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ABSTRACT 
Using a phone while driving is distracting and dangerous. It 
increases the accident chances by 400%. Several techniques 
have been proposed in the past to detect driver distraction due 
to phone usage. However, such techniques usually require 
instrumenting the user or the car with custom hardware. While 
detecting phone usage in the car can be done by using the 
phone’s GPS, it is harder to identify whether the phone is 
used by the driver or one of the passengers. In this paper, 
we present a lightweight, software-only solution that uses 
the phone’s camera to observe the car’s interior geometry to 
distinguish phone position and orientation. We then use this 
information to distinguish between driver and passenger phone 
use. We collected data in 16 different cars with 33 different 
users and achieved an overall accuracy of 94% when the phone 
is held in hand and 92.2% when the phone is docked (≤ 1 sec. 
delay). With just a software upgrade, this work can enable 
smartphones to proactively adapt to the user’s context in the 
car and and substantially reduce distracted driving incidents. 

CCS Concepts 
•Human-centered computing → Ubiquitous and mobile 
devices; 

Author Keywords 
driver detection; position sensing; in-car behavior; situational 
impairments 

INTRODUCTION 
Smartphones are now ubiquitous and, over the years, their util-
ity has increased exponentially. Being immensely pervasive 
and useful means users often choose to use their phones in dan-
gerous situations. For example, 127 people have died between 
2014 and 2016 while taking selfies on their phones [10]. While 
the users often ignore their safety, the phones are also unable 
to detect danger automatically. The phones do not adapt ade-
quately to the user’s situation and often contribute to making 
the situation more dangerous and amplify the associated risks. 
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Figure 1. Lines detected in the photo captured by the phone when 
docked on the windshield at (a) passenger’s right; (b) driver’s left; and 
(c) driver’s right side. The lines capture the perspective of the geometry 
of objects inside a car from different viewpoints. 

One of the most common situations where phones increase 
the danger to their users is while driving. A 2014 survey con-
ducted by National Highway Traffic Safety Administration 
(NHTSA) showed that 398 drivers were killed and 33,000 
drivers were injured in accidents due to cell phone usage while 
driving [1]. Almost everyone knows that using a phone while 
driving is dangerous, but every time a notification pops up 
it demands attention. Driving creates a situational impair-
ment [15] for the user, and the user’s cognitive and visual 
focus is on their primary task – driving. To minimize driver 
distraction and improve safety, some apps (e.g., Waze) disable 
the full set of functionalities while the car is in motion. It may 
be a suitable safety measure to deter individuals from using 
their phone while driving, but it is not enough. It asks the user 
if they are the driver or the passenger. If the user chooses to 
identify as a passenger, the full app functionality is regained. 
While this can be dangerous for a driver, blocking the entire 
phone can be counter-productive (especially because phones 
are widely used as navigation devices in cars). Therefore, we 
need the phones to sense and adapt to the user’s context, i.e. 
driving, automatically. 

Researchers have attempted to solve this challenge of detecting 
if the driver is using phones or in-car infotainment systems 
by instrumenting the car with electrodes [18, 5, 6], using a 
wearable on the driver’s hand [12, 11] or inertial sensor data 
on the smartphone [3, 19, 4]. However, these approaches 
either rely on instrumentation of the car or user, or specific 
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event triggers (e.g., detecting the direction in which the user 
opened the car door), which are not scalable solutions. An 
ideal system would identify if the driver were using their phone 
out-of-the-box without any modification or in-situ training. To 
this end, we present a lightweight, real-time, software-only 
solution that leverages the smartphone camera to determine if 
the driver or the passenger are using the phone. Given many 
users now use their phone’s camera to unlock the phone, the 
camera is the perfect sensor to sense the usage context too. 
To build the system, we rely on the insight that irrespective 
of the car, the interiors of the cars are very similar. The 
exact placement, color, texture, etc. of the objects such as 
the handlebar, sunroof, visor, windows might change, but the 
basic geometry remains consistent. More specifically, when a 
driver uses the phone versus the passenger, it shows distinct 
perspectives of these shapes (geometries). We detect lines to 
capture this change in perspective as shown in Figure 1. The 
position and angle of these lines with respect to the position of 
the user’s face provides enough information to train a robust 
machine learning model to distinguish between the driver and 
the passenger. 

To develop and validate our machine learning models, we 
perform two studies: (1) in 10 different cars when the phone 
was docked to either the windshield or the air vents, and (2) 33 
participants in 16 different cars to get different hand postures 
and approaches to hold the phone while driving (to ensure user 
safety the car was stationary). To elicit natural hand postures 
from the users, we asked the participants to pretend as if they 
were driving and using their phone. We demonstrate that 
within a second, our software-only approach can distinguish 
between the driver and the passenger with 95.5% accuracy 
when the phone is docked and 94% accuracy when the user 
holds the phone. 

RELATED WORK 
Sensing and countering driver distraction has been a long 
standing problem. There are several causes of distracted driv-
ing, but we focus our paper on driving and phone use. For 
such systems, there have been three distinct approaches in the 
past: (1) to instrument the car with minimal custom hardware; 
(2) to instrument the user (e.g., wearables); and (3) using the 
smartphone itself to determine the user role. We look at each 
of these categories in the following sections. 

Instrumenting the Car 
To aid in detecting driver distraction, one of the most common 
and reliable approaches has been to leverage the car. The 
variety of electronics such speakers at every door or the info-
tainment system typically in the middle of the car have been 
previously used to predict the position of the person using a 
device. 

Yang et al. leverage the acoustics in a car to infer the position 
of the phone in it [21]. They send a series of customized 
high-frequency beeps using the car stereo. They then use the 
time of arrival of the frequency back to the phone to estimate 
its position in the car with an accuracy of over 90%. While 
speakers are built into the car, the setup relies on a connec-
tion between the smartphone and the speakers. Secondly, the 

evaluation of this technique was in a controlled environment. 
The irregularity of human movement within the car may intro-
duce multi-path interference that may cause the accuracy to 
diminish. 

Another approach is to look inside the car using a camera. 
Drivers often place a dashcam that continuously records data 
about their driving; typically to mitigate insurance claims 
in case of an accident. Researchers have used an inward-
looking dashcam to detect if the driver is using the phone 
or not. Berri et al. used a small dataset of 200 images to 
demonstrate that they can classify pictures of a person holding 
a phone with 87% accuracy in 3 seconds [2]. Similarly, Se-
shadri et al. used an existing dataset of a dashcam mounted on 
the windshield in the car to detect if the driver is making a call 
using their phone [16]. These solutions require instrumenting 
the car with external cameras, and they are only able to detect 
phone usage when its places near the ear. They are currently 
unable to solve the much larger problem of driving and texting. 

Modern cars disable the touch systems on the infotainment 
system in cars when they are in motion. To make it an adaptive 
interface, researchers have investigated solutions that allow 
them to discriminate between the driver and passenger. Carpa-
cio uses capacitive coupling to discriminate who is touching 
the screen of the infotainment system with an accuracy of 
99.4% [18]. They inserted an electrode in each seat of the 
vehicle to measure the coupled signal between the capacitive 
screen and the electrode. But, they are not the first to use 
capacitive coupling to discriminate between users. Dietz et al. 
send a unique signal through the capacitive touchscreen of the 
device that is used by the electrode embedded in the seat to 
discriminate driver or passenger screen use [6]. Such systems 
are highly reliable but require custom hardware that makes it 
hard to deploy at scale. 

Instrumenting the User 
The proliferation of wearables provides a new fixed sensing 
point on the human body. Researchers have leveraged wear-
ables to detect different activities, most notably to detect driv-
ing. WatchUDrive is a technique that uses the accelerometer 
and the camera on a smartwatch to distinguish between the 
driver and the passenger [12]. They note that holding a steer-
ing wheel is a restrictive activity and the inertial sensor might 
capture the repeatable pattern of motion and a camera on the 
smartwatch might capture a part of the steering wheel if the 
user is driving. They achieve an accuracy of 90% for a predic-
tion within every 10 seconds using inertial sensors, whereas 
using just the camera, they were only able to obtain an accu-
racy of 62% within a 10 sec. window. Similarly, Liu et al. 
also used wrist-worn wearables to detect steering as a proxy to 
detect whose driving. But, their approach is limited to when a 
user is turning the car. The signal obtained by the inertial sen-
sors has a unique signature when the user rotates the steering 
wheel. They evaluated their approach and achieved an accu-
racy of 98% [11]. Although the results are highly promising, 
the limited scope of the approach leaves room for improving 
the driver distraction systems. Furthermore, the accuracy of 
wearable solutions for activity recognition involving multiple 
limbs (e.g., exercises [9], driving) is limited by their position 
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Figure 2. Different positions in which we collected the phone’s camera 
data. The phone was docked in 3 positions on the windshield, 3 positions 
on the air vent, and used in the driver’s hand and the passenger’s hand. 
The users were free to switch hands as they preferred. 

on the body. In this case, the wearable is unable to capture 
driving movements by the non-watch wearing hand. 

Software-only Solutions 
The most deployable systems are the ones that are self-
contained, do not require custom hardware or elaborate setup. 
Several techniques have used the sensor suite present on a 
user’s phone to determine if they are driving. Texive [3] is 
a software-only solution that relies on inertial sensor data to 
distinguish between the driver and the passenger with an ac-
curacy of 87.18%. It uses IMU data to predict which side 
of the car did the person enter the car. It serves as a proxy 
to distinguish between the driver and passenger. Similarly, 
He et al. presented another system that relies on event trig-
gers such vehicle turns and driving over an uneven road to 
discriminate patterns between the left and right side of the car 
with 90% accuracy [8]. But, their approach looks at relative 
changes in patterns of phones i.e., an underlying assumption 
that two phones (users) are present in the car, and are accu-
rately synchronized in time (<100 ms). Wang et al. overcome 
the issue of multiple phones, and suggest using an embedded 
accelerometer in a cigarette lighter adapter, or the OBD-II port 
adapter present in all cars [19]. Both approaches, however, 
either require custom hardware or interfacing with each car’s 
OBD-II port, which makes it hard to deploy at scale. 

Besides the IMU, the smartphone also has other sensors such 
as a microphone. Chu et al. used the fusion of audio and IMU 
sensors to identify micro-movements such as car entry, the 
direction of the action of wearing the seat belt, and the sound 
of turn signal sound to classify the position of the phone [4]. 
They were able to achieve an accuracy of 85% across six users 
in 2 different cars. 

These approaches are based on event triggers, and failure to 
detect even one event can have an adverse cascading effect 
in determining if the driver is distracted. However, these 
approaches provide a groundwork for repeatable patterns one 
might observe in a car that we may be able to leverage. One 
approach may be to detect things like seat belt direction, the 
presence of a pedal, the position of the door w.r.t. the user. If 
a system can reliably detect these objects or similar patterns at 
any time, then we can eliminate the need for an event trigger, 
and build a real-time system. 
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DATA COLLECTION 
In our data collection procedure, we have two variables: 

1. Placement of the Phone: docked-shield, docked-vent, held-
in-hand 

2. Camera Used: back-camera, front-camera 

In all conditions, the video was recorded at 30 frames per 
second with a resolution of 720p. The field of view of the 
camera is approximately 75 degrees. 

Docked Phone 
For the two docked conditions, we collected the data in 10 
different cars1. We placed the phone in 6 different positions in 
the car, 3 each on the shield [Phone 1-3] and the vent [Phone 
4-6] as shown in Figure 2. The positions were: 

1. the left side of the driver facing towards the driver 

2. the middle of the car faced towards the driver 

3. the right side of the passenger faced towards passenger 

When the phones were docked, the users did not need to inter-
act with the phones. Thus, we did not recruit external partici-
pants for this part of the study. The members of the research 
team drove the cars in an urban area to collect the data. We 
chose this approach primarily because of the safety concerns 
around recording videos in a moving car. We recorded videos 
(avg. length = 3.5 mins.) from both the front and the back 
camera. 

Phone in Hand 
When the phone is held in the hand, apart from measuring the 
performance in different cars, we wanted to cover different 
user behaviors, postures, and approaches to holding the phone 
while driving. Thus, we recruited 33 participants (16 male, 17 
female, mean age = 26.04) and recorded data in 16 different 
cars2. To ensure the safety of our participants, we conducted 
the study in a stationary car and simulated the in-hand condi-
tions as shown in Figure 2 [phone 7-8]. We chose to conduct 
the study in a stationary car instead of a driving simulator to 
capture signals in a real setting and to capture visuals of real 
cars. When on the driver seat, the participants were asked 
to pretend as if they were driving and using the phone at the 
same time. They were encouraged to behave as they usually 
would while driving (eyes on the road, hands on the wheel 
etc.). Similarly, when the participants performed the task as a 
passenger, they were encouraged to behave/type as they would 
if they were passengers in a moving car. We did not control 
their phone usage behavior. The participants were allowed 
to move the phone or place the phone anywhere they desired. 
In fact some of them did place it in their lap, or the center 
console. This freedom allows us to capture more realistic data 
1Ford Focus Hatchback, Toyota Prius, Honda Fit, Volkswagen Jetta, 
Ford Escape, Honda Odyssey, Ford Focus Sedan, Subaro Outback 
and Honda Civic ’06, and Honda Civic ’18 
2Kia Rio, Subaru Outback ’14, Subaru Outback ’15, Honda Civic 
’06, Honda Civic ’10, Mazda 3 ’17, Mazda 3 ’18, Toyota Corolla ’10, 
Toyota Corolla ’16, Prius ’10, Prius ’15, Prius ’16, Nissan Rogue, 
Volkswagen Jetta, Toyota Camry, Ford Focus Hatchback 
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of phone usage in the car, instead of relying on predetermined 
positions chosen by us. The phone orientation was also not 
controlled, but all participants used the device in portrait mode 
while driving. 

The participants completed two everyday tasks on their phone: 
(1) responding to text messages; and (2) changing music. 
These are the two most common tasks a person performs in 
their car that require continuous interaction. So, we used them 
as our study tasks to capture realistic scenarios. Both tasks 
were performed once as the driver and once as the passenger 
by the same person in their car. For the duration of the study, 
we recorded videos (avg length = 2.5 mins) from both the 
front and the back camera. These videos were recorded using 
an off-the-shelf app3 that allows the phone to capture video 
while running in the background. This approach allowed the 
users to focus on their task and not get distracted by the video 
recording. 

ALGORITHM 
The goal of our work is to determine if the user of a phone is 
driver or passenger. A practical approach to such a problem 
needs to be lightweight, real-time, and immediately deploy-
able. So, we built a software-only approach that phone makers 
can potentially push as a simple update. 

We now discuss the underlying principle behind our approach. 
When a phone is used in a car, it is typically either in a per-
son’s hand or docked on a dock. Upon examining our data, 
we realized that the captured visuals look dramatically differ-
ent for held and docked conditions, and hence would require 
separate models. Prior research has shown that inertial sensor 
data can be used distinguish if the phone is docked or held in 
hand [14, 7]. Despite not being a contribution of our work, for 
completeness, we built a model to verify that we could reliably 
do so. We used a Random Forest Classifier (default param-
eters, 10 trees) with the average delta in azimuth, pitch and 
roll (window=1s) from the phone’s built in sensors, combined 
with the number of peaks from each of x, y and z axis of the 
accelerometer data (window=1s) as our features. We used the 
leave-one-car-out cross-validation to achieve an accuracy of 
99.8%. 

Next, we built a separate machine learning model for each of 
the two scenarios: {docked, in-hand}. We would like to point 
out that we used continuous video recording to obtain a large 
dataset of images. Our algorithm that uses the front camera 
runs on each individual frame and does not need continuous 
video for phone usage detection. To train both models, we 
balanced our data to contain equal instances of images of 
the driver and passenger. The algorithm for each situation is 
described in the following subsections. 

Docked Phone 
When a phone is docked on a vent or windshield, the front 
camera looks inwards into the car, and the observed scene 
shows that regardless of the car make and model, the interior 
looks very similar (Figure 1). Each car has windows, handle-
bars, seat belts, and sun visors. Depending on the car, the exact 
3Background Video Recorder 

placement, color, and texture of these objects might vary, but 
the basic geometry of these objects remain consistent across 
cars. 

Additionally, a phone at different positions in the same car 
has different perspectives, and the shape (geometry) of the 
objects seen inside the car varies by the phone’s position. So, 
instead of relying on detecting different objects inside the car 
as a reference, we rely on detecting the shape and orientation 
of various objects in the scene. When a user looks at their 
phone in a car, the front camera captures many quadrilaterals 
(e.g., handlebar, windows, visors). To encode the shape and 
orientation of these quadrilaterals, we rely on one of the most 
simple computer vision algorithms – detecting lines and used 
it to capture the change in perspective. To do so, in either 
of the docked positions, we extracted each frame from the 
recorded videos. We first recognize and locate the position of 
the user’s face. We crop two regions of interest (ROIs): (1) 
above the face, and (2) under the face. We identify all possible 
lines in these two ROIs using the Probabilistic Hough Line 
Transform method. The lines above the face were used to 
extract the perspective of the quadrilaterals. The lines detected 
under the face were used to identify the orientation of the seat 
belt. For each of the lines, we first filter out the lines that 
intersect with each other. Next, we filter out the lines shorter 
than 10 pixels. Finally, we calculate the slope of each line 
using its leftmost point w.r.t. to the x-axis in the left-to-right 
direction. Given seat belts are always along the diagonal, we 
then filter the lines under the face with a slope between the 
ranges of 40° and 50° and −40° and −50°. 

Now, the number of lines detected in different frames may 
vary. So, for a frame, if n lines are detected, then we make n 
copies of that frame, each one representing a single line. We 
calculate the following features for each copy of the frame: 

1. (x,y) coordinates of the leftmost point of the line 

2. the angle of the line (in degrees) measured at the leftmost 
point w.r.t. to the left-to-right direction 

3. (x,y) coordinates of the midpoint of the line 

4. (x,y) coordinates of the centre of the bounding box that 
encapsulates the face of the user. 

We use a Random Forest Classifier (max_depth = 16, 10 trees) 
to train our classifier with all copies of each frame as individual 
training instances. Then, to obtain a single output, we take a 
majority vote among all copies of the same frame. Finally, we 
take a majority vote of frames across a window of m second 
and vary m from 0 to 10. 

From our data, we observed that the camera was often oc-
cluded when the phone is docked on the vent. While it worked 
in some cars, the view was entirely blocked by the vent de-
sign in others (as shown in Figure 3). But, when a phone is 
docked on the windshield, the back camera gets a completely 
unoccluded view of the outside of the car. Compared to the 
predictable observed geometry of various objects inside the 
car, the scene outside the car is dynamic and unpredictable. 
Thus, for the back camera, we use a different approach than 
detecting lines and their orientations. Prior research has used 
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Figure 3. Figure showing a limited view from the back camera of the 
smartphone when it is mounted on the air vent. 

vanishing point detection from cameras looking outside the 
car as a tool to build driver assistance systems [17, 13]. We 
observed that different phone positions and orientations on the 
windshield lead to very different vanishing points as shown 
in Figure 4. Thus, we use the vanishing point as a feature. 
When the car is in motion, we look at the direction of the mo-
tion to determine the vanishing point. We start by extracting 
optical flow trajectories from our video using Lucas-Kanade 
sparse optical flow. The algorithm generates new keypoints 
every five frames and tracks them continuously across frames 
to produce a motion trajectory. A keypoint has a lifespan of 
100 frames. A small lifespan ensures that we can obtain long 
enough motion trajectories to compute features, while also 
managing the processing time needed to track thousands of 
point in real time. 

We use a window of 1 second to observe the motion trajectory 
and extrapolate lines for each one. We then use RANSAC 
to compute the vanishing point for each window. We use 
the coordinates of the vanishing point as a feature to train a 
Random Forest Classifier (max_depth = 2, 10 trees). 

Phone in Hand 
In the second scenario, where the user holds the phone in their 
hand, we collected the data in a stationary car for the safety 
of our participants. 

Study Design Decision 
We acknowledge that collecting data in a stationary car reduces 
the ecological validity of our evaluation. Not counting unsafe 

Figure 4. Image showing different vanishing point from three different 
positions: (a) phone on driver’s left; phone on driver’s right; and phone 
on passenger’s right. 
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and illegal practices, there are two potential study methods 
with different trade-offs: (1) using a driving simulator; and (2) 
conducting the study in a stationary car. A task conducted in 
a driving simulator is able to replicate the cognitive load of 
actual driving, but is limited in the ’what’ a camera sees while 
collecting the data. For each participant, it would only be able 
to capture the same car profile and very limited changes in 
lighting conditions. In contrast, an evaluation conducted in 
multiple stationary cars is unable to replicate the cognitive 
load of actual driving, but provides variance in car profiles. 

We chose to collect data and evaluate the system in stationary 
cars because, for a camera-based approach, variability in the 
scene is more critical than varying cognitive load. Moreover, 
there are only a limited set of positions a person could hold 
the phone to be able to successfully text and drive. Thus, it is 
more important to capture the variance in hand position. With 
a high number of participants, we capture variation in hand 
positions as well as car profiles, albeit with a trade-off against 
a task with higher cognitive load. Besides, we encouraged 
the participants to switch hand positions at random intervals 
and reminded them to imagine they were driving and hold the 
phone accordingly. 

Next, we observed that a photo taken in a moving car versus 
a stationary car looks similar. This similarity is further con-
firmed by our evaluation of the docked phone in a moving 
vehicle. As can be seen in the video figure, our system can 
continuously detect faces and lines regardless of whether the 
car is stationary or moving. So even though the safety of the 
participants limits our study design, we are confident that the 
model developed on images from a stationary car will translate 
well when the vehicle is in motion. 

The study was conducted over two weeks in different locations 
at different times of the day to ensure variability in exposure 
to sunlight, weather, and any influence on the image quality 
from environmental factors. 

To elicit variance in hand positions, we did not control the 
phone usage behavior of the participants. They were free to 
use their preferred hand, and could even switch hands during 
the task. In fact, some participants even kept the phone in 
their lap or balanced it horizontally on the cup holder as they 
attempted to finish tasks. The repeatable patterns seen inside 
a car change based on how the person holds the phone. We 
compute the line-based features the same way as we did in 
case of docked phones. However, in this condition, the phone 
is typically close to a user’s face and is unable to view the seat 
belt (as shown in Figure 5). So, we only looked for lines in 
the area above a person’s face. Again, the number of lines 
detected in different frames may vary. So we make as many 
copies of the frame as the number of lines identified in it. We 
calculate the following features for each copy: 

1. (x,y) coordinates of the leftmost point of the line 

2. the angle of the line (in degrees) measured at the leftmost 
point w.r.t. to the left-to-right direction 

3. (x,y) coordinates of the midpoint of the line 
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Figure 5. Examples of images captured with all 16 users where the seat belt was not visible when the phone was held. 

4. (x,y) coordinates of the centre of the bounding box that 
encapsulates the face of the user. 

We use a Random Forest Classifier (max_depth=8, 10 trees) 
to train our classifier with all copies of all frames as train-
ing instances. Similar to our other model, we use a majority 
vote among all copies of the same frame (each line). Finally, 
we take a majority vote of frames across a window of m sec-
onds (m: 0 to 10) to distinguish between the driver and the 
passenger. 

Figure 6. Figure showing variance in views seen from the back cam-
era when the phone is held. (A) shows that the camera can sometimes 
capture car objects such as steering wheel and the infotainment system; 
whereas (B) shows that most times the back camera is unable to capture 
anything meaningful. 

For the back camera, similar to docked-vent condition, the 
images are often occluded and do not provide a consistent 
signal. As shown in Figure 6-A, we can observe parts of the 
car such as the stereo system and determine the orientation 
of text (similar to our perspective of geometry approach); 
however, the camera may not see anything at all depending on 
how the phone is held as shown in Figure 6-B. Therefore, we 
chose only to use the front camera to build our model. 

RESULTS 
Note that, when not explicitly mentioned, the results are for a 
moving average window of size 1 second. 

Docked Phone 
When the front camera was used, in either {shield, vent}, we 
performed a 10 fold leave-one-car-out cross-validation. In 

the docked condition, we were able to distinguish between the 
driver and the passenger with an accuracy of 92.2% (window 
= 1s). We also evaluated the accuracy of our models over 
different window sizes. Figure 7. shows a plot of change in 
accuracy w.r.t. window size. 

In our approach, we use lines as a proxy to detect the shapes 
of different objects such as the sun visor and the seat belt. 
Particularly, when we look for lines to detect seat belts, the 
performance of our line detection algorithm may be affected by 
the color and texture of clothes worn by a person. To evaluate 
the robustness of our approach, we conducted an additional 
study and recorded data (avg. length = 1min) wearing 28 
different color and texture rich clothes with 2 participants (1 
Male, 1 Female, mean age = 28). It includes clothes similar 
in color to the seat belt, and designs containing shapes that 
may confuse a line detection system (as shown in Figure 9 
with classifier accuracy noted with each clothing). We used 
our best classifier from our original study, and classified this 
data. The average accuracy across all clothes was 91.8%. It 
shows that our approach is robust and can work across a wide 
range of colors and textures. 

As stated earlier, the data from {vent, back} did not provide a 
useful signal. In the {shield, back} condition, we performed 
a 10 fold leave-one-car-out cross-validation. We were able to 
distinguish between the driver and passenger with 72.3%. 

We observed that the majority of confusion in this case stems 
from confusion between the phone on passenger’s right side, 
and the phone in the middle oriented towards the driver. For 
all 10 cars, there is a distinct separation between the vanishing 
point of the two phones. However, in 4 out of the 10 cars, the 
relative position was flipped as compared to the remaining cars. 
We postulate that this error stems from different placements 
of phone in different cars due to varying interior design. 
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Figure 7. Plots showing accuracy of distinguishing between the driver and the passenger with varying window size when (a) phone is docked; (b) phone 
is in the hand (person-independent model); (c) phone is in the hand (car-independent model). 

Phone in Hand 
As stated earlier, when the phone is used in the hand, we 
only get a consistently informative signal when we use the 
front camera. We first validate our approach by reporting 
the results of a 16 fold leave-one-car-out-cross validation. We 
want to ensure that our machine learning model would work 
across different cars. In this case, we were able to distinguish 
between the driver and the passenger with 93.9% accuracy 
over a window of 1 second. 

Next, we wanted to validate that our model is resilient to the 
variance in the way different people hold their phone while 
driving. We performed a 33 fold leave-one-user-out cross 
validation, and were able to distinguish between the driver and 
the passenger with 91.9% accuracy. 

When a user holds the phone in their hand, the position of the 
phone is not static and the observed perspective might change. 
Figure 8 shows varying perspectives of the same car object 
(sun visor) in the same session. Despite this variance, we were 
able to distinguish between phone use by the passenger and 

Figure 8. Example of variance in image views captured at different times 
by the same user when the phone was held as the driver. 

the driver robustly. We also evaluated the accuracy of our 
model over different window sizes as shown in Figure 7. 

DISCUSSION 
In this paper, we present a lightweight sensing technique to 
determine if the phone is being used by the driver or the 
passenger. Regardless of the placement of the phone in the 
car, we are at least able to discern between the driver and 
the passenger with 90% accuracy. Our continuous detection 
mechanism allows mobile apps to detect and adapt to the user’s 
context i.e., driving. Despite knowing that using the phone 
while driving is dangerous, the smartphone demands attention 
and causes distraction. To minimize driver distraction and 
improve safety, mobile apps can leverage our technique to 
adapt and simplify their interfaces. 

We would like to emphasize that we used continuous video 
recording to obtain a large dataset of images. Our algorithm 
that uses the front camera runs on each individual frame and 
does not need continuous video for phone usage detection. In 
a real world scenario, a photo can be taken opportunistically 
based on event triggers such as in-vehicle detection or user 
touch. Secondly, our approach runs in real-time i.e., the data 
can be featurized and processed in real time without storing 
any sensitive information. It allows us to detect phone usage 
by drivers in a privacy sensitive manner. 

To validate our lightweight approach and robustness, we also 
built a real-time phone app. On an Octa-core 2.2 GHz Cortex-
A53 android phone CPU, on average, it took 550ms to classify 
each frame (image). 

Limitations of Our Approach 
While we were able to collect data for a docked phone in a 
moving car, due to safety concerns, it is not possible to do 
so for the phone in hand condition. We acknowledge that it 
reduced the ecological validity of our study. But, to improve 
the confidence in the robustness of our system, we recruited 
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Figure 9. All the clothes used to evaluate the technical soundness of the line detection approach. Each image also shows the accuracy of data collected 
while wearing that cloth, using the best classifier from the original data. 
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Figure 10. Simplified interfaces for common mobile apps when the 
driver is driving. 

a high number of participants. It allows us to capture a wide 
range of behavior exhibited by people as they pretend to drive 
and text. Secondly, the features used in our machine learning 
model do not rely on the motion of the car. We extract individ-
ual frames and only look at the geometry of the shape of the 
objects. 

Our approach to geometry recognition using lines is not per-
fect. A line detection algorithm is not completely general-
izable, but given our restricted search space- it works well 
for our use case. We have two regions of interest: (1) above 
a person’s head to capture the geometry of the objects in a 
car (not affected by clothing); and (2) under the face of the 
person to determine the seat belt. Here, we filter out lines in a 
very narrow range of angles. We also conducted a study with 
28 different clothing items of different colors and textures to 
demonstrate the technical soundness of our technique. Our 
results demonstrate that our approach is robust to different 
textures, but we cannot account for all possible textures and 
designs. There may be some clothing items that may cause 
our system to fail. 

Despite an informative signal, our approach to leverage the 
back camera to determine the phone position/orientation did 
not work due to high variance in localization of the vanishing 
point across cars. However, the signal we obtained as quite 
stable, only car-specific. A potential solution could be to auto-
matically teach the phone to build a car specific model. The 
phone can learn the position and vanishing point correlation, 
using the front camera approach as automatic position labels. 

We are able to do so because our proposed front camera ap-
proach is robust and accurate. However, there are limitations 
to its use as well. If the phone is docked exactly in the centre 
of the car without any orientation towards either the driver or 
the passenger, then there is no observed perspective change. 
Our current approach may not be suitable for that scenario. 
But, the camera and other smartphone sensors can still be 
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used to accomplish the same goal. The camera can observe 
the direction of a finger touch to determine who touched the 
phone screen. Prior research has also used capacitive imaging 
to determine the angle and direction of the finger touch on a 
smartphone [20], or grip information to determine hand pos-
ture to determine from which side of the car did the person 
touch the device [7]. 

If the seatbelt is occluded or camouflaged due to a person’s 
clothes, it may adversely affect the performance of our system 
when the phone is docked. Our approach only uses the seatbelt 
as a feature when the phone is docked. So, in the absence of 
this signal, the aforementioned strategies of detecting finger 
position and angle would still work. 

Lastly, if the user truly wanted to, they can fool the system. 
With clever positioning and unnatural orientation of the phone, 
a driver can trick the system into thinking that they are the 
passenger. This attempt to circumvent the lockout, may end 
up increasing the safety risk. Clearly, a complete blockage of 
functionality is not a good solution. So, we envision our work 
as a sensing platform that other apps can leverage to reduce 
the cognitive load of a driver and discourage bad behavior. We 
discuss some examples below. 

Design Implications 
One simple and obvious change could be to not show notifica-
tions at all when the phone is oriented towards the driver. We 
take it a step further to examine how commonly used mobile 
apps would adapt their interface to promote safety (Figure 10). 
We demonstrate mockups of two simplified app interfaces: (1) 
music application; and (2) messaging. 

While the car is in motion, our system can be leveraged to 
detect if the phone is being used or oriented towards the driver. 
In such a scenario, the music app can strip away other function-
alities such as music search and playlist creation. A simplified 
version of the music app would only present minimal options 
to control the currently playing song. It allows the driver to 
skip and change songs, but blocks the more distracting activity 
of music search. 

Similarly, upon receiving a text message, the driver would only 
be allowed to use voice to text if they want to respond. While 
the car is in motion, the messaging app can block the driver 
from using text replies that demands a higher cognitive effort. 
The passenger on the other hand would be able to utilize the 
full functionality of the app. Similar feature reduction can be 
applied to any communication app such as messaging, Slack or 
even email apps. Our low fidelity prototypes are not a design 
guideline for future apps, rather a demonstration of how our 
sensing technique can be used in practice to improve safety. 

However, the use of our system as a sensing platform goes 
beyond adapting the interface for safer driving. It can influence 
policies that may benefit the user. For example, if a user never 
drives and text, it may lead to lower car insurance rates being 
offered for safe driving practices. 

CONCLUSION 
The utility of smartphones has increased exponentially in the 
last decade. But, its ubiquity comes at a cost. The user often 
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chooses to use their phone in dangerous situations, such as 
while driving. Most current solutions either rely on custom 
hardware or are not scalable to be used in real time. In this 
paper, we present a fully automated, lightweight, software-
only solution that leverages the on-board smartphone camera 
to determine if the phone is being used by the driver or the 
passenger. We rely on observing the change in perspective of 
repeatable shapes seen inside the car. We collected our data 
in 16 different cars with 33 different users and achieved an 
overall accuracy of 91.9% when the phone is held, and 92.2% 
when the phone is docked (≤ 1 sec. resolution). A simple 
software update can now enable smartphones across the world 
to sense the context of driving and use it to adapt the mobile 
app interfaces to reduce distracted driving accidents. 

ACKNOWLEDGEMENTS 
We are grateful to the Carnegie Bosch Initiative for supporting 
this research. 

REFERENCES 
[1] National Highway Traffic Safety Administration. 2016. 

Distracted Driving 2014. (2016). https://crashstats. 
nhtsa.dot.gov/api/public/viewpublication/812260 

[2] Rafael A Berri, Alexandre G Silva, Rafael S Parpinelli, 
Elaine Girardi, and Rangel Arthur. 2014. A pattern 
recognition system for detecting use of mobile phones 
while driving. In Computer Vision Theory and 
Applications (VISAPP), 2014 International Conference 
on, Vol. 2. IEEE, 411–418. 

[3] Cheng Bo, Xuesi Jian, Xiang-Yang Li, Xufei Mao, Yu 
Wang, and Fan Li. 2013. You’re driving and texting: 
detecting drivers using personal smart phones by 
leveraging inertial sensors. In Proceedings of the 19th 
annual international conference on Mobile computing & 
networking. ACM, 199–202. 

[4] Hon Chu, Vijay Raman, Jeffrey Shen, Aman Kansal, 
Victor Bahl, and Romit Roy Choudhury. 2014. I am a 
smartphone and I know my user is driving. In 
Communication Systems and Networks (COMSNETS), 
2014 Sixth International Conference on. IEEE, 1–8. 

[5] Paul Dietz and Darren Leigh. 2001. DiamondTouch: a 
multi-user touch technology. In Proceedings of the 14th 
annual ACM symposium on User interface software and 
technology. ACM, 219–226. 

[6] Paul H Dietz, Bret Harsham, Clifton Forlines, Darren 
Leigh, William Yerazunis, Sam Shipman, Bent 
Schmidt-Nielsen, and Kathy Ryall. 2005. DT controls: 
adding identity to physical interfaces. In Proceedings of 
the 18th annual ACM symposium on User interface 
software and technology. ACM, 245–252. 

[7] Mayank Goel, Jacob Wobbrock, and Shwetak Patel. 
2012. GripSense: using built-in sensors to detect hand 
posture and pressure on commodity mobile phones. In 
Proceedings of the 25th annual ACM symposium on 
User interface software and technology. ACM, 545–554. 

[8] Zongjian He, Jiannong Cao, Xuefeng Liu, and Shaojie 
Tang. 2014. Who sits where? Infrastructure-free 

in-vehicle cooperative positioning via smartphones. 
Sensors 14, 7 (2014), 11605–11628. 

[9] Rushil Khurana, Karan Ahuja, Zac Yu, Jennifer 
Mankoff, Chris Harrison, and Mayank Goel. 2018. 
GymCam: Detecting, Recognizing and Tracking 
Simultaneous Exercises in Unconstrained Scenes. 
Proceedings of the ACM on Interactive, Mobile, 
Wearable and Ubiquitous Technologies 2, 4 (2018), 185. 

[10] Hemank Lamba, Varun Bharadhwaj, Mayank Vachher, 
Divyansh Agarwal, Megha Arora, and Ponnurangam 
Kumaraguru. 2016. Me, Myself and My Killfie: 
Characterizing and Preventing Selfie Deaths. arXiv 
preprint arXiv:1611.01911 (2016). 

[11] Luyang Liu, Cagdas Karatas, Hongyu Li, Sheng Tan, 
Marco Gruteser, Jie Yang, Yingying Chen, and 
Richard P Martin. 2015. Toward detection of unsafe 
driving with wearables. In Proceedings of the 2015 
workshop on Wearable Systems and Applications. ACM, 
27–32. 

[12] Alex Mariakakis, Vijay Srinivasan, Kiran Rachuri, and 
Abhishek Mukherji. 2016. Watchudrive: Differentiating 
drivers and passengers using smartwatches. In Pervasive 
Computing and Communication Workshops (PerCom 
Workshops), 2016 IEEE International Conference on. 
IEEE, 1–4. 

[13] Mihai Negru and Sergiu Nedevschi. 2013. Image based 
fog detection and visibility estimation for driving 
assistance systems. In Intelligent Computer 
Communication and Processing (ICCP), 2013 IEEE 
International Conference on. IEEE, 163–168. 

[14] Stanley Rabu. 2014. Detecting docking status of a 
portable device using motion sensor data. (March 25 
2014). US Patent 8,682,399. 

[15] Andrew Sears, Min Lin, Julie Jacko, and Yan Xiao. 
2003. When computers fade: Pervasive computing and 
situationally-induced impairments and disabilities. In 
HCI International, Vol. 2. 1298–1302. 

[16] Keshav Seshadri, Felix Juefei-Xu, Dipan K Pal, Marios 
Savvides, and Craig P Thor. 2015. Driver cell phone 
usage detection on strategic highway research program 
(SHRP2) face view videos. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition 
Workshops. 35–43. 

[17] Chun-Che Wang, Shih-Shinh Huang, and Li-Chen Fu. 
2005. Driver assistance system for lane detection and 
vehicle recognition with night vision. In Intelligent 
Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ 
International Conference on. IEEE, 3530–3535. 

[18] Edward Jay Wang, Jake Garrison, Eric Whitmire, 
Mayank Goel, and Shwetak Patel. 2017. Carpacio: 
Repurposing capacitive sensors to distinguish driver and 
passenger touches on in-vehicle screens. In Proceedings 
of the 30th Annual ACM Symposium on User Interface 
Software and Technology. ACM, 49–55. 

Paper 693 Page 10

https://crashstats.nhtsa.dot.gov/api/public/viewpublication/812260
https://crashstats.nhtsa.dot.gov/api/public/viewpublication/812260


 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[19] Yan Wang, Yingying Jennifer Chen, Jie Yang, Marco 
Gruteser, Richard P Martin, Hongbo Liu, Luyang Liu, 
and Cagdas Karatas. 2016. Determining driver phone 
use by exploiting smartphone integrated sensors. IEEE 
Transactions on Mobile Computing 15, 8 (2016), 
1965–1981. 

[20] Robert Xiao, Scott Hudson, and Chris Harrison. 2016. 
CapCam: Enabling Rapid, Ad-Hoc, Position-Tracked 
Interactions Between Devices. In Proceedings of the 

2016 ACM on Interactive Surfaces and Spaces. ACM, 
169–178. 

[21] Jie Yang, Simon Sidhom, Gayathri Chandrasekaran, 
Tam Vu, Hongbo Liu, Nicolae Cecan, Yingying Chen, 
Marco Gruteser, and Richard P Martin. 2011. Detecting 
driver phone use leveraging car speakers. In Proceedings 
of the 17th annual international conference on Mobile 
computing and networking. ACM, 97–108. 

Paper 693 Page 11


	Introduction
	Related Work
	Instrumenting the Car
	Instrumenting the User
	Software-only Solutions

	Data Collection
	Docked Phone
	Phone in Hand

	Algorithm
	Docked Phone
	Phone in Hand
	Study Design Decision


	Results
	Docked Phone
	Phone in Hand

	Discussion
	Limitations of Our Approach
	Design Implications

	Conclusion
	Acknowledgements
	References 



