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ABSTRACT

Wearable egocentric visual context detection raises privacy con-
cerns and is rarely personalized or on-device. We created a wearable
system, called PAL, with on-device deep learning so that the user
images do not have to be sent to the cloud for processing, and can be
processed on-device in a real-time, offline, and privacy-preserving
manner. PAL enables human-in-the-loop context labeling using
wearable audio input/output and a mobile/web application. PAL
uses on-device deep learning models for object and face detec-
tion, low-shot custom face recognition (~1 training image per per-
son), low-shot custom context recognition (e.g., brushing teeth, ~10
training images per context), and custom context clustering for
active learning. We tested PAL with 4 participants, 2 days each,
and obtained ~1000 in-the-wild images. The participants found PAL
easy-to-use and each model had gt80% accuracy. Thus, PAL sup-
ports wearable, personalized, and privacy-preserving egocentric
visual context detection using human-in-the-loop, low-shot, and
on-device deep learning.

CCS CONCEPTS

« Human-centered computing — Human computer interac-
tion (HCI); Ubiquitous and mobile computing; Ubiquitous
and mobile computing systems and tools.
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1 INTRODUCTION

Context-awareness is key for human augmentation technologies
[37], and egocentric visual contexts have been useful in intelligence
augmentation applications [8, 44], especially in wearable settings
[28, 41]. Deep learning models can recognize a wide range of visual
contexts [42] but usually need a large number of training images and
massive compute power using Graphical Processing Units (GPUs).
However, visual context tracking, especially sending user data to
the cloud, raises privacy concerns [13, 15] and the models are also
not personalized for each user, especially using privacy-preserving
and human-in-the-loop deep learning in wearable settings.

We created a wearable device, called PAL, for personalized and
privacy-preserving egocentric visual context recognition using on-
device, human-in-the-loop, and low-shot deep learning. PAL uses
on-device deep learning for privacy-preserving visual context de-
tection so that the user data is not sent to the cloud or another
device for processing. PAL also supports user input and output
for human-in-the-loop training and labeling of personalized visual
contexts. We used on-device models for generic object and face de-
tection, personalized low-shot custom face and custom recognition,
and semi-supervised active learning-based custom context clusters.
Compared to the state-of-the-art wearable systems for personalized
visual context recognition, which use at least 100 training images
[24] and do not use privacy-preserving on-device deep learning,
PAL uses only ~10 training images per custom context and also
uses active learning-based context clustering so that the users do
not have to explicitly train different contexts.

We tested PAL’s device in in-the-wild wearable settings with 4
participants, 2 days each, obtaining ~1000 images. Each of the mod-
els had an accuracy of over 80%. The participants felt comfortable
wearing the device, found custom training and labeling intuitive
and easy, and also did not have privacy concerns with the camera.
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We make three contributions in this work: i. a wearable device
for privacy-preserving and personalized visual context detection
using on-device and human-in-the-loop deep learning; ii. low-shot,
custom-trainable, and active learning models for recognizing cus-
tom contexts, faces, and context clusters; iii. real-world evaluations
of the wearable system, including in-the-wild evaluations of visual
context detection models.

2 RELATED WORK

PAL is a wearable system for personalized and privacy-preserving
egocentric visual context detection using on-device, human-in-the-
loop, and low-shot deep learning. While there are wearable systems
for egocentric visual context tracking using deep learning, there
are none that use on-device, human-in-the-loop, and low-shot deep
learning like PAL. We divide our related work for visual context
detection using deep learning into three categories.

2.1 Camera-based Deep Learning Systems

Deep learning can recognize a wide variety of visual contexts, e.g.,
objects and faces [42], and deep learning applications are now
common in mobile environments [34]. There are deep learning-
based applications using ambient cameras, e.g., for fall detection
[9], activity recognition [46], and tracking museum visitors [30].
Wearable egocentric cameras have also used deep learning models,
e.g., for predicting daily activities [3], visual assistance [31, 33],
visual guides [40], and face recognition [5]. There are also non-
egocentric wearable cameras using deep learning, e.g., for emotion
recognition [43] and eating recognition [2]. However, none of these
systems use on-device deep learning, especially for personalized
and low-shot recognition of custom egocentric visual context.

2.2 Privacy-preserving and On-Device Learning

Research has identified several ethical concerns for wearable cam-
eras [15], and users have also highlighted their needs for personal
and bystander privacy [14]. There have been a couple of privacy-
preserving approaches, e.g., privacy-preserving collaborative deep
learning for human activity recognition [27] and image distort or
modification [1, 7]. However, none of these systems use on-device
deep learning to avoid sending data to the cloud for processing.
Deep learning commonly uses Graphical Processing Units (GPUs)
but recently there have been on-device deep learning processors
[45] and models [22]. On-device deep learning systems have also
been used for computer vision [29], but they do not support person-
alized, low-shot, and human-in-the-loop visual context detection.

2.3 Personalized and Active Learning

Wearable deep learning-based egocentric visual context recognition
has been used for personalized object and face recognition for
memory augmentation [23, 24]. However, they do not use on-device
deep learning for privacy-preserving context detection and also
need ~100 images for training each personalized class, whereas our
custom context and face recognition models use 1 to 10 images.
Low-shot deep learning models are common [35]. Active deep
learning has also been used for activity recognition [11] and even
combined with image clustering [4]. However, none of these models
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have been deployed in in-the-wild wearable settings, especially
using on-device and human-in-the-loop deep learning.

3 DESIGN

We wanted to support wearable egocentric visual context detec-
tion. We had five key decision considerations: i. Capture the user’s
egocentric view but use a non-conspicuous camera position so the
camera is not distracting to the wearer and people around them;
ii. Enable real-time and ideally, offline detection so that the user
does not have to be connected to the internet or another device for
processing; iii. Enable seamless labeling of personalized contexts;
iv. Enable low-shot detection of personalized contexts and efficient
labeling of unrecognized contexts for active labeling; v. Enable on-
device labeling so that the user data does not have to be sent to
the cloud or another device for processing or to be saved there for
long-term if the user does not want to. In line with our decision
considerations, we made the following design decisions for camera
placement, on-device deep learning, and user data labeling.

3.1 Camera Placement

Wearable cameras can be placed on the body or the face/head. On-
body cameras do not always capture the same visual contexts as
the user’s eyes because they are distant from the user’s eyes and
also because the user’s face may tilt or turn independent of their
body. Head-mounted cameras are commonly used, e.g., GoPro and
Google Glass, but they can be socially unacceptable [39] and even
distracting and heavy. We decided to place a camera on the user’s
face to capture their visual context, but also decided to keep it small,
light, and not too prominent or distracting on the user’s face.

3.2 On-device Deep Learning

To preserve user privacy, we decided to use on-device deep learning
for model training and inference so that user images are not sent to
the cloud and can be deleted after on-device processing. The users
can decide if they want their images stored on the cloud. If the user
does not do real-time labeling of the custom context or if a specific
context is not recognized, it is sent to the cloud so that the user can
label it on the mobile/web app. The images are deleted right after
the user labels them if the user has disabled long-term labeling. The
users can also selectively delete specific images.

We decided to recognize a range of visual contexts, including
common objects, generic faces, custom faces, and custom visual
contexts, e.g., custom activities like playing pool. We decided to use
low-shot human-in-the-loop learning to allow users to train custom
faces and visual contexts. We also decided to use active learning
and request the users to label unrecognized contexts. In order to
enable efficient labeling of similar images, we decided to use context
clustering so that users can label groups of images efficiently. We
remove images of unknown faces to protect by-stander privacy.

3.3 User Input/Output and Data Labeling

We wanted to enable custom context and face recognition. We de-
cided to include a button so that the users can start/stop custom
training sessions. We enabled two ways of labeling: Real-time label-
ing right after recording a custom context. and post-hoc labeling,
which can be done any time after the context was recorded.
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WEARABLE DEVICE
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Figure 1: Wearable device with on-device deep learning, camera, open-ear audio output, microphone, and button.

In order to enable real-time labeling, we included a microphone
for the users to record their labels. We decided to use audio input
because it can be quickly and less visually distracting than text
input. We also included open-ear audio output to give feedback
to the user, e.g., confirm starting or stopping training session and
replay recorded custom labels. We chose open-ear audio output as
it can be delivered seamlessly to the users without the users having
to explicitly check text messages or without blocking the user’s
real-world content. For post-hoc labeling, we decided to create a
mobile/web app for labeling both user-specified sessions as well as
non-session data.

Labeling a custom face or session has five steps: 1. Single press
button to start custom labeling session (camera takes periodic pic-
tures) or double press for a custom face; 2. Move around to capture
the necessary context if needed; 3. Press button to stop custom
labeling session; 4. Open-ear audio prompt to record custom label
name; 5a. Option # 1: Keep button pressed to record label name
using audio input. Listen to the audio label recording and confirm
or re-record the label; 5b. Option # 2: Double press button to defer
labeling to labeling on mobile/web application.

4 IMPLEMENTATION

PAL has a wearable device for personalized and privacy-preserving
egocentric visual context detection, and a mobile/web app for data
labeling and visualization. We describe PAL’s wearable device, on-
device deep learning models, and the mobile/web app below.

4.1 Wearable Device

PAL’s wearable device has an ear-hook and an on-body component
(Figure 1). The ear-hook has a camera and speaker, and the on-
body component has a Raspberry Pi Zero and Google Coral Deep
Learning Accelerator. The wire connecting the ear-hook to the
on-body component has a microphone and button for user input.

Every 2 minutes, the device takes a picture and runs all the deep
learning models. The user starts and stops custom training sessions
(6 images per minute) by pressing the button and labels the session
using audio input/output or on the mobile/web application. The
device also retrieves geolocations from the mobile phone for context
clustering.
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The wearable device consumes maximum 0.3A at 5.25V and our
2500mAh battery lasts ~5 hours. Our camera has a 64° wide view
angle and captures ~70% of the user’s visual context, missing the
side 200 cm and top 100 cm of a 1200 cm x 750 cm view ~1m away.

4.2 On-device Deep Learning Models

PAL has on-device visual context detection models for three kinds
of tasks: i. generic object and face detection; ii. low-shot custom
face and context recognition; iii. context clustering for efficient
active learning of visually-similar contexts. All models are trained
and inferred on the wearable device. Each model runs in ~3s and
all models in ~15s.

Object and Face Detection: The Object Detection model is trained
on 90-item Common Objects in Context (COCO) dataset [25] and
Face Detection on Open Images v4. Both models use the MobileNet
SSD v2 architecture [12, 26].

Low-shot Custom Face and Context Recognition: Both models use
MobileNet v1 architecture [12]. Custom Face Recognition models
using FaceNet [38] and needs 1-2 custom training images per face.
Custom Context Recognition model recognizes custom activities, e.g.,
brushing teeth, using weight imprinting [36]. Weight imprinting
adds new classes to the existing list of classes for continual learning
and needs ~10 training images for each class. The custom context
recognition model is an Image Classification model pre-trained on
the 1000-class ImageNet dataset [6].

Context Clustering for Active Learning: We cluster visually-similar
contexts, separated by geolocations, using an image embedding
generator combined with a clustering model. Our image embedding
generator is the second-to-last layer of an Image Classification
model (MobileNet v1), pre-trained on 1000-class ImageNet dataset.
We use Density-based Spatial Clustering of Applications with Noise
(DBSCAN) [10] as DBSCAN does not require us to fix the number
of clusters. Unlabeled clusters are displayed on the web/mobile app
for labeling.

4.3 Mobile/Web App

The mobile/web app enables post-hoc labeling of custom data, in-
cluding custom sessions, custom faces, and unlabeled clusters. Also,
users can visualize their data using a timeline or graphical view.
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Figure 2: Interface for custom context labeling, custom face labeling, unlabeled cluster labeling, timeline data view, and graph

data view.

Interface for custom context and face labeling, unlabeled cluster
labeling, and timeline and graph data view is shown in Figure 2.
We created our web/mobile app using Google’s Polymer as it en-
ables cross-platform deployment as a web application and a mobile
application.

5 EVALUATION

We tested PAL in-the-wild with 4 participants (u= 23.5 yrs, o= 1.66
yrs; 3 males, 1 female; all students) wearing PAL for 2 days each (~5
hours per day based on PAL’s maximum battery life). Below, we
share the evaluations of our visual context detection models and
also the responses from our open-ended participant interviews.

5.1 Visual Context Detection

There were a total of ~1000 images (1 image every 2 minutes) in
13 locations (9 indoors - 4 eateries, 2 shops, 1 dorm, 1 house, 1
office; 4 outdoors - 1 shopping area, 1 roadside walkway, 1 train
station, 1 residential area). The details for each model are: i. Object
Detection — 618 persons, 282 books, 48 TV screens, 45 laptops, 30
chairs, 25 bottles, 14 cars, 13 teddy bears, 8 keyboards, 7 microwaves,
7 cell phones, 6 potted plants, 5 couches, 4 bowls, 3 sandwiches,
3 trains, 2 clocks, 2 refrigerators, 2 sinks, 2 dining tables, 1 toilet,
1 umbrella, 1 bus, and 1 bicycle; ii. Face Detection — 180 faces; iii.
Custom Face Recognition — 120 instances of 4 known people; iv.
Custom Context Recognition — 7 custom activities (brushing teeth,
making coffee, eating lunch, working in own office, working in open
office area, playing pool, playing foosball), 10 training images each
from user-initiated sessions (6 images/min), and ~350 total images;
v. Custom context clustering — 19 indoor locations, ~300 images. We
remove images of non-consenting participants to protect by-stander
privacy.

Each model had over 80% accuracy (all results in Table 1). Even
images partially occluded by the wearer’s cheeks, eyeglasses, or
hair were accurately predicted. Example images are in Figure 3.

5.2 User Experience

We conducted open-ended interviews with the participants about
their experiences, which are summarized below.
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Data Training, Labeling, and Visualization: The participants found
the data visualizations “intuitive” and “helpful. The data training
and labeling was “easy”, using both audio input/output and the
mobile app. Two participants mentioned that the audio output was
audible in “even noisy environments”, e.g., restaurants, bookstores,
and train stations.

Device Comfort: The participants found the wearable device
“quite comfortable” to wear and secure while walking. The par-
ticipants requested a “lighter” clip-on as it “pulled on the ear-hook”
and also “longer battery life”.

Camera: None of the participants mentioned having major issues
wearing the camera in public or privately. The participants took off
the device whenever needed. Two participants mentioned liking
the “small” and “invisible” camera.

5.3 Discussion

We created a wearable device, called PAL, for privacy-preserving
and personalized egocentric visual context detection in wearable
settings. We tested PAL in in-the-wild real-world settings with 4
participants, 2 days each. Our results show an accuracy of over
80% for for generic object and face detection, custom face and
activity recognition, and custom indoor location clustering (total
~1000 images). The participants found the device comfortable to
wear, the wearable audio input, audio output, and camera usable in
public and private settings, and the wearable human-in-the-loop
custom context training and labeling easy and intuitive. Thus, our
initial tests show that PAL can support personalized and privacy-
preserving egocentric visual context detection in wearable settings.
We aim to further deploy PAL with more deep learning models for
computer vision and test the models for more real-world human
augmentation applications.

6 APPLICATIONS

We have used PAL to provide real-world habit habit-formation
support in egocentric visual contexts [17, 20] as well as for lan-
guage learning and memory support [19]. We also added other
sensors to PAL’s platform and open-sourced PAL as a modular plat-
form for behavior change applications [16]. Users want behavior
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Table 1: PAL’s on-device models and their in-the-wild evaluations with 4 participants, 2 days each, and total ~1000 images

Models Training

Testing

Object Detection!

Face Detection’

Custom Face Recognition 23

Custom Context Recognition®%?

2,5,6

Custom Context Clustering N/A

90-item COCO [25]

Open Images v4 [21]
1-2 custom images/person
10 custom images/session

98.8% accuracy, F1-score = 0.79, ~1000 instances
88.8% accuracy, F1-score = 0.9, ~180 instances
86.9% accuracy, 4 known people, 120 instances
87.2% accuracy, 7 custom activities, ~350 images
82% accuracy, 19 indoor locations, ~300 images

"MobileNet SSD v2, 2MobileNet v1 [12], >FaceNet [38], *“Weight Imprinting [36], > Pre-trained on ImageNet

Object Detection Face Detection

Custom Face
P1 :

Recognition | Custom Context Recognition Custom Context Clusterin

A2 L1 L1 i

Correct Prediction. Objects -- O1. Sandwich; 02.TV; O3. Laptop; O4. Mouse; O5. Mouse; O6. Book. Faces -- P1: Person 1;
P2: Person 2. Activities -- A1: Make coffee in office; A2: Brush teeth in dorm. Indoor Locations -- L1: Kitchen; L2: Office; L3: Outside Home

Figure 3: Example images from in-the-wild evaluations of PAL’s on-device deep learning models (total ~1000 images).

change support and tracking in visual contexts [18], and we en-
vision that PAL can be used for self-tracking and context-aware
behavior change applications, e.g., Just-in-time Adaptive Interven-
tions (JITAIs) [32]. PAL’s egocentric visual context detection can
also be further used for other applications, e.g., memory support
for people with Alzheimer’s or their caretakers.

7 CONCLUSION

Egocentric visual contexts can provide detailed contextual infor-
mation, but wearable cameras are a privacy concern. Also, deep
learning-based visual context detection models usually require large
datasets and compute power. We created a wearable device, called
PAL, for privacy-preserving and personalized egocentric visual con-
text detection using on-device, low-shot, and human-in-the-loop
deep learning. PAL’s on-device deep learning enables user privacy
as user data does not have to be sent to the cloud or another de-
vice for processing. We deployed models to not only detect generic
faces and objects but also to recognize custom faces and contexts
via low-shot learning and even create custom clusters for efficient
active learning. We tested PAL in in-the-wild wearable settings, and
not only did the visual context detection models perform well, but
also the participants found it easy to use PAL for egocentric visual
context detection. Thus, PAL uses on-device, low-shot, and human-
in-the-loop deep learning for personalized and privacy-preserving
egocentric visual context detection, and paves the way for several
wearable context-aware applications using personalized egocentric
visual contexts.
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