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Automatically recognizing a broad spectrum of human activities is key to realizing many compelling applications in health,
personal assistance, human-computer interaction and smart environments. However, in real-world settings, approaches to
human action perception have been largely constrained to detecting mobility states, e.g., walking, running, standing. In
this work, we explore the use of inertial-acoustic sensing provided by off-the-shelf commodity smartwatches for detecting
activities of daily living (ADLs). We conduct a semi-naturalistic study with a diverse set of 15 participants in their own homes
and show that acoustic and inertial sensor data can be combined to recognize 23 activities such as writing, cooking, and
cleaning with high accuracy. We further conduct a completely in-the-wild study with 5 participants to better evaluate the
feasibility of our system in practical unconstrained scenarios. We comprehensively studied various baseline machine learning
and deep learning models with three different fusion strategies, demonstrating the benefit of combining inertial and acoustic
data for ADL recognition. Our analysis underscores the feasibility of high-performing recognition of daily activities using
inertial-acoustic data from practical off-the-shelf wrist-worn devices while also uncovering challenges faced in unconstrained
settings. We encourage researchers to use our public dataset to further push the boundary of ADL recognition in-the-wild.
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1 INTRODUCTION
Detecting human behaviors in the home has been one of the driving forces of the field of human activity
recognition (HAR) for many years [4, 34, 36, 50, 53]. Indeed, HAR is key to realizing ubiquitous computing
applications, such as home automation and personal assistance, and provides a foundation for new types of
human-computer interactions that hinge on anticipating and responding to people’s needs. Due to their relevance
to health and well-being, Activities of Daily Living (ADLs) have gained special attention from HAR researchers;
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ADLs represent essential tasks and skills necessary for an individual to meet their basic physical needs, such as
cooking, cleaning, and grooming. Objectively measuring how ADLs are performed can be an effective means of
health assessment, with the potential to extend aging in place and as a way to monitor the progress of debilitating
medical conditions such as cognitive impairment. However, the recognition of these types of activities in real-
world environments continues to be a challenge; so far, HAR methods that generalize beyond the laboratory
have been largely constrained to detecting mobility states, e.g., walking, running, standing [16, 17].
Over the last decade, the popularization of smartphones has brought sensing and computation closer to

the everyday human experience, enabling new HAR methods for ADL recognition that complement existing
approaches based on environmental sensors. Underlying most of this work has been the assumption that a user’s
phone is always at-hand, serving both as a conduit for data collection and proxy for human behavior recognition.
However, empirical investigations conducted by Patel et al. in 2006 [42] and then again by Dey et al. in 2011 [15]
showed that this assumption is only true 50% of the time, indicating that smartphones are not always as close to
individuals as widely believed. This finding, and a new wave of emerging wearable technologies has encouraged
researchers to look beyond the smartphone.
In this work, we explore the potential of stand-alone, commodity smartwatches in recognizing ADLs in

naturalistic settings with multimodal sensing. Smartwatches open up exciting new opportunities in this field.
Many ADLs such as eating, writing, and cooking are characterized by specific hand and wrist gestures, so the
ability to collect sensor data from a location close to the hand is highly desirable. Additionally, smartwatches can
capture ambient sounds that are in close proximity to the body and thus highly contextualized to people’s activity.
And from a human-centered perspective, smartwatches do not carry the stigma of specialized sensing devices;
they are comfortable to wear, are socially acceptable and have become increasingly popular in recent years.

While prior studies have featured smartwatches in HAR research, our research adds to the body of work in the
field in important ways. First and foremost, we place the smartwatch front and center, leveraging its capabilities
as a stand-alone device; this is different from previous work where the smartwatch played a supporting role
to the smartphone [20, 49, 55]. Secondly, this paper targets ADL recognition (i.e., complex human behaviors)
using multimodal sensing, i.e., inertial and acoustic; prior research has been largely focused on the recognition of
specific gestures and activities [9, 13, 48, 59], typically leveraging only the inertial sensors on the watch to track
movement and motion. And crucially, our work emphasizes ADL recognition in the real-world. We captured
two datasets, one in people’s own homes and another in completely naturalistic settings in order to develop and
validate approaches for smartwatch-centric HAR. The specific contributions of this work are:

• Two annotated datasets1 capturing synchronized inertial and acoustic data collected from an off-the-shelf
smartwatch. One dataset consists of data captured as 15 participants performed various activities of daily
living in their own homes; the other dataset was compiled from 5 participants performing activities
completely in-the-wild and without any supervision; ground truth was established from video evidence
captured with a wearable camera.

• A comprehensive quantitative evaluation with various modeling approaches and fusion methods that
demonstrates how fusion of inertial and acoustic smartwatch data is beneficial for recognizing ADLs,
especially for activities that have minimal motion pattern but unique sound patterns and vice versa. A
baseline framework is presented and shown to recognize these activities with an average macro F1-score of
89.7% in a Leave-One-Participant-Out (LOPO) performance evaluation, and up to 94.3% with a personalized
model fine-tuned for each participant on the semi-naturalistic dataset. Evaluation in-the-wild achieved
30.0% macro F1-score and 55.8% weighted F1-score, demonstrating the difficulty of recognizing ADLs in

1https://doi.org/10.18738/T8/NNDFQD
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unconstrained environments. We characterize the various challenges that arise when dealing with real-
world settings and encourage researchers to use our dataset to develop and explore methods to mitigate
these difficulties and improve ADL recognition in-the-wild.

2 RELATED WORK
A variety of sensing modalities have been explored in human activity recognition. For example, vision-based
recognitionwas employed in early behavior monitoring systems in the home [7] andmore recently with egocentric
imaging and depth cameras [30, 35, 45]. Electromagnetic sensing is another modality that has been explored with
promising results [5, 62]. In a recent study by Patterson et al., objects with RFID tags and a glove with an RFID
reader were used to track object usage to determine fine-grained activities being performed [43]. Obtrusiveness
and excessive instrumentation are major drawbacks in such methods, because the required sensors are not
available in common consumer devices like smartwatches. In this work, we focus on leveraging unmodified
commodity smartwatches using inertial and acoustic data. Therefore, we highlight relevant prior research that
explores these modalities and explain what sets apart our work from prior research.

2.1 Inertial Sensing
Inertial sensors have been used in human activity research for quite some time. Before the advent of ubiquitous
sensing platforms like smartphones and smartwatches, custom designed systems were used. RecoFit [37] used
a platform which used a inertial sensor on the forearm to detect repetitive activities for exercise tracking. The
work by Moschetti et al. [38, 39] used rings and bracelets with inertial sensors to detect activities ranging from
mobility states to more complex activities like eating, teeth brushing, etc.

Activity recognition using inertial data from a smartwatch has been explored recently by many researchers. In
the work conducted by Weiss et al., activity recognition performance between a smartwatch and a smartphone
was compared using motion data in a study with 17 participants and 18 activities [59]. The data collected
using smartwatches resulted in higher activity recognition performance compared to the data collected using
smartphones, concluding that smartwatches are more proficient in collecting data for activity recognition. Further
research in activity recognition by Filippoupolitis et al. enhanced motion data from smartwatches by fusing
location information from BLE beacons in indoor environments [18]. The addition of location information lent
context to the activities, but required instrumentation of the environment. In a study by Reiss et al., inertial data
was collected from 9 participants performing 12 acivities[47]. This dataset was released as the PAMAP2 dataset.
While activity recognition was achieved with greater accuracy, the activities were more geared towards movement
and physical activities rather than ADLs. In a multimodal model created by Ma et al. [33], an attention-based
layer was implemented to learn the weight of each data stream for different activities. Public datasets that do not
explicitly deal with ADLs were used, such as Skoda and PAMAP2. Bhattacharya et al.[10] focused on investigating
the benefits of integrating RBM based models on a bleeding edge smartwatch platform, highlighting the limits of
model complexity possible while maintaining acceptable energy and execution time. Finally, in research by Laput
et al., a smartwatch with a modified software kernel was used to sense 25 fine grained hand activities [29]. The
motion data was sampled at 4KHz and inference was performed offline using a CNN trained on the spectrograms
of the motion data. Our method is similar in that we wanted to push the limits of commercial smartwatches but
without any major modification in its operating system. Instead, we augmented motion data with audio data
captured in close proximity to the activity being performed.

2.2 Acoustic Sensing
Audio has often been used as a high-fidelity source of data for context understanding [14]. Despite drawbacks
like the incoherence caused by background noise and other acoustic artifacts, audio is a rich source of data for
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HAR. Notably, it offers several advantages over inertial sensors. Audio data is often directly comprehensible by
humans, greatly simplifying the labeling process; annotations can be obtained by simply listening to the audio.
Indeed prior research has often used audio as an input to recognize activities and corresponding contexts. In
work by Stork et al., Non-Markovian Ensemble Voting was used to recognize 22 activities from audio[52]. In
further work by Ubicoustics, training on public available datasets and testing on real world sounds performed
well across multiple sound capture devices [28]. ADLs were not emphasized in the analyses but some of the
activity recognition classes included common household tasks. Encouraging results were demonstrated by Liang
et al. using transfer learning for ADL recognition in homes with large scale audio embeddings from YouTube
videos [32]. More recently, Adaimi et al. investigated how background sounds captured in voice interactions with
conversational assistants can be a rich source of context and be used for ADL recognition [4].

2.3 Multimodal Sensing
The idea of fusing motion and audio data in human activity recognition is not new, as seen, for example, in
earlier efforts by Minnen et al [36]. In this work, multiple accelerometers and microphones were placed at specific
locations on the body and were focused on detecting repetitive periodic activities. More recently, research by
GestEar[9] demonstrated motion and audio data fusion from smartwatches to classify gestures. This research was
limited by a narrow set of activities, which included only plain gestures and simplified the recognition pipeline.
Kim et al. also investigated combining accelerometer and acoustic data collected from a single off-the-shelf
smartwatch for recognizing a set of 5 activities (sleeping, eating, vacuuming, TV-watching, and showering) [25].
Their approach required a three-stage collaborative classifier that integrated an ensemble of classifiers and a
ground-truth mapping table for reliable prediction. While shown effective, their approach was evaluated on a
limited data of 3 participants performing only 5 activities. Other work by TapSkin [63] also used motion and
sound data to recognize taps on 11 different locations around the wrist. The work by Ward et al [58] also explored
using motion and audio from multiple sources to recognize activities done in the workshop. Apart from fusing
inertial and acoustic data, multiple prior work has focused on fusing a variety of other sensor data streams in
order to increase HAR performance. Fusion of inertial data from multiple IMUs has been studied in [40, 61]. Radu
et al explored multiple methods of sensor data fusion accross multiple datasets containing both inertial data as
well as physiological data [46].

In other closely related work, the ExtraSensory dataset collected by Vaizman et al. [55] and subsequent work on
multimodal, multi-label classification [56] used data streams from both smartwatches and smartphones, drawing
from a large data set collected from 60 participants. However, this work did not focus on ADLs and audio was not
collected from a smartwatch. Additionally, because location was among the sensor data used in the project, many
of the activities were location-based and listed as "at work" or "at home". Moreover, relying on self-reporting
for data annotation resulted in missing labels which can hinder model training. On the other hand, our label
acquisition process for both semi-naturalistic and in-the-wild datasets provides more reliable annotations. In
very recent work by Siddiqui and Chan [51], an array of 10 microphones and an inertial motion unit (IMU) in a
wrist-mounted setup were evaluated to recognise hand gestures, achieving good performance without using
deep models for classification.

Compared to prior work, our work is different in several important ways. First, our approach is not reliant on
placing obtrusive sensors in the environment or on the human body. Second, we explore existing capabilities of
an unmodified commodity smartwatch to capture inertial and acoustic data streams. Finally, our work includes
a large set of activity classes (23 activities) captured in semi-naturalistic environments in people’s own homes
rather than a controlled lab setting as well as in-the-wild. Our label acquisition strategy provides a more accurate
data annotation and synchronization of sensors with remote supervision and action cues in the semi-naturalistic
study and first-person snapshots using a phone around the neck in the in-the-wild study.
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Writing Drawing Cutting paper Typing on keyboard Typing on phone Browsing on phone Clapping Shuffling cards

Scratching Wiping table Brushing hair Washing hands Drinking Eating snacks Brushing teeth Chopping

Grating Frying Sweeping Vacuuming Washing dishes Filling water Using microwave

A B C D E F G H

I J K L M N O P

Q R S T U V W

Fig. 1. 23 activity classes of daily living captured using a commodity smartwatch. Each activity is labeled with a letter (top
right) for easier reference.

3 DATA COLLECTION
This section presents the dataset creation that was done via two IRB-approved user studies: (1) a semi-naturalistic
supervised study with 15 participants performing a set of daily activities in their own homes and (2) an in-the-wild
free-living study with 5 participants. We first present the hardware setup used for data collection and then
describe the study protocol followed for each study. The datasets are publicly available for researchers to use for
further exploration and developing future ADL recognition systems.

3.1 Hardware Setup
Fossil Gen 4, an off-the-shelf smartwatch running the Android Wear OS 2.12, was used to collect data from
participants. It was fitted with the Snapdragon 3100 processor, 4GB of storage, and 786MB of RAM. Accelerometer,
gyroscope, and microphone sensors already present on the watch were used. A custom Android application was
designed to collect acoustic and inertial data synchronously and store it locally on the watch. The maximum
inertial sensor sampling rate supported by the smartwatch was 50Hz, while acoustic data was sampled at 22.05KHz.
Given that the aim is to capture, in addition to acoustic data, hand-based motion patterns of daily activities, the
watch was worn on the wrist of the dominant arm.

3.2 Activities Set
To reiterate, our main focus was to recognize complex activities of daily living using inertial and acoustic data
collected using a smartwatch. The following criteria were used to select the set of activities:(1) what activities do
people do with their hands?, (2) do these activities generate characteristic inertial signals, acoustic signals, or
both? (i.e., Are the activities distinct and separable?), and (3) does a commodity smartwatch provide sufficient
fidelity to capture such activities? To that end, we selected 23 classes that cover typical activities one performs
daily (Figure 1). The activities chosen include daily activities as well as recreational activities to better capture
the general population.

To validate our experimental design protocol and instrumentation, we conducted a formative controlled pilot
study with two participants. Our laboratory was equipped with the tools and appliances necessary to carry
out the activities, such as microwave, sink, and stove. The pilot study helped us ensure the internal validity
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Fig. 2. Screenshots from Zoom video call sessions from different participants showing activities performed in their own
homes. This demonstrates the natural environment in which the activities were performed.

of our study by addressing issues in our experimental procedure. For instance, we were able to verify that our
smartwatch could capture the required sensor data for the duration of the study in a consistent manner as well as
improve the user interface of the data collection application. The pilot was used to establish the order of activities
participants had to follow for the supervised study, and to evaluate our data annotation and synchronization
scheme. Finally, the pilot also provided us with the preliminary data needed to test our hypothesis about the
benefit of combining acoustic and inertial modalities for ADL recognition.

3.3 Semi-Naturalistic Data Collection
We ran a field study with participants in their homes to capture realistic data that was used to build and evaluate
our recognition models. A diverse group of 15 individuals (9 females and 6 males) with ages varying from 23 to
64 (mean 43.6) and from varying professions and socioeconomic status were recruited through an agency. The
studies were conducted remotely via video call due to social distancing regulations. Participants were made sure
to have all necessary equipment for the study, mainly tools needed to perform the activities listed in Figure 1.
They were only provided with potatoes for the kitchen related activities, such as chopping, grating, and frying.
Figure 2 depicts screenshots from the video calls of participants performing activities in their homes.
In the study, participants performed various activities around the house in succession. Two sessions of data

collection were conducted, and in each session all 23 activities were performed once. Data collection was
continuous from the beginning of a session to the end of a session, capturing all activities and any in-between
movements. Once the first session was done, participants were asked to remove the smartwatch and take a 15
minute break before replacing the watch and beginning the second session. This procedure was designed to
introduce variability in-between sessions and test wearable placement sensitivity. The watch was always worn
on the arm that performed the activities, each of which lasted for a minimum of 30 seconds each. In order to
facilitate the annotation process, participants were asked to knock on a surface to indicate the start and end of an
activity. The knocking introduced distinct inertial and acoustic markers that helped in segmenting the activities
and syncing both sensor data. All the activities were done over video call to monitor and guide participants. Data
annotation was manually carried out by the researchers at the end of the study. It was observed that there was a
lag in the knocks that participants performed at the beginning and end of activities and the actual starting and
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Fig. 3. In-the-wild data annotation setup using a mobile
phone sitting on a strap on the chest to capture egocen-
tric snapshots while users wore the smartwatch on the
wrist.

Typing on Keyboard
29%

Eating Snacks
13%

Browing on Phone
12%

Writing
10%

Washing Dishes
8%

Typing on Phone
6%

Drinking
5%

Frying
4%

Washing Hands
3%

Wiping Table
3%

Sweeping
3%

Brushing Teeth
2%

Chopping
1%

Brushing Hair
1%

Filling Water
0% Clapping

0%

Fig. 4. Activity distribution captured in the in-the-wild
study.

Fig. 5. A screenshot of the web interface used for annotating the video clips collected during the wild study.

ending of the activities. So during the annotation process the video that was captured was also used for precise
annotation of activity start and stop events. For activities that required doing repetitive but spaced actions, like
drinking or eating snacks, the whole duration of the activity was annotated and individual actions were not
singled out.

3.4 In-the-Wild Data Collection
While the semi-naturalistic data is valuable for obtaining reliable training data with accurate ground truth labeling,
it is still limiting in fairly representing real-world natural behavior. Thus, in order to better evaluate natural
behavior, we further conducted an in-the-wild study where participants did not follow a script and performed
activities in their natural environment and on their own free time.
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3.4.1 Data Collection. Equipped with the same smartwatch, we collected data from 5 new participants (4 males
and 1 female) with ages varying from 24 to 29 (mean 27) recruited from the university student pool. To ensure
natural behavior, the participants did not follow any script but rather were only told to perform their natural
daily activities while wearing the smartwatch. Attaining in-the-wild data typically trades off with other aspects
of the data collection process, resulting in fewer data samples and/or a smaller range of target activities. More
specifically, it is hard to ensure that some target activities are performed and captured during the study especially
when the data collection device has a limited battery life. Moreover, acquiring labels of human behavior when
unsupervised in their natural environments is challenging. While some rely on self-reporting [55], this method
is not always accurate as some participants can fail to report leading to missing labels. Thus, to generate more
reliable labels, participants were provided with a smartphone that takes egocentric video clips that were later
used to label the activity. The smartphone ran a mobile application that captured a 25-second video every minute
and uploaded it to a remote server. The smartphone was worn on the chest with a strap as shown in Figure
3. It is important to note that participants did not follow a specific protocol about which activities to perform,
how, or when to perform them. However, to ensure that at least a subset of the target activities are captured,
participants were asked to wear the data collection setup when they would be normally performing some of the
activities under consideration. Before starting data collection, a video call was scheduled and the participants were
instructed on how to start the smartwatch and smartphone application. After verifying that both the applications
were running properly and the camera was oriented properly such that the hands were in focus, the participants
were asked to keep wearing this setup until the watch battery ran out and perform their daily tasks naturally
without any constraints. After the call, no contact was maintained with the participants until the end of the study.
This process was conducted twice for every participant on separate days resulting in 2 sessions of data collected
per subject for a total of 10 sessions of in-the-wild data.

3.4.2 Data Annotation. At the end of the study, data annotation was performed by manually checking the
video clips and assigning an appropriate activity label. Synchronizing the timestamp of the data files and the
video clips ensured proper segmentation of the inertial-acoustic data. Activiome, the data collection system used
for collecting ground truth in-the-wild, is comprised of three components: a mobile phone application, a web
application, and a web back-end infrastructure [54]. The mobile application was configured to repeatedly capture
25-second egocentric video clips every 1 minute, which are then uploaded in real-time to the web back-end
infrastructure organized around a web server and database. It is important to note that the capture frequency
and (video) capture duration affect the battery life and annotation task. Increasing the video capture frequency
increases battery consumption, while decreasing the capture duration increases the annotation effort [54]. As
such, the application was configured to provide a reasonable compromise between these challenges. The web
application was used to review and annotate the video clips at the end of the study. The web interface offers a
view of all first-person videos taken on a given day, and provides a tagging interface to annotate the videos with
their corresponding activity label (Figure 5). Every video clip was given a label from the list of target activity
classes (Figure 1). Some activities don’t last the whole 25-second clip. For example, people type on the keyboard
for around 10-15 seconds at a stretch. For some other activities, the video either starts or stops in the middle
of the activity which results in the early half or later half of the video not capturing the activity. Thus, a video
clip was labelled as an activity if it captured that specific activity for the majority of its duration. This same rule
was followed when a clip captured two activities. Annotation was conducted by one of the main authors of this
work, and the first-person perspective video captures rich contextual detail of the individual’s everyday activities
eliminating any ambiguity in the labeling process. While the web application interface certainly simplifies the
annotation process, it still required researchers to manually check every video clip for reliable labeling.
Since there was no set protocol followed, the set of activities captured at the end of the study as well as the

total duration recorded varied significantly across participants. In total, we were able to obtain ∼ 33 hours of data.
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We analyze the activity distribution in Figure 4. We observe a wide distribution across a total of 16 activities.
Since participants were left to perform any activities freely, it can be seen that the dataset is imbalanced with
people spending more time typing on keyboard or browsing on phone as well as washing dishes, writing, and
eating snacks, which is consistent with naturalistic daily living. Other less frequent shorter activities were also
captured, such as drinking, chopping, brushing teeth etc.

4 DATA PROCESSING
Three-axis accelerometer and gyroscope data were sampled at 50Hz, while acoustic data was sampled using the
microphone on the smartwatch at a sampling frequency of 22.05KHz. Human speech and other environmental
sounds typically contain frequencies up to 8KHz [6]. Thus, this sampling rate permitted frequencies of up to
11KHz to be sampled according to the Shannon-Nyquist sampling theorem [44]. Both audio and motion data are
segmented using a frame size of 10 seconds with 50% overlap. The frame size was chosen empirically, and its
effect on activity recognition performance on the semi-naturalistic dataset is further discussed in Section 7.2.
Based on this segmentation and the varying sampling rate of each modality, the input size was 220,500 samples
for acoustic data and was 500 samples for inertial data across all six axes.

5 ACTIVITIES OF DAILY LIVING RECOGNITION
Given the semi-naturalistic dataset collected from studies described in Section 3, we examine various machine
learning methods to build an activity recognition model able to recognize 23 activities of daily living. Our goal is
to promote ADL recognition in natural settings with the use of inertial and acoustic sensors from commodity
smartwatches, showing the advantage of fusing the two modalities to improve recognition of complex everyday
activities. To that end, we explore several classical machine learning models as well as multimodal deep learning
frameworks with different sensor fusion methods to establish a set of baselines.

5.1 Classical Machine Learning Models
We employ simple standard machine leaning models built around commonly used measures. After data processing
and frame extraction as described in Section 4, we computed statistical inertial features and Mel Frequency
Cepstral Coefficients (MFCC) for each frame extracted from inertial and acoustic data respectively. Eight inertial
statistical features—mean, median, variance, maximum, minimum, root mean square, skewness, and kurtosis—
were extracted from each axis separately for both 3-axis-acceleration and 3-axis-gyroscope data, totalling 48
frame-level features. These features comprise standard commonly used representation for the underlying inertial
sensor data. Within the acoustic data, the segmented frames were further broken up into 1-second clips from
which 30 MFCCs were extracted and averaged across all 10 clips per frame.

The extracted features serve as input for classification. We explored three machine-learning models and two
fusion techniques to establish baseline performance: (1) a Random Forest(RF) classifier with 50 trees, (2) a Naive
Bayes classifier(NB), and (3) an AdaBoost classifier that uses a 30-tree Random Forest as the base estimator. For
the data fusion, two commonly-used techniques are early-fusion and late-fusion. In the early-fusion technique,
features from both modalities were concatenated to form a joint representation before applying a single model
that learned the correlation and interactions between the low-level features of each modality. As for the late-fusion
technique, models were trained for each of the acoustic and inertial data separately, then the per-modality class
probabilities were averaged and used for final prediction.

5.2 Multimodal Deep Learning Framework
While classical models have been shown effective in HAR, those methods typically heavily rely on heuristic
handcrafted feature extraction, which is usually limited by human domain knowledge. Deep neural network
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Fig. 6. An overview of the multimodal deep learning activity recognition framework. Our framework includes two single-
modality feature extractors, the inertial and acoustic models. Score-level and representation-level late fusion methods were
explored for combining audio and inertial information. Representation-level fusion corresponds to either (1) concatenating
the inertial and acoustic embeddings or (2) applying a self-attention and then applying joint-training of both models with a
single classifier head. Score-level fusion corresponds to training each model with a separate classifier head and averaging the
predicted probabilities.

models have been explored and have demonstrated state-of-the-art results for human activity recognition. To
that end, we explored several multimodal deep learning (DL) frameworks inspired to push activity recognition
performance even further. The goal is to leverage a deep HAR model that directly consumes raw sensory data
captured by wearables and outputs precise activity classification decisions. In this section, we describe the
state-of-the-art models used for inertial and acoustic activity recognition separately and explore several fusion
approaches demonstrating the gain in performance when leveraging both modalities (Figure 6).

5.2.1 Inertial Model. Taking as input the raw inertial sensory data, we explored 2 models to establish a baseline
performance on our dataset: (1) DeepConvLSTM [41] and (2) Attend&Discriminate [1].

DeepConvLSTM: DeepConvLSTM is a DNN framework for wearable activity recognition based on convolu-
tional and LSTM recurrent units. After some experimentation, we modified the architecture to extract separate
features for accelerometer and gyroscope data by implementing separate DeepConvLSTM feature extractors
as shown in Figure 7a. This essentially allows the model to better capture intra-modal information, which we
observed to improve performance by around 2% compared to the original DeepConvLSTM. Thus, every modality
input is processed by a convolutional network operating along the temporal dimension followed by recurrent
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(b) Acoustic Models.

Fig. 7. Architecture of Inertial and Acoustic Models.

layers that model the temporal dynamics of the activation of the feature maps. The embeddings of each inertial
modality are then concatenated at the last layer before passing through a softmax classifier.
Attend&Discriminate: The second model we investigated is a HAR framework that incorporates cross-

channel self-attention and temporal attention [1]. This model, which we will refer to as Attend&Discriminate,
was shown to achieve state-of-the-art performance on public HAR datasets, outperforming DeepConvLSTM.
Attend&Discriminate applies early fusion by concatenating the sensor channels of the accelerometer and gyroscope
data and processes the data through a similar convolutional backbone as DeepConvLSTM. Then, a cross-channel
self-attention module takes as input the initial convolutional feature-maps at each time-step and learns the
interactions between any two sensor channels within the feature-maps. The resulting feature maps are now
contextualized with the underlying cross-channel interactions. The feature maps are then passed through a
recurrent neural network to model the temporal dynamics. Given that not all time-steps equally contribute to
recognizing activities, a temporal attention module is added to learn the relative importance of the time-steps.
Figure 7a illustrates the model architecture.

5.2.2 Acoustic Model. For audio classification, we used log-mel spectrograms as input to our deep learning
model because they have been successfully employed in prior work [22]. We extracted the spectrograms of our
audio clips by computing the short-time Fourier transform (STFT) for each segment, using a Hanning window of
1024 samples and a hop size of 320 samples. The linear spectrogram was then converted into a 64-bin log-scaled
Mel spectrogram. Example log mel spectrograms of each activity class are depicted in Figure 8.

Convolutional Neural Networks (CNNs), inspired from VGG-like network, have been proven effective in audio
classification when applied to the log-mel spectrograms of the acoustic data [27]. Experimenting with several
CNN architectures for recognizing ADLs, we built upon the CNN architecture depicted in Figure 7b, referred to
as CNN14. The architecture comprises of 6 convolutional blocks, each consisting of 2 convolutional layers (3x3
kernel) and intermediary average pooling layers. Global pooling is applied after the last convolutional layer to
summarize the feature maps into vector embeddings which are finally passed through a fully connected layer.

5.2.3 Fusion Methods. Traditional fusion strategies include representation-level fusion [9] and score-level fusion
[19]. These strategies can be carried out at different stages, such as early fusion and late fusion.
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Fig. 8. Example Log Mel spectrograms of 10-second audio clips for 23 activity classes. Photos of these activities and the
activity names corresponding to each letter are shown in Figure 1.

Early Fusion: In early fusion, data from different modalities are concatenated (stacked) at the input stage. In
our analysis, early fusion of accelerometer and gyroscope data is explored in Attend&Discriminate model. Since
inertial and acoustic data are processed and sampled differently, concatenation of the two modalities at the input
stage is not possible. Moreover, different feature extractors are suitable for each modality. Therefore, late-fusion
is instead applied for inertial-acoustic fusion.
Late Fusion: Late fusion processes each modality with a separate network and then combines all their

high-level representation via an aggregation operation. As mentioned, the aggregation method can be at the
representation-level or the score-level. The representation-level fusion can be (1) a simple concatenation of feature
maps or (2) a cross-modality self-attention operation that captures the inter-modality relationship between the
acoustic and inertial representations. This is then followed by a single classification head and joint training of
both inertial and acoustic networks is applied. The score-level fusion, on the other hand, applies an ensemble
method that combines the predictions of each modality-specific network. As such, each network is followed by
classification head and is trained separately. The predicted class probabilities are then averaged to obtain a final
probability value. The various methods are illustrated in Figure 6.

5.3 Training Implementation
5.3.1 Loss Function. Standard training of deep learning HAR models usually relies on the supervision signal
provided by the cross-entropy loss. This directs the model towards yielding inter-class separable activity features.
Abedin et al. [1] proposed a center-loss criterion that minimizes intra-class variation while maximizing inter-class
differences, thus achieving more discriminative feature representations. Given the semi-naturalistic aspect of our
dataset that introduces more variability across participants, we investigated this additional loss objective on our
dataset and its effect on performance. Thus, the final loss function is formulated as:

L = L𝑒𝑛𝑡 + 𝛾
1
2

∑
𝑖=1

𝑧𝑖 − 𝑐𝑦𝑖

2
2 (1)

where L𝑒𝑛𝑡 is the entropy loss, 𝑧𝑖 ∈ R𝑧 denotes the deep representation for sensory segment 𝑥𝑖 , 𝑐𝑦𝑖 ∈ R𝑧 the 𝑦𝑖 th
activity class center, and 𝛾 the weight coefficient which we set empirically to 0.003. The models were trained for
100 epochs by minimizing the loss function using the Adam optimizer. The learning rate was set to 0.001 and
decayed every 10 epochs by a factor of 0.9.
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Table 1. Table showing average F1-score for each of motion and audio single-modality classification and each combination
of fusion strategies and methods using three different evaluations (LOPO, LOSO, P-LOPO) on the semi-naturalistic dataset.
LOPO denotes training on all data from other participants and testing on data from the target participant, LOSO denotes
training on one session and testing on the other session per participant, and P-LOPO refers to personalized-LOPO with
training on all data from other participants and one session from the target participant and then testing on the remaining
session from the target participant.

Model Fusion Method LOPO LOSO P-LOPO

Motion

Random Forest – 68.4 67.5 74.2
Naive Bayes – 60.4 42.3 62.3
AdaBoost – 67.8 65.6 73.1
DeepConvLSTM – 72.0 44.5 77.1
Attend&Discriminate – 84.0 67.9 90.8

Audio

Random Forest – 41.7 53.5 51.5
Naive Bayes – 41.4 36.8 42.5
AdaBoost – 40.0 49.4 47.7
CNN14 – 74.5 41.2 82.4

Early Fusion
Random Forest Concatenation 77.3 74.8 83.9
Naive Bayes Concatenation 72.3 47.8 75.2
AdaBoost Concatenation 75.3 74.6 81.9

Late Fusion

Random Forest Softmax Averaging 64.4 75.7 81.2
Naive Bayes Softmax Averaging 71.6 45.1 66.2
AdaBoost Softmax Averaging 63.8 72.9 80.9

DeepConvLSTM-CNN14
Softmax Averaging 83.6 55.6 88.5
Concatenation 78.5 49.2 83.7
Self-Attention 84.2 68.1 88.7

Attend&Discriminate-CNN14
Softmax Averaging 88.8 72.6 92.7
Concatenation 89.7 65.9 94.3
Self-Attention 89.1 63.1 94.2

5.3.2 Data Augmentation. A difficulty in human activity recognition with wearable sensors is the acquisition of
large amounts of annotated data. This limitation hinders the generalizability and effectiveness of HAR benchmarks.
Recently, a data-agnostic augmentation strategy, referred to as mixup, was shown effective for time-series HAR
data [1]. We incorporate the same on our dataset by implementing the same augmentation strategy as explained
in [1]. Essentially, at every batch, mixup applies linear interpolation of randomly sampled pairs of data points
which are then used for training.

6 EVALUATION AND RESULTS
Our goal is to evaluate and analyze our inertial-acoustic data collected from a smartwatch for the ADL recognition
task. Using the data collected, described in Section 3, we aimed to explore the following questions:

• How informative is each modality for ADL recognition in a semi-naturalistic setting?
• How beneficial is inertial-acoustic fusion for ADL recognition?
• How does a model pre-trained on semi-naturalistic data perform on unseen in-the-wild data?
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Fig. 9. Results of LOPO evaluation using our multimodal recognition framework: (left) Bar plot of F1-score per user and (right)
normalized confusion matrix showing how well each activity is classified. We can see an improvement in some activities (e.g.
browsing on mobile phone (F)) when combining acoustic and inertial data compared to single-modality classification (Figure
10).

As previously mentioned , for all our evaluations, a frame size of 10 seconds with 50% overlap was used. We
compute the macro F1-score averaged over the classes as the evaluation metric (Equation 2). The macro F1-score
is given by:

𝐹1-𝑠𝑐𝑜𝑟𝑒 =
2
𝐶

𝐶∑
𝑖=1

𝑝𝑟𝑒𝑐𝑖 × 𝑟𝑒𝑐𝑖

𝑝𝑟𝑒𝑐𝑖 + 𝑟𝑒𝑐𝑖
(2)

where 𝐶 denotes the number of classes while 𝑝𝑟𝑒𝑐𝑖 and 𝑟𝑒𝑐𝑖 correspond to the precision and recall for every
class 𝑖 . We compute the metric for the acoustic and inertial model individually and demonstrate the performance
improvement with multimodal fusion. Source code of the analysis is made available to the community at https://
github.com/Human-Signals-Lab/Sound-and-Wrist-Motion-for-Activities-of-Daily-Living-with-Smartwatches.

6.1 Semi-Naturalistic Evaluation
Using the data collected during the semi-naturalistic study, we conducted two evaluations to better analyze our
data for ADL recognition: (1) a user-independent evaluation using the leave-one-participant-out (LOPO) strategy
and (2) a user-dependent personalized evaluation.

6.1.1 User-Independent Evaluation. Conducting our study in the participants’ homes lent our data a significant
amount of variability in the living environment and the way activities were performed. To evaluate how well
the model generalized across the participants, we employed a Leave-One-Participant-Out (LOPO) evaluation.
To quantify the benefits of combining inertial and acoustic data, we examined the acoustic and inertial model
performance separately (Table 1). For acoustic-based classification, the deep learning CNN14 framework achieved
a significant improvement in performance compared to the other models (RF, NB, and AdaBoost) reaching an
F1-score of 74.5%. As for motion-based classification, Attend&Discriminate achieved the highest performance
reaching an F1-score of 84% while DeepConvLSTM only achieved 72%. We observe that deep learning methods
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(a) Motion. (b) Audio.

Fig. 10. Normalized confusion matrices of LOPO evaluation of single-modality classification using acoustic (CNN14) and
inertial (Attend&Discriminate) models. These matrices show how the classification performance of different activities vary
between both modalities. For example, vacuuming (T) or using microwave (W) are captured better using acoustic data as
opposed to inertial data.

outperform classical models with standard hand-crafted features. While further investigation can potentially
further improve performance, in this work our aim is to provide a baseline characterization of our dataset for the
task at hand.

Combining acoustic and inertial sensing, we observed an overall increase in performance across all models for
both early and late fusion (Table 1). Applying concatenation-based late fusion using the Attend&Discriminate
and CNN14 architectures for each of the inertial and acoustic modalities respectively achieved the highest
performance of 89.7% F1-score, an improvement of 5.7% over the top single-modality classifier. The other fusion
methods (softmax averaging and self-attention) using the same architectures achieved comparable performance.
When using the DeepConvLSTM architecture instead for the inertial stream, there was still an improvement
when compared to the single-modal classifier with self-attention fusion method achieving 84.2%. The confusion
matrix and the per-participant performance for the best performing model (Attend&Discriminate-CNN14 with
Concatenation) is shown in Figure 9. The confusion matrices for the single-modal models, Attend&Discriminate
for motion and CNN14 for audio, are also shown in Figure 10.

6.1.2 User-Dependent Evaluation. Every user’s environment varies significantly, whether from background noise
provided by the ambient hum of HVAC or bustling traffic, or in terms of appliance sounds such as microwaves,
blenders, and device placement. Furthermore, it was observed when visualizing the data that the same activity
across different participants exhibited different patterns, especially when visualizing user-specific inertial data.
Thus, developing personalized models has the potential to further improve performance. To explore this potential,
we tested our model using an individualized Leave-One-Session-Out (LOSO) evaluation. The data associated
with each participant included 2 sessions of 23 activities and for every participant, we trained on one session and
tested on the other (Table 1). While Random Forest and Adaboost showed an increase in performance compared
to LOPO when using audio, motion did not exhibit a significant change. Combining both modalities using the
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Table 2. Table showing average macro (𝑓𝑚) and weighted (𝑓𝑤 ) F1-score for each of motion and audio single-modality
classification and each combination of fusion strategies on the in-the-wild dataset.

Model Fusion Method Inference (𝑓𝑚/𝑓𝑤 ) Fine-tuning (𝑓𝑚/𝑓𝑤 )

Motion DeepConvLSTM – 14.7 / 21.3 20.8 / 51.2
AttendDiscriminate – 17.7 / 24.4 23.1 / 51.8

Audio CNN14 – 10.9 / 21.0 20.0 / 45.8

Late Fusion

DeepConvLSTM-CNN14
Softmax Averaging 14.6 / 23.9 23.5 / 54.9
Concatenation 16.5 / 23.7 22.5 / 50.3
Self-Attention 16.8 / 23.8 23.8 / 50.5

Attend&Discriminate-CNN14
Softmax Averaging 16.1 / 25.5 24.2 / 54.2
Concatenation 20.1 / 26.8 30.0 / 55.8
Self-Attention 19.2 / 27.4 27.6 / 55.4

aforementioned classifiers resulted in comparable performance. Moving towards deep learning frameworks,
performance for the acoustic CNN14 model as well as both DeepConvLSTM and Attend&Discriminate inertial
models exhibited a significant drop. Applying late fusion in bothDeepConvLSTM-CNN14 andAttend&Discriminate-
CNN14, we observed a ∼ 20 − 30% drop in performance for concatenation-based and self-attention based fusion
methods, while a ∼ 16% drop in performance with Attend&Discriminate-CNN14 with softmax averaging.
An important shortcoming of LOSO evaluation is the limited amount of data available for model training

which is especially challenging for deep learning frameworks, which can lead to overfitting and in turn cause
a drop in performance as observed. Therefore, in another evaluation strategy, we trained a model for a target
participant with data from all other users, similar to LOPO, but with an additional session from the target
participant, effectively allowing us to increase our training data while still personalizing our model. We refer to
this evaluation as personalized-LOPO (P-LOPO). As expected, this yielded better results for both single-modal
and multimodal deep learning frameworks (Table 1). The acoustic model achieved an F1-score of 82.4%, an
increase of 7.9% compared to LOPO. The inertial Attend&Discriminate model achieved an F1-score of 90.8%, an
increase of 6.8% compared to LOPO. Fusion also resulted in a further increase in performance reaching 94.3%
with concatenation-based Attend&Discriminate-CNN14, an increase of 4.6% over LOPO evaluation. Similarly,
Random Forest and AdaBoost resulted in a ∼ 6% and a ∼ 16% increase in performance with early and late fusion
respectively compared to LOPO. It is evident from all three evaluation strategies that inertial-acoustic fusion is
beneficial for improving ADL recognition compared to single-modal classification. To motivate this evaluation
strategy in an uncontrolled environment, the smartphone user would have to annotate some of their own data or
do a specific activity, by request of the system, to make the detector more robust to personal variations. In similar
settings, voice assistants request repeating the trigger phrase a few times during setup to personalise the voice
recognition model to a specific user.

6.2 In-the-Wild Evaluation
Another critical topic we explore in this work is the challenge of dealing with unseen in-the-wild data collected in
a completely free-living setting. It is important to note, participants from both studies are mutually exclusive.
Given the highly imbalanced nature of our in-the-wild dataset as observed in Figure 4, we report both macro
F1-score (𝑓𝑚) and weighted F1-score (𝑓𝑤). Macro F1-score is highly sensitive to rare labels, which can unfairly
dominate the evaluation metric. On the other hand, weighted F1-score deals with this imbalance by considering
the number of samples per class in the data.
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(a) Inference. (b) Fine-tune.

Fig. 11. Confusion matrices of in-the-wild (a) inference and (b) fine-tune evaluations using inertial-acoustic
Attend&Discriminate-CNN14 model with concatenation-based fusion. Note that due to the imbalance nature of the dataset,
the values reported correspond to the number of samples (i.e. un-normalized matrix) to better observe the majority and rare
classes, while the color mapping corresponds to the normalized matrix to better visualize how accurately the model predicts
a specific class. Missing classes in the dataset are left blank or eliminated to maintain a square matrix.
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Fig. 12. Bar plots of macro (left) and weighted (right) F1-scores per user in the in-the-wild study for both Inference and
Fine-tune evaluations.

6.2.1 Inference. To evaluate the ecological validity of our acoustic-inertial ADL recognition frameworks, we
conducted inference on the in-the-wild data using the models trained on the semi-naturalistic data. This essentially
enabled us to better understand the applicability of such models when deployed and tested in real-world settings.
As expected, we observed that ADL recognition on unseen in-the-wild data is indeed a challenging problem,
resulting in a drastic drop in performance compared to semi-naturalistic settings (Table 2). Examining the single-
modality performances, we observed the Attend&Discriminate model achieving the highest performance when
using only the motion data, an average of 17.7% 𝑓𝑚 and 24.4% 𝑓𝑤 across all participants. Using only audio data,
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CNN14 achieved an 𝑓𝑚 of 10.9% and an 𝑓𝑤 of 21.0%. Applying late fusion for inertial-acoustic modeling, the
Attend&Discriminate-CNN14 with concatenation achieved the highest performance of 20.1% 𝑓𝑚 and 26.8% 𝑓𝑤 ,
representing a ∼ 2% gain compared to single-modal inertial classification. Looking at the confusion matrix (Figure
11a), we can observe how well the model can accurately predict a majority class as opposed to a rare class and
where the confusion occurs. For example, some rare classes such as filling water (V) and brushing hair (K) were
accurately predicted while others such as clapping (G) were mis-predicted. The majority class, typing on keyboard
(D), was predicted correctly around 30% of the time. Further examining the variability in performance across the
different participants, we plot the macro and weighted F1-scores per participant (Figure 12).

6.2.2 Fine-tuning. The inference results point to the fact that in-the-wild data, being completely naturalistic,
exhibits distribution shifts, wherein the training distribution differs from the test distribution [26]. Motivated
by this observation, we performed a fine-tuning analysis, wherein a model pre-trained on the semi-naturalistic
data is fine-tuned on the in-the-wild data. Due to the limited amount of data collected as well as the imbalanced
and incomplete nature of the classes included, we performed a leave-one-session-out evaluation with sampling
and augmentation from the semi-naturalistic data. At every iteration, we fine-tune the pre-trained model with
data from the in-the-wild dataset. Specifically, we train on 9 sessions of the in-the-wild dataset, test on a hold-out
session and then iterate for all sessions, averaging the result. To help reduce the class imbalance observed in the
in-the-wild dataset, and resulting bias towards certain classes, we also added randomly sampled data from the
semi-naturalistic dataset, focusing on missing and rare classes.
With such evaluation, we observed an improvement in performance across all models and fusion methods

(Table 2), with the Attend&Discriminate-CNN14 model with concatenation reaching 30.0% 𝑓𝑚 and 55.8% 𝑓𝑤 . For
single-modality classification, CNN14 achieved a performance of 20.0% 𝑓𝑚 and 51.2% 𝑓𝑤 on the audio data, and
Attend&Discriminate reaching 23.1% 𝑓𝑚 and 51.8% 𝑓𝑤 . Further analyzing the per-participant performance, we
observed significant variability as shown in Figure 12. While fine-tuning improved results, P2 and P5 still exhibited
low macro F1-scores. This variation can be attributed largely to the different context and environments of the
participants in their natural settings, e.g., some had more background audio in the form of news, music and
conversation than others, as well as differences in the activities captured. Weighted F1-scores improved drastically
for some participants, reaching 80.5% for P3 and 71.6% for P1, a gain of ∼ 25-45%. To further understand the
change in the model’s predictive capabilities per-class after fine-tuning, we plot the confusion matrix (Figure 11b)
which shows a definite improvement in predicting the majority class, typing on keyboard (D), compared to simple
inference. This explains the large improvement in the weighted F1-score. The overall performance improvement
compared to inference further validates the distribution difference between real in-the-wild and structured data.

7 DISCUSSION

7.1 NULL Class and False Positives
The evaluation procedures presented in the paper so far were performed with a closed set of activities. Examples
of these activities were captured in the human-subjects study and used to train the classifier. However, real-world
deployments are subjected to unknown or out-of-scope activities, never before encountered by the classifier. These
types of activities are often referred to as members of a NULL class. Evaluating models on out-of-scope activities
is useful because it can help assess their performance with respect to false positives. To compose this NULL class,
we leveraged sensor data from the semi-naturalistic study collected from participants as they transitioned from
one activity to another during the study, which included varying motion patterns, as participants grabbed and
moved objects while chatting with the experimenter. We evaluated our LOPO models on this NULL class by
applying the Attend&Discriminate-CNN14 model with concatenation-based fusion to the out-of-scope data, the
average prediction confidence for all instances was 45.4% (± 19.8%). When using only audio data, the average
confidence prediction was 34.0% (±16.2%). When using only motion data, a higher average prediction confidence
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(a) (b) (c)

Fig. 13. Bar plots showing the average probability confidence (softmax output) distributed across the 23 activities from data
corresponding to three activities. Every bar plot corresponds to data from a specific activity. The out-of-scope bar plot shows
the average confidence is low and distributed across all activities. On the other hand, vacuuming (T), which the model had
100% F1-score in (see Figure 9) depicts a peak average confidence > 0.8 on the target activity. Looking at an activity where
the model was less confident (e.g. typing on phone (E) was confused with browsing on phone (F))

, the average confidence dropped to ∼ 0.5 but was still more skewed compared to out-of-scope data.
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on out-of-scope activities was observed with the Attend&Discriminate model reaching 48.2% (±21.2%). From our
previous LOPO evaluation on our target activities set, the prediction confidence value averaged around 78.2%
(± 19.5%), when fusing both modalities, which exceeds the average prediction confidence for the "unknown"
instances. Thus, this value can be used to define a confidence threshold for classifying and ignoring "unknown"
instances, i.e. an instance is classified as "unknown" if the top predicted class does not exceed a certain confidence
threshold. When using the single-modal models, modeling only audio data with CNN14 resulted in an average
prediction confidence of 57.5% (±23.2%) while motion resulted in 74.1% (±21.2%) average prediction confidence.
Looking at the predicted probability distribution across the 23 activities that the softmax outputs and averaging
across all data instances belonging out-of-scope data, we can see that the model’s average confidence in each
activity is low and spread out across all activities, which indicates the model’s high uncertainty in its prediction
(Figure 13a). On the other hand, visualizing the same for a target activity that the model is highly confident in (e.g.
vacuuming), the model’s average peak confidence is > 0.8 and is centered at the corresponding target activity
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(a) Brushing hair
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(b) Vacuuming

Fig. 16. Example raw acoustic and inertial data from two different activities: (a) brushing hair and (b) vacuuming. Inertial
data is more relevant for brushing hair as it exhibits a unique motion pattern and contains little acoustic data. Conversely,
vacuuming contains more acoustic than inertial information.

(Figure 13b). When dealing with a target activity that the model is less confident in (e.g. typing on phone was
confused with browsing on phone), the average peak confidence drops to ∼ 0.5 which still shows a lower model
uncertainty compared to out-of-scope data (Figure 13c).

To identify a reasonable confidence threshold, we perform NULL and Activity detection in a LOPO evaluation
while varying the confidence threshold. NULL detection depicts the model’s ability to reject "unknown" frames
from the out-of-scope data while activity detection shows its ability to correctly detect activity frames. Varying
the confidence threshold, we observe a trade-off with NULL detection accuracy increasing as the threshold
increases while that of activity detection decreases (Figure 15). Setting a confidence threshold of ∼ 60%, the
best trade-off was achieved with NULL detection reaching 76.2% and activity detection 80.6%. Using a model
trained on all participant’s activity data in the semi-naturalistic dataset, we again evaluated the NULL detection
performance, with 60% confidence threshold, and observed an improvement reaching 98.2% accuracy.

7.2 Frame Size Sensitivity
In human activity recognition systems, frame size plays an important role in feature extraction and classification,
ultimately affecting overall performance. To gauge how sensitive ADL recognition is to this parameter, we
evaluated the best performing frameworks for single-modal (Attend&Discriminate and CNN14) and multimodal
(Attend&Discriminate-CNN14 with Concatenation) activity recognition while extending the frame size from 2
seconds to 20 seconds in non-uniform jumps in a LOPO evaluation. Figure 14 illustrates a gradual increase in
performance with increasing frame size for both inertial data and acoustic data. Increasing the frame size to
20 seconds, we observed a drop in performance for acoustic data, while an improvement of ∼ 3% was observed
for inertial data. When applying the multimodal analysis, increasing the frame size did not yield significant
improvement. Additionally, further increasing the frame size increases the detection latency, which is critical
when deploying this system in real-time. Finally, some activities might also be short, and so having a large frame
size may hinder their detection. Therefore, we found a 10-second frame size to be optimal for our application.

7.3 Multimodal Sensor Fusion
Fusion of the acoustic and inertial data does increase the overall performance of the system. However, some
activities do not exhibit a drastic improvement which include activities lacking in either acoustic or inertial
data. For example, hair brushing has a distinct hand motion associated with it while containing negligible sound.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 42. Publication date: June 2022.



Leveraging Sound and Wrist Motion to Detect Activities of Daily Living with Commodity Smartwatches •
42:21

Conversely, vacuuming has insubstantial motion involved with it and it has a distinct loud sound while in use.
Figure 16 shows the significant difference in information captured between modalities for these two activities.
Moreover, investigating where misclassification occurs in the confusion matrix helps to understand the predictive
ability of the system. Figure 10 supports this observation as the acoustic and inertial models are more accurate in
detecting respective activities.
For fusing inertial and acoustic data, we explored several late fusion methods applied to deep learning

frameworks: (1) score-level fusion via softmax averaging and (2) representation-level fusion via concatenation or
self-attention. The representation-level fusion method performs joint training of a multi-branch architecture via
a single classification head and a single loss. This couples the inertial and acoustic branches together, sharing
information from both modalities to learn a suitable data representation. On the other hand, score-level fusion via
softmax averaging essentially trains an ensemble of classifiers separately before aggregating their predictions. As
such, each classifier only learns from their corresponding modality, thus capturing the diversity across modalities.
In our evaluations, concatenation with the Attend&Discriminate-CNN14 model outperformed all methods in
LOPO and P-LOPO evaluations. However, the performance difference between concatenation, self-attention, and
softmax averaging is insignificant, suggesting that not one method is more effective than the other. In LOSO
evaluation on the other hand, representation-level fusion, whether via concatenation or self-attention, suffered a
drop in performance, with softmax averaging achieving better performance. This observation can be attributed
to the effect of limited training data when joint training a complex multi-branch model architecture with a large
number of training parameters. Thus, separately training classifiers, in this case, resulted in better performance,
with even low-complexity classical models, such as Random Forest, achieving the best performance in LOSO.

With regards to in-the-wild evaluations, inertial-acoustic fusion improves performance compared to single-
modal classifiers, with Attend&Discriminate-CNN14 with concatenation-based fusion outperforming other
methods. Interestingly, a larger performance difference between score-level fusion via softmax averaging and
representation-level fusion was observed. This suggests that representation-level fusion with joint training of
a multi-modal architecture can potentially provide a more robust model that is more effective on real-world
unstructured data. A more extensive exploration and analysis of this topic is needed to better characterize its
effectiveness.

7.4 Smartwatch Power Consumption
In terms of data collection, one area of concern when using a smartwatch for continuous data capture is power
consumption. For our current implementation and the purposes of our study, data processing was not performed
on the watch. But, sampling both the microphone and the IMU continuously affects battery life during data
collection. During the in-the-wild study, participants wore a fully charged smartwatch until the battery was
completely exhausted, which lasted on average for 3.5 hours when sampling both audio and motion data. When
sampling only motion data, a fully charged smartwatch lasted for 8 hours, whereas sampling only audio data
resulted in a battery life of 4.5 hours. As expected, sampling audio has a larger effect on power consumption
since sampling occurs at a much higher frequency. Moreover, compression and encoding of the data is needed
for storage. It is important to note that our smartwatch data collection application was not optimized for power
consumption. We earmark power consumption optimization as well as on-device data processing and model
prediction as an important area of research we plan to explore in future work.

7.5 In-The-Wild Challenges
In this section, we discuss and characterize the specific challenges that we encountered when processing and
analyzing the in-the-wild real-world dataset.
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(a) Semi-naturalistic data. (b) In-the-wild data.

Fig. 17. t-SNE visualization of data embeddings showing distribution shift between (a) semi-naturalistic and (b) in-the-wild
test data. Activity classes are clearly clustered in semi-naturalistic data while not clearly separable in the in-the-wild data.

7.5.1 Noisy Data: Recognizing daily activities in-the-wild is more challenging, compared to controlled or semi-
controlled settings, largely due to the variability in real-life. Variability in the way people perform different
activities as well as the overlap inmultiple activities being performed simultaneouslywas visible during annotation.
For example, in several cases, participants had TV or music on while cooking or washing dishes which the
acoustic model appears to not generalize well to, causing performance degradation. Noise from activities being
performed by other members of a household were also captured. In terms of inertial data, some activities were
not performed using the dominant hand which would not be captured and thus can be misleading to the motion
model. Finally, some participants also performed multiple activities at the same time like browsing on the phone
while cooking/eating, drinking while eating etc. In such cases, the label of the activity being performed by the
dominant hand on which the watch was worn was used. Thus, while inertial sensing was able to capture the
target activity, acoustic data was less accurate since it was exposed to other background noise. In light of these
challenges, an evident future direction is to investigate better modelling and fusion approaches to improve ADL
recognition in the wild.

7.5.2 Data Annotation: Another difficulty in-the-wild was the resolution of annotation. The video clips we
obtained for establishing ground truth were 25 seconds long. Continuous capture of video was not feasible due to
smartphone battery life considerations as well as the data collection software functionality. In our ground truth
labelling setup, it was not possible to label only a fraction of the video clips, and the whole clip had to be labeled
as a specific activity. To clarify, this is a limitation of the labelling software which did not have the provision to
accurately mark the start or end of an activity. During annotation, it was noted that some activities don’t last the
whole 25 seconds. For example, people type on the keyboard for around 10-15 seconds at a stretch. For some other
activities, the video either starts or stops in the middle of the activity which results in the early half or later half of
the video not capturing the activity. A video clip was labelled as an activity if it captured that specific activity for
the majority of its duration. As a consequence, when the frames are created by segmenting the data following the
video clips, the corresponding ground truth assigned might not reflect the activities captured in a small number of
frames. In the future, we hope to improve the validity of the labels by enabling further segmentation of the video
clips, and supporting low-burden forms of annotation [2], including methods that rely on active learning [3].

7.5.3 Distribution Shifts: As observed from the evaluation in Section 6.2, in-the-wild data exhibits critical
domain and distribution shifts compared to the semi-naturalistic data. Distribution shifts, due to variability
among participants, device types being used, environments, context, and activity patterns, are ubiquitous in
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real-world settings, resulting in a need for domain generalization and adaptation. While several prior work have
acknowledged this challenge and attempted to tackle this problem [12, 21], analysis has been limited to either
open datasets collected in controlled settings or retrofitting such datasets with cleanly characterized distribution
shifts and augmentations that are not always likely to arise in real-world deployments. In this work, we study this
problem by collecting real-world data in completely naturalistic uncontrolled settings and observe the distribution
shift numerically through performance drops as well as visually by applying t-SNE visualization [57]. In Figure
17, using the Attend&Discriminate-CNN14 model with concatenation fusion trained on P1-14 participants from
the semi-naturalistic data, we visualize the data embeddings of test data from P15 and in-the-wild data. We clearly
observe that classes are well clustered in data collected in the semi-naturalistic setting, similar to the training
data, despite it being collected from a participant in their own home whose data was excluded from the training
data. On the other hand, data collected in-the-wild are less separable demonstrating the domain shift problem
that arises when moving from controlled or semi-controlled settings to real-world environments.

7.5.4 Imbalanced Data and Missing Classes: While collecting data in uncontrolled naturalistic environments
enables capturing real-world data and evaluating the robustness and effectiveness of the recognition frameworks,
it trades off with other aspects of the data collection process, resulting in limited imbalanced data with missing
activity classes (Figure 4). As a result, assessing the model’s predictive abilities across different activities is a
challenge, especially for rare classes. Moreover, fine-tuning the models on this data, to mitigate the distribution
shift discussed in Section 7.5.3, causes the model to become biased towards the majority class and leads to
forgetting of missing classes. In an effort to mitigate this issue, we sampled remaining classes from the semi-
naturalistic study, ultimately showing some performance improvement. We believe this analysis is the first step
towards better understanding the gap between structured and real-world data and the challenges faced when
deploying standard recognition models in real-life. Due to the challenge of collecting and annotating real-world
data, research towards developing methods for real-world fine-tuning and domain adaptation [24], especially
with imbalanced data or missing target classes, is needed to be able to achieve reliable deployment of DL models
in the wild.

8 APPLICATION SCENARIOS
Similarly to how coarse-grained activity recognition opened up new possibilities in health tracking, we believe
practical ADL recognition will enable a wide range of new applications in a variety of domains. We describe
some of these applications below.

• Personal Diary. ADL recognition and tracking allows maintenance of more detailed personal logs of a
user’s daily activities. Instead of only monitoring coarse mobility states such as running, driving, walking or
sitting, a user could capture more granular information such as time spent cooking, time spent in recreational
activities, etc., providing a more holistic view of their lifestyle. By being presented with such information,
users would also be able to reflect on their day-to-day activities and better manage their time.

• Smart Environments. Knowing the context of the user is important in developing truly smart environments
that can seamlessly integrate with their lifestyle. For example, sitting at a desk to write and sitting at a desk to
work on a computer may require different lighting conditions—writing might require more focused lighting,
whereas working on a computer might require a brightened room to prevent eye-strain. Automatically
detecting and adjusting to these scenarios can improve user satisfaction.While context and activity awareness
are useful for the enhancement of smart homes, we believe these systems are even more powerful when
driving accessibility applications, facilitating the life of individuals with disabilities.

• Health and Hygiene. Apart from health metrics that are provided by the available fitness trackers, our
system can provide monitoring of complex daily activities for a more comprehensive approach to health
tracking. For instance, drinking detection can track user hydration, while monitoring eating can help with
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controlling diabetes and obesity [11]. Tracking activities like teeth-brushing and hand washing can increase
user attention towards personal hygiene. Recognition of other activities like washing dishes, sweeping, and
vacuuming can nudge users to keep their environments clean thus promoting a healthier lifestyle.

• Aging, Skill Degradation, and Rehabilitation. Longitudinal activity tracking in the home can provide
insights into skill degradation, which is generally a sign of mobility impairment, and potentially detect
symptoms that signal the onset of neuro-muscular and neural diseases such as Parkinson’s and myasthenia
gravis [8, 23]. Moreover, people undergoing physical therapy after an accident often have scheduled clinical
visits for tracking their rehabilitation progress. Having a system that can unobtrusively and continuously
monitor activities can help physiotherapists better assess their patient’s progress and provide interventions
when needed.

8.1 Privacy Considerations
Despite the myriad of ways in which applications can benefit from activity and context recognition, deployment
in real-world settings demand special consideration when it comes to human-centered issues such as privacy.
While audio has been extensively used as a sensing modality in activity recognition [28], the privacy risks it
poses cannot be underestimated. Although mitigating privacy risk was not a focus of this work, there are many
steps we would take to render our approach viable. First of all, we see our system being expanded to not only
capture sensor data with the smartwatch but also process audio data on the device. As such, pre-processing, data
segmentation, and inference would run locally on the smartwatch, eliminating the need for any captured audio
to be saved, thus extending its risk surface. Incorporating speech-filtering or voice-masking algorithms into the
framework would be another way to strengthen the privacy protection of our approach [60]. Finally, with a small
trade-off between privacy mitigation and recognition performance, frame-level audio degradation can also be
used to reduce audio intelligibility while maintaining the necessary information for audio classification [31].

9 LIMITATIONS
While our work demonstrated the capabilities and limitations of smartwatches for ADL recognition in naturalistic
settings, it is important to highlight the shortcomings of our study and approach. Firstly, our participants, while
diverse in age and gender, were all right-handed. This characteristic of our population may have impacted our
results. Many individuals choose to wear a watch on the passive arm, which makes it challenging to capture
relevant inertial data for many activities, especially for tasks like writing, brushing teeth or hair, chopping, and
wiping. Leveraging audio data in our system can compensate for the first limitation, but it also leads to the second
limitation of our approach: Our model leverages acoustic data for enhancing activity recognition performance,
and one of the major disadvantages of using sound as an input is its high susceptibility to external noise. As such,
for our semi-naturalistic dataset, we attempted to minimize the noise in our collected data. However, the data
being collected in peoples’ own homes was still subject to some common household background noise, such
as HVAC systems, pets, babies crying, and other people moving around the house. For the in-the-wild dataset,
background audio interference resulted in performance degradation and misclassifications.

Regarding our framework, a limitation was its inability to recognize simultaneous activities. Real world settings
are often chaotic as people multitask, with multiple activities occurring at the same time, as was observed
during the in-the-wild study. Our semi-naturalistic dataset focused on one activity at a time, and thus, did not
include non-overlapping sounds and motion patterns originating from multiple activities. Our in-the-wild dataset
included overlapping activities that caused confusion, especially when inertial data captured one activity while
audio data captured another. For example, one of our study participants browsed the web on the phone while
cooking.
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Lastly, we recognize that additional participants would enhance the external validity of our results. Having said
this, our experimental approach was very rigorous. For example, we chose to establish ground truth with video
evidence from a wearable camera instead of relying on self-reported surveys. We feel that we gained important
and useful insights from data collected in both semi-naturalistic and fully in-the-wild settings.

10 CONCLUSION
In conclusion, this paper explores inertial-acoustic sensing from off-the-shelf commodity smartwatches for
recognizing activities of daily living. We demonstrated that an off-the-shelf commodity smartwatch can be used
without any modifications, hardware or software, to collect synchronous acoustic and inertial data. We validated
this claim by collecting two datasets: (1) a semi-naturalistic dataset with 15 participants naturally performing 23
activities supervised in their homes and (2) an in-the-wild datasets with 5 participants. Through a comprehensive
set of evaluations, we showed the benefit of leveraging multi-sensor data for ADL recognition as well the
challenges that arise in real-world settings. This work represents a step forward in building high-performing
activity recognition systems that leverage both acoustic and inertial data captured using practical off-the-shelf,
wrist-worn devices.
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