
should be placed on capturing salient features useful for activity recognition.

Method. Sample-level comparison between the virtual and real IMU data requires a dataset with time-synchronized
video and IMU sensor data. Although the Realworld dataset contains both accelerometer and video data, these
modalities are not synchronized (as mentioned in Section 3.1). Therefore, in this experiment, we introduce the
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Fig. 4. Comparison between virtual and real IMU on the TotalCapture dataset. Distribution mapping has been applied to the
virtual IMU data.

TotalCapture dataset [90] which contains time-synchronized (real) IMU data and video recordings (from which
the virtual IMU data are extracted). As TotalCapture contains various scripted motions but not labels that are
immediately useful for activity recognition-related tasks, we did not evaluate this dataset in Section 3.

Analysis. Figure 4 shows an example of the virtual and real IMU time-series data of a subject walking, with
sensors placed on their wrist and ankle. Along the x-axis, virtual IMU readings are seen to reflect large movement
changes also observed in the real IMU—one can almost see from the ‘wrist’ time-series (see Figure 4(a)) that
the person is walking with periodic hand movements. Along the z-axis, the virtual IMU is also seen to capture
any spikes in acceleration reasonably well, albeit with a noticeable time lag in the ‘ankle’ case. Virtual and real
IMU data differ the most along the y-axis. We postulate that this is related to a dimensionality issue—we are
trying to reconstruct 3-D information from a 2-D image time series. The y-axis here refers to the axis pointing
perpendicular to the visual plane, which means any acceleration measured along this dimension cannot be easily
deduced visually.

While generating realistic virtual IMU data is important, it is secondary to our main goal of producing virtual
IMU data that captures useful information for HAR tasks. To achieve this, what is vital is the ability of the virtual
IMU data to capture salient features of the activities that we need to recognize. We already see signs of this
happening with the current IMUTube (e.g., the x-axis of the ‘arm’ while walking in Figure 4). This also offers a
possible explanation for the better V2R performance seen in predicting locomotion-style activities in Section 3.
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Table 4. Recognition results (mean F1-score, Random Forest) on the 4-class activity recognition task from Opportunity
when using training data from other data sources (top rows) and from Opportunity itself (last row, provided for reference).
Without distribution mapping, there is a significant drop in performance when using training data collected under different
circumstances than the test case, regardless of whether the IMU data is real (66%) or virtual (64%). This is resolved when
distribution mapping is applied.

Train data source H Without mapping H With mapping

Virtual data 0.2949+0.0041 || 0.77570.0037
PAMAP2 0.2770£0.0040 || 0.693120.0041
Realworld 0.2828+0.0041 || 0.6637+0.0043

Opportunity [ 0.8272+0.0034 || -

Perhaps IMUTube, in its current form, is best suited to capture information about simple motions (i.e., ones
mostly characterized by movement in a 2D plane) of which there is still a wide variety, and to which existing
HAR methods still struggle to generalize [46] (for additional qualitative observations see Section 6.2). To apply
IMUTube to more complex activities, it may require improved techniques during virtual IMU data generation
(also discussed further in Section 6.2).

4.2 Coping with Domain Shift

The last step of our pipeline performs a distribution mapping post-processing step between virtual and real
data (Section 2.5). Applying some form of distribution mapping is necessary due to the presence of domain shift
between training and testing data. This domain shift is not exclusive to extracting virtual sensor data from videos,
but it is also present whenever data is taken from different tasks (or datasets) which result in dissimilar data
distributions between training and testing [13].

Method. Our first experiment is to compare the recognition performance on the Opportunity dataset with models
trained using data from sources other than Opportunity, with or without distribution mapping. Specifically, the
train data can be i) real IMU data from PAMAP?2, ii) real IMU data from Realworld, or iii) virtual IMU data from
Realworld videos (Section 3.1). Without distribution mapping, we use all available data in the respective datasets
that fall under the 4 Opportunity classes (stand, walk, sit, lie) for training, and test using the entire Opportunity
dataset. With distribution mapping, we follow a leave-one-subject-out evaluation scheme; In each fold, we train
the model using data distribution-mapped with data only from the corresponding train subjects in Opportunity,
and evaluate on the remaining test subject.

In our second experiment, we focus on the virtual and real IMU used in the 4 datasets described in Section 3,
i.e., Realworld, Opportunity, PAMAP2 8-class and 11-class. We aim to understand how much real IMU data is
needed for distribution mapping on the virtual IMU data. To do so, we vary the amount of real IMU data used for
distribution mapping and evaluate at what point do the virtual and real IMU data distribution become sufficiently
similar. We report the similarity between each data distribution using the Frechet Inception Distance (FID), a
metric commonly used in generative modeling to compare the real and generated datasets [33, 53]; lower FID
scores indicate more similar data distributions. We also report the confidence interval as calculated by randomly
sampling real IMU data with 10 different random seeds for distribution mapping.

Analysis. In Table 4, the effects of domain shift are demonstrated by the significant drop in the performance seen
in the ‘without mapping’ column. When using training data not from Opportunity — despite having the same
activity labels — even models trained with real IMU data (from PAMAP2 and Realworld) suffer a 66% drop in
F1-scores. From this, it is clear that the domain shift issue is not exclusive to the shift present between virtual and
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Fig. 5. Frechet Inception Distance (FID) and confidence interval (shaded area) between virtual IMU and real IMU data
distributions after performing distribution mapping of the virtual IMU data with increasing amounts of real IMU samples.
The dotted horizontal line is the FID score obtained when the entire real IMU dataset is used for distribution mapping.

real IMU domains. The drop in performance is resolved when we perform distribution mapping (Section 2.5); we
even observe that training from virtual data outperforms training using other real IMU datasets. This hints that
virtual data might have greater value than real IMU data in developing general HAR models. This conclusion was
also supported by the results seen when performing the same analysis on the PAMAP2 and Realworld datasets.

Figure 5 shows how the virtual/real FID score varies with the quantity of real IMU data used for distribution
mapping. In all four cases, an abrupt, significant drop in the FID score is seen with the use of under 100 seconds
of real IMU samples. When using 10 minutes of real IMU data per class for distribution mapping, the FID scores
are within 6% of the final FID score (when all real IMU is used for distribution mapping).

4.3 Varying the Mixture and Size of Training Data

Here, we inspect how varying the mixture and size of training data affects recognition performance on the four
datasets considered in Section 3.

Method. Our first experiment compares the F1-scores achieved by models trained with a mixture of real and
virtual IMU data (fixed at 1:1 ratio) as the amount of training data is varied. We repeat this on all 4 datasets
and plot the respective learning curves to inspect if the performance gain by Mix2R over R2R is consistent. Our
second experiment compares the F1-score achieved by models trained with a mixture of real and virtual IMU data,
where the real IMU data is fixed at 300 seconds per class, but real-to-virtual data ratio is varied from 1:1 to 1:10.

Analysis. Figure 6 shows the learning curves on each dataset as the amount of training data is varied. For 3 out of
4 datasets, Mix2R outperforms R2R consistently by a clear margin at every inspected point of the learning curves.
The greatest performance gain is observed throughout the Realworld learning curve, with an increase of at least
9% in F1-score by Mix2R over R2R. Similar trajectories are observed on Opportunity and PAMAP2 (8-class), with
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Fig. 6. Mix2R and R2R performance of a random forest model on 4 different HAR tasks when different amounts of real data
per class (in seconds) are used for training. The ratio of virtual data and real data is kept at 1:1 at all datapoints.

the most significant difference between Mix2R and R2R occurring when very limited training data are available
(under 100 seconds per class).

On PAMAP?2 (11-class), Mix2R outperforms R2R when there are only 10 samples per class, and both Mix2R and
R2R curves plateau when there are more data available. Given that PAMAP2 (11-class) is also the case where we
predict complex activities under the most dissimilar settings, the plot highlights the difficulty of the classification
task for both real and virtual IMU data.

Although it may appear that the learning performance saturates with relatively small amount of data per class
(600 seconds per class, for instance) — we highlight that this has been commonly observed in the literature for
the HAR datasets we used (Opportunity, PAMAP2, e.g., [31, 73, 99]).

Next, we evaluate the performance achieved when varying virtual and real IMU data mixtures, as presented in
Table 5. When compared to the F1-scores of models only trained from real data, adding virtual data to training is
seen to give a better or comparable performance at all considered ratios on Realworld, Opportunity, and PAMAP2
(8-class). On Realworld, the greatest gain is seen at 1:5, where the F1-score is increased by 9% over that at 1:0; At
the ratio 1:1, both Opportunity and PAMAP2 (8-class) see improvements of 6%. The performance however does
not increase monotonically with the addition of more virtual data. This shows that the effect of mixing virtual
and real data is not straightforward. It is possible that as more virtual IMU data is used, the domain shift issue
becomes severe and the Random Forest classifier starts to overfit to the virtual IMU data. Adding virtual data
has a detrimental effect on PAMAP2 (11-class). This follows our observations in Figure 6 and can be similarly
explained by PAMAP2 (11-class) containing complex activities under the most dissimilar settings in comparison
to the virtual IMU data.

Hence, we suggest finding the right balance between the amount of real and virtual IMU data for a model to
learn the target activity pattern coexisting in both real and virtual IMU data, before overfitting to the virtual IMU
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Table 5. Recognition results (mean F1-score, Random Forest classifier) on all datasets. Different amounts of virtual data are

Kwon and Tong, et al.

added to a constant amount of real data, given in seconds per class.

Real || Virtual || Real: PAMAP?2 PAMAP2

Data Data Virtual RealWorld Opportunity (8-class) (11-class)

300 0 1:0 0.5706+0.0025 | 0.8214+0.0034 | 0.6869+0.0056 | 0.7206+0.0044
300 300 1:1 0.6230+0.0025 | 0.8738+0.0029 | 0.7284+0.0053 | 0.6978+0.0045
300 600 1:2 0.6146+0.0025 | 0.8637+0.0030 | 0.7006+0.0055 | 0.7051+0.0045
300 1500 1:5 0.6247+0.0024 | 0.8503+0.0032 | 0.6926+0.0055 | 0.6898+0.0045
300 3000 1:10 0.6061+0.0025 | 0.8396+0.0031 | 0.6792+0.0056 | 0.6824+0.0046

data. We also anticipate that as the quality of virtual IMU improves in future versions of IMUTube, that larger
amounts of it will be able to be successfully integrated during HAR training.

5 TRANSFER LEARNING WITH VIRTUAL IMU DATA FOR HAR CLASSIFIERS

In the previous two sections, we have demonstrated that sensor-based human activity classifiers can learn from
virtual IMU data, although limitations still exist. So far, we have assumed that labeled virtual and real IMU
datasets for target activities are always available. In practice, such a scenario may not always be possible. For
example, curating video datasets for virtual IMU data could be challenging, as titles or descriptions of videos can
be arbitrarily ambiguous.

Here, we explore two additional cases for utilizing virtual IMU data: i) when the virtual IMU dataset contains a
subset of target activity labels; ii) when labels for virtual IMU are not available at all. To do so, we leverage two
transfer learning setups, supervised and unsupervised, respectively. The analysis in this section represents our
first attempts in utilizing more sophisticated modeling techniques from deep learning to extend the contribution
of IMUTube. Our results are a first step towards handling realistic issues in label collection, as we do not yet
incorporate any automated video labeling or search mechanisms. All experiments follow the same hold-out
evaluation protocol detailed in Section 3.

5.1 Supervised Transfer Learning

With supervised transfer learning, we pre-train a model using labeled virtual IMU data and fine-tune it using
labeled real IMU data. Importantly, the labels for pre-training and fine-tuning need not match. We first explore
the setup where virtual and real IMU data share the same set of activity labels — Imagine we have already curated
video and virtual IMU data for some targeted activities, and also collected a small amount of real IMU data; instead
of waiting until sufficient amounts of real IMU data is collected, we can first train a model on the virtual IMU
data and fine-tune on the small-scale real IMU data. By studying this scenario, we can also gauge if pre-training
with virtual data might provide any benefits to activity recognition performance.

Next, we consider a scenario where the virtual IMU data only contains a subset of the real IMU data activity
classes. To examine this, we pre-train a model on the virtual PAMAP locomotion (8-classes) task and fine-tune it
on the complex activities (11-classes) tasks.

Method. We compare the recognition performance of DeepConvLSTM models i) trained only with real data and ii)
pre-trained on virtual and fine-tuned on real IMU data. The former is the same as the R2R case in Section 3. For ii),
we randomly split the virtual IMU data into train/validation/test (80%/10%/10%) and pre-train the network using
the virtual IMU training data. During fine-tuning, all model weights are updated and we report the performance
on the real IMU test dataset; In the case where real and virtual IMU activity labels do not match, we replace the
last layer of the pre-trained model with the target number of classes (thereby going from 8 to 11 activity classes
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Table 6. Recognition results (mean F1-score) of transfer learning setups when evaluated on different HAR tasks. R2R is the
baseline trained on real data from scratch. Transfer learning (TL) results show the performance of the models fine-tuned on

real data.

Pre-training

Fine-tuning

DeepConvLSTM
Supervised R2R ‘ Supervised TL

CAE+RF
Unsupervised R2R ‘ Unsupervised TL

Realworld
Opportunity

Realworld
Opportunity

0.7305+0.0073
0.8871+0.0074
0.7002+0.0161

0.8337+0.0061
0.9100+0.0067
0.7137+0.0159

0.7923+0.0067
0.8896+0.0074
0.6471+0.0168

0.7718+0.0069
0.8477+0.0084
0.6809+0.0164

PAMAP2 (8-class)
PAMAP2 (11-class)
PAMAP2 (8-class)

PAMAP2 (8-class)
PAMAP2 (11-class) 0.6977+0.0129
PAMAP2 (11-class) -

0.7023+0.0129 0.7004+0.0129 0.6989+0.0129
0.7071+0.0129 - -

Realworld (8-class)

Opportunity (4-class)

Fl-score

R2R

Supervised TL
best R2R

best Supervised TL
beset V2R

Fl-score

T T T T T 0.3+ T T T T
0 1000 2000 3000 4000 0 1000 2000 3000 4000

No. of real windows per class No. of real widows per class
Fig. 7. Transfer learning vs. amount of real data used for training.

for PAMAP2) and update all the network weights. We present results on all 4 datasets and follow the training
and evaluation protocols described in Section 3.

Results. The left of Table 6 shows the differences in F1-scores achieved by DeepConvLSTM models with (Super-
vised TL) and without pre-training (Supervised R2R) when evaluated on a random test subject. With pre-training,
statistically significant performance gains are observed on Realworld and Opportunity, at 14% and 3% respectively.
We further present the effects of using different amounts of real IMU data for fine-tuning the selected base model
in Figure 7. We see the most obvious difference in learning trajectories on the Realworld dataset, where only a
small amount of real data is needed to fine-tune the base model such that it surpasses R2R performance. In the
last row of Table 6, we also show results for transfer learning in the case where virtual and real IMU data labels
do not match (PAMAP2 8-class for pre-training, PAMAP2 11-class for fine-tuning). In this case, the model with
pre-training achieves an F1-score of 0.71 on PAMAP2 (11-class), which is statistically comparable to the result in
the R2R setting.
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5.2 Unsupervised Transfer Learning

Unsupervised transfer learning considers the scenario where we extract the virtual IMU data from a large body
of videos without labels. Curating a collection of unlabeled videos is easier relative to obtaining labeled videos,
particularly in scenarios where the video descriptions/labels may be unreliable. Without a set of specific target
activities in mind, any videos with humans can be utilized. Validating the feasibility of this approach represents
a first step towards curating a large collection of virtual IMU data, consisting of very diverse movements and
activities from which a model can learn generic representations.

Method. Our unsupervised transfer learning setup consists of two stages. The first stage pre-trains a convolutional
autoencoder (CAE) to learn feature representations. The second stage extracts from real IMU data the learned
representations, which are then used to train a random forest classifier. We compare the recognition performance
achieved by the entire CAE-RF setup when: i) virtual IMU data is used for training the CAE (Unsupervised TL);
and ii) when real IMU data is used for training the CAE (Unsupervised R2R).

We use Haresamudram et al.’s architecture, where the encoder contains four convolutional blocks, leading
to the bottleneck layer [31]. Each block contains two 3x3 convolutional layers followed by 2x2 max-pooling.
Batch normalization is applied after each layer [37]. The output from the last convolutional block is flattened
before being connected to the bottleneck layer. The decoder inverts the encoder by performing convolution,
interpolation, and padding to match the sizes of the corresponding encoder blocks [58]. ReLU activation [57]
is used throughout, except the output, where the hyperbolic tangent function is used instead. We follow the
evaluation protocol used in the DeepConvLSTM case.

Results. The right part of Table 6, shows results for using virtual IMU for pre-training with varying performance
relative to models trained on real IMU data. On Realworld, Opportunity and PAMAP2 (11-class), unsupervised
TL using virtual IMU data reached up to 95% — 100% of R2R F1-scores. On PAMAP2 (8-class), we even see an
increase of 5% over the R2R protocol. These results demonstrate the feasibility in utilizing virtual IMU data even
in scenarios where video labels are completely absent.

6 DISCUSSION

In this section, we discuss the implications of the results presented, limitations in our approach, and highlight
opportunities which this work opens up.

6.1 Demonstrating Feasibility

We have presented a processing pipeline and a series of validation studies to support our thesis that an automated
pipeline from video to virtual IMU data can replace the labor-intensive practice of collecting labeled datasets
from real on-body IMU devices. IMUtube shows how a full three-axis virtual accelerometer sensor derived from
arbitrary videos can be utilized for human activity recognition. The automated pipeline provides the opportunity
to collect much larger labeled data sets, which in turn can improve classifiers for human activity recognition.
Our validation experiments explored ways to model virtual IMU data, either standalone or in conjunction with
real IMU data. On three different datasets (Realworld, Opportunity and PAMAP2 8-class), training from virtual
IMU alone led to competitive results compared to those from real IMU data (recovering up to 90%), and a simple
mixing of data from two sources brought considerable gains (4%-12% increase) to recognition performance.
PAMAP?2 11-class is a special case as the activity recognition task extends to complex, non-locomotion human
activities, such as vacuum cleaning. It is also different because we have utilized a diverse range of video data
collected over multiple visual datasets. Our results show that we can indeed still learn from virtual data under
such settings, and our V2R results still reach at least 80% when compared to R2R (Table 3a). However, what
is still missing is that we have not seen an improvement over R2R results through mixing (2% decrease) or
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transfer learning (insignificant change). While this suggests that modeling complex activities and mixed data
sources remain issues, we believe that modelling complex activities, and by extension, the merit of using more
accelerometry data (be it virtual or real) still warrants further investigation. For example, is there simply an
upper bound to predicting these complex activities using motion-based data alone?

6.2 Limitations and Extensions of Current Approach

We have utilized a series of off-the-shelf techniques at every step of the proposed pipeline in Section 2. While this
supports reproducibility of our results, it does result in limitations that impact the overall quality of labeled data
for HAR. We discuss the known limitations of each step of the pipeline and present steps forward to advance this
line of research.

6.2.1 From Vision To Pose. Accurate recovery of the human skeleton pose from videos has known limitations
arising from the movement of both the subjects as well as the camera.

The 2D pose estimator used in IMUTube, OpenPose, has previously known failure scenarios including partial
detection of joints, swapping between left and right for rare poses, self-occlusion from the camera viewpoints,
and partially visible bodies [10]. Such errors in the estimated 2D pose propagate to the 3D pose estimation, which
itself is a challenging problem due to the inherent uncertainty of the added third dimension [63]. Erroneous
2D and 3D poses may distort corresponding perspective projections (PnP) between the poses leading to wrong
3D pose calibration [38]. Depth map or camera ego-motion estimation for a dynamic scene can be imprecise
when having occlusions or motion blur between foreground and background objects, or when light condition
changes [25]. Therefore, the current pipeline can result in distorted 3D motion due to the accumulated errors,
since these challenges are common for videos in the wild.

For the recovery of the human skeleton pose, we would expect improvements based on solutions that leverage
more sophisticated pose tracking techniques that are more robust to vigorous movement, a change of scenery, the
presence of multiple people, and occlusion. Also, camera movements relative to the people captured in the videos
could come from the instability of the camera (e.g., for hand-held cameras) as well as video filming techniques
(e.g., panning shots). Specialized video stabilization strategies or camera ego-motion techniques can address these
issues [80, 96, 100]. We believe that the application of these techniques (and others not yet mentioned or even
developed) will further improve pose extraction quality and expand the variety of videos that can be treated as
input to our pipeline.

6.2.2  From Pose To Accelerometry. Our current approach assumes an equivalence between acceleration measured
by a device on the wearer’s body with that measured at the nearest body joint. This view discounts any considera-
tion of factors such as body mass, device movement and skin friction. To better model the on-body location of IMU
devices, utilizing techniques from body mesh modeling is a straightforward solution to increase realism to the
pipeline. We foresee that investigating the use of body mesh might also bring up the possibilities of synthesizing
credible accelerometry data from people of different body shapes from the movement of a single human skeleton
pose [39, 52, 68]. In addition, while we have only considered the generation of virtual accelerometry data in this
work, we can adapt most parts of the pipeline to generate the full set of IMU signals, including gyroscope and
magnetometer readings.

6.2.3  From Accelerometry to Virtual IMU. Real IMU data, which have been the basis of building HAR classifiers,
are not free of noise. Sensor noise may come from factors such as drift, hysteresis and device calibration. To carry
over such characteristic sensor noise on our virtual data, domain adaptation techniques can be deployed as well
as more sophisticated techniques like Generative Adversarial Networks. [24, 75]
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6.2.4 Learning from Virtual Data. A domain shift exists when a machine learning model is trained from virtual
data and tested on real IMU data. Again, domain adaptation strategies to the input of the machine learning model
is a solution. Alternatively, it will be promising to investigate domain-invariant features learned from virtual and
real data, which could potentially lead to performance gains in HAR.

6.2.5 Which Videos are Currently Suitable for IMUTube? Our qualitative inspection of the IMUTube output and
the per-class V2R results suggests that certain video features may contribute to poorer recognition performance
on virtual IMU data: large ego-motions, multiple moving objects and people, and occlusion.

Large ego-motions can be found in the Realworld ‘running’ videos in which the video-taker was also running,
leading to significant vertical shaking motion from the camera itself. It is possible that such vertical motions
end up producing features that are very similar to those from a ‘jumping’ motion, which may explain a higher
class confusion observed between ‘running’ and ‘jumping’ on the Realworld and PAMAP?2 (8-class) tasks. An
additional factor might have come from the presence of multiple moving objects and people in the background
(e.g. pedestrians) in the ‘running’ videos.

We also found that V2R models struggle more in classifying activities with similar poses which have more
subtle differences in limb movements, e.g. ‘standing’ vs. ‘vacuum cleaning’, ‘sitting’ vs. ‘ironing’, as in PAMAP2
(11-class). In many ‘vacuum cleaning’ and ‘ironing’ videos, the subject’s arm movements are occluded by objects
in the scene, e.g. clothes or home furniture.

On the other hand, videos with fewer or without such motion artifacts tend to produce virtual IMU data
that are well-classified under V2R. Moreover, videos featuring activities with distinctive poses and motions, e.g.
cycling, are well-classified under the V2R setting. There are also many existing techniques that will allow us to
further tackle motion blur ([1, 81]) and occlusion ([23, 71]). It is also possible that the future curation of video
data can automatically rank videos by the presence of these undesirable features to arrive at a suitable dataset for
virtual IMU data extraction.

6.3 The Road Ahead

Our primary goal in this paper was to motivate the HAR community with a promising approach that overcomes
the main impediment to progress—lacking large labeled data sets of IMU data. While technical challenges remain,
we have validated this approach and provide a processing pipeline that the community can collectively develop.
Here we highlight the most compelling research opportunities.

6.3.1 Large-scale Data Collection. The ultimate goal, as suggested by the name of IMUTube for our initial tool,
is to develop a fully automated pipeline that begins with the retrieval of videos representing particular human
activities from readily available sources (e.g., YouTube) and converts that video data to labeled IMU data. Since
it is much more common to have video evidence of the wide variety of human behaviors, this is an obvious
advantage over past labor-intensive and small-scale efforts to produce such HAR datasets. We have shown great
promise with this direction, and above listed some known limitations that can be addressed by different vision,
signal processing, and machine learning techniques. The reader will note that the videos used for our validation
studies were also curated, meaning there was a significant effort in selecting appropriate video examples. The
hope is that this curation effort can also be reduced and ultimately eliminated because the sheer number of
relevant videos will overcome the deficiencies of less useful video data.

6.3.2 Deep Learning. Deep Neural Networks have transformed recognition rates in other fields [32, 60], but
HAR has lagged behind, again due to the lack of large corpora of labeled data. While we expect that IMUTube is
a significant advance towards that goal, having the data alone is not the end goal. We have not yet produced a
large-scale HAR dataset, and until we do so we can only hope that deep learning techniques will take over. We
then fully expect HAR to inform deep learning techniques.
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6.3.3 Extending the Field of HAR. An important advantage to generating virtual IMU data is that we can place
the virtual sensor in a wide variety of places on the human body. While some of the standard datasets we used
in this work have subjects wearing multiple IMUs, there are limits to how many devices one can wear and still
perform activities naturally. IMUTube removes that limitation. Now, for any given activity, we can experimentally
determine where to place one IMU (or multiple IMUs) to best recognize that activity. For a set of activities, which
place optimizes the recognition of all of the activities in that set. We have never had the ability to contemplate that
kind of question. We also need not limit to IMUs placed directly on the body. Models of how clothing responds
on a body might be used to generate virtual IMU data for objects that are loosely connected to the body [2, 67].
HAR can now inform clothing manufacturers of where in the material for a shirt, for example, one would want
to integrate IMU data collection to predict the activities of the person wearing the shirt, or any other piece of
clothing for that matter [41, 56].

6.3.4 Real IMU as ‘Seeds’ to Our Pipeline. While IMUTube is about generating lots of virtual IMU data, our
results show the value for the more traditional curated datasets from real IMU data. The real IMU data provides a
seed that the virtual data grows into more sophisticated HAR models. Now the efforts in real IMU data collection
can be focused on producing very high quality labeled data from a wide enough variety of subjects performing
key activities. It may even be the case that this real IMU seed data is the treasured commodity that companies
can use to provide the best seeds for IMUTube-generated virtual IMU data and the models grown from them.

7 RELATED WORK

The proposed method details a pipeline towards opportunistically extracting virtual sensor data from a potentially
very large body of publicly available videos. This is in contrast to current wearable sensor data collection protocols,
which involve user studies and human participants, as well as other approaches that generate sensor data from
motion capture (mocap) settings. In what follows, we first discuss approaches to data collection for sensor-based
human activity recognition as well as mocap based techniques. These approaches represent the state-of-the-art
in the field that are based on dedicated data recording protocols. Subsequently, we detail prior work on training
classifiers with limited labeled data, thereby focusing on data augmentation techniques and transfer learning.

7.1 Sensor Data Collection in HAR

Sensor data collection for human activity recognition is often performed by conducting user studies [14, 72, 97].
Typically, the participants in a study are asked to perform activities in laboratory settings while wearing a sensing
platform. The advantage of data recording in a lab setting is that in addition to sensor data typically video data
is recorded that is subsequently used for manual data annotation. For this purpose, the sensor and video data
streams need to be synchronized [65], and human annotators need to be trained for consistency in annotation. The
laboratory is designed to resemble a real-world environment, and user activities are either scripted or naturalistic.
These include various gesture and locomotion level activities. However, designing a lab study to capture realistic
natural behaviors is difficult. The protocol of such studies makes it challenging to collect large scale datasets.
Furthermore, the annotation of activities is costly and error-prone and therefore prohibitive towards creating
large datasets as they are required for deriving complex machine learning models.

Recently, Ecological Momentary Assessment (EMA) based approaches have been employed to record and
especially annotate real-world activity data [35, 47, 88]. The sensing apparatus (containing sensors such as
accelerometers or full-fledged IMUs) is worn on-body, and users self-report the activity labels when they are
asked to do so through direct notification. Although these methods may lose sample-precise annotation of the
activities, they encourage the collection of larger-scale datasets. While limited to gesture-based activities, Laput
and Harrison [47] have shown that larger numbers (83) of fine-grained hand activities can be reliably recorded
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and annotated. Both in-lab and EMA based collection protocols directly involve human participants to collect
movement data using body-worn sensors.

Other approaches have explored alternative data collection methods that do not directly involve human
participants. Kang et al. render a 3D human model on computer graphics software and simulate human activities
[40]. The sensor data is extracted from the simulated human motion, and subsequently used to train the recognition
models. However, it is very difficult to realistically simulate and design complex human activities. Therefore, such
methods typically only explore simple gestures and locomotion activities. Alternatively, [87, 92] extract sensory
data from public, large-scale motion capture (mocap) datasets [45, 54, 59], which contain a variety of motions
and poses for human activity recognition. Although these datasets cover hundreds of subjects and thousands of
poses and motions, they rarely include everyday activities. The majority of such mocap datasets include dancing,
quick locomotion transitions, and martial arts, which are less relevant to recognizing daily human activities.

Most related to our work, Rey et al. [74] also proposed to collect virtual sensor data from online videos
and demonstrated the effectiveness of the virtual sensor data for recognizing fitness activities. Their approach
computes the 2D pose motion for a single person in the video with a fixed camera viewpoint. A regressor is
trained for a target real sensor with the synced video and accelerometer recordings, which transfers the changes
in joint locations from the 2D scene to the norm of the three-axis accelerometer. In contrast, our work can
generate data from the full IMU (three-axis accelerometer, gyroscope, and simulated magnetometer). Further, we
perform 3D motion estimation from videos with multiple people and scenes in the wild using camera motion
tracking. We do not require synced video and wearable recordings as the virtual sensor can be adapted to any
real sensor with our efficient distribution mapping method.

We leverage the availability of large scale video datasets that cover real-world activities to extract sensory
data. These videos are recorded in-the-wild and contain a wide range of activities, including everyday activities,
which makes them very attractive for deriving realistic and robust human activity recognition systems.

7.2 Tackling the Sparse Data Problem

Many publicly available datasets for human activity recognition contain imbalanced classes. For example, ap-
proximately 75% of the Opportunity dataset (which has 18 classes in total) [14] consists of the null class [27],
making it challenging to design classifiers. The activities being studied also impact the class imbalance to some
extent. In the PAMAP?2 dataset, the skipping rope class constitutes approximately 2.5% of data, relative to other
activities which constitute around 9% on average [27]. This follows reason as, unless your name is Rocky Balboa,
it is harder for subjects to perform rope skipping for longer durations of time, in contrast to walking or lying
down. This resulting class imbalance poses a challenge for the design and training of classifiers, which may find
it easier to simply predict the majority class. Furthermore, the relatively small size of labeled datasets results in
models quickly overfitting and does not allow the application of complex model architectures. It is also difficult
to apply potentially alleviating techniques such as transfer learning, which rely on large datasets for knowledge
transfer. As a result, [89] have noticed that the adoption of deep learning methods in human activity recognition
has not yet translated to the pronounced accuracy gains seen in other domains.

As a way to overcome the problem of small, class-imbalanced datasets, data augmentation techniques have
been applied previously to prevent overfitting, improve generalizability and increase variability in the datasets.
They involve techniques that systematically transform the data during the training process in order to make
classifiers more robust to noise and other variations [55]. They artificially inflate the training data by utilizing
methods, which perform data warping, or oversampling [82]. Data warping includes geometric transformations
such as rotations, and cropping, as well as adversarial training. For time series classification, the data warping
techniques include window slicing, window warping, rotations, permutations and dynamic time warping [20, 48].
Several of these transformations can be combined to further improve the performance over a single method.
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Um et al. demonstrate that combining three basic methods (permutation, rotation and time warping) yields
better performance than using a single method [91]. In [70], construction equipment activity recognition is also
improved by combining simple transformations.

Recently, data generation using either oversampling or generative adversarial networks (GANs [82]) have also
been successfully introduced to sensor-based human activity recognition [93]. However, in contrast to other
domains such as computer vision, performance improvements remain moderate, most likely due to non-trivial
challenges inherent to generating realistic yet novel timeseries data. Oversampling based methods include
synthetic minority oversampling technique (SMOTE) [22]. GANs have been used to, for example, augment
biosignals [30] or in IoT [93]. Extending the conventional GAN approach, in [69], a data augmentation technique
for time series data with irregular sampling is proposed utilizing conditional GANSs. It is shown to outperform
data warping techniques such as window slicing and time warping. Augmentation for wearable sensor data has
been explored for monitoring Parkinson’s disease in [91]. In this paper, seven transformations, including jittering,
scaling, rotation and warping are detailed and their effects relative to no augmentation is studied. Further, the
authors observed that combining multiple transformations results in higher performance. In [85], augmentation
is performed on IMU spectrogram features to improve the activity recognition performance.

Another approach to deal with small labeled datasets includes transfer learning. Here, a base classifier (typically
a neural network) is first trained on a base dataset and task. Subsequently, the learned features are re-purposed,
or transferred, to a second target network to be trained on the target dataset and task. In particular, if the target
dataset is significantly smaller compared to the base dataset, transfer learning enables training a large target
network without overfitting [94], and typically results in improved performance. In [77], the authors propose
a self-supervision pretext task and demonstrate its effectiveness for unsupervised transfer learning on other
datasets with little labeled data. A more extreme example of having very small labeled datasets includes one-shot
and few-shot learning, which contain very few labeled samples per class [21].

While the data augmentation techniques do improve the classification performance, they, ultimately, produce
perturbed training samples. Therefore, they are unable to provide for the variety in human movements that is
obtained by collecting data from a large number of subjects. On the other hand, the GAN based techniques perform
augmentation by sampling from the dataset distribution. However, they require substantial amounts of data to
train, and may suffer from training instability and non-convergence [93]. Furthermore, there is limited prior
work studying data augmentation by GANs for wearable sensor data and their actual suitability for sensor-based
human activity recognition remains to be shown. This makes it challenging to readily apply these generative
networks to create more data.

We tackle the problem of having small labeled datasets with a different approach — by generating large quantities
of virtual IMU data from videos. As we can leverage a large body of videos, containing many individuals, we
generate datasets containing more diverse movements and potentially much larger datasets of realistic data,
which is in stark contrast to existing methods that try to combat the sparse data problem.

8 CONCLUSION

In this paper we developed a framework for generating virtual IMU data based on automated extraction from
video as a means to collect large-scale labeled datasets to support research in human activity recognition (HAR).
We designed and validated our framework, IMUTube, that integrates a collection of techniques from computer
vision, signal processing, and machine learning. Our initial findings show great promise for this technique to
extend the capabilities for HAR, at a minimum for simple activities whose main IMU characteristics are confined
to expression in 2D.

The greater promise of this work requires a collective approach by computer vision, signal processing, and
activity recognition communities (who have already been greatly united through the advances of deep learning)
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to advance the underlying agenda. Computer vision researchers can clearly build upon the IMUTube pipeline
to address a variety of current limitations, further automating the pipeline and reducing the need for human
curation of online videos. Signal processing advances can further manipulate the virtually-generated data to
better condition the virtual data and represent the features and distributions of real IMU data. Activity recognition
researchers can apply known modern learning techniques to this new class of labeled data for HAR and develop
more effective ways to model, both with and without a mixture of real IMU data. Within a few years, we expect
this collective effort to result in HAR as yet another success story for large-data-inspired learning techniques.
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