Detecting Mastication - A Wearable Approach
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ABSTRACT

We explore using the Outer Ear Interface (OEI) to recog-
nize eating activities. OEI contains a 3D gyroscope and
a set of proximity sensors encapsulated in an off-the-shelf
earpiece to monitor jaw movement by measuring ear canal
deformation. In a laboratory setting with 20 participants,
OEI could distinguish eating from other activities, such as
walking, talking, and silently reading, with over 90% accu-
racy (user independent). In a second study, six subjects
wore the system for 6 hours each while performing their
normal daily activities. OEI correctly classified five minute
segments of time as eating or non-eating with 93% accuracy
(user dependent).

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation (e.g.
HCI)]: User Interfaces

General Terms

Human Factors, Experimentation, Design
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1. INTRODUCTION

In trying to map the relationship between diet and disease
|14] researchers have relied on self-report methods to answer
questions about what, how and when people eat. Food fre-
quency questionnaires and 24-hour recalls are the most typ-
ical instruments employed in this context [5, [14]; they are
widely used by health experts and serve as the foundation
for nutritional surveillance systems [3].
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Figure 1: OEI system: a) The proximity sensors on
the earpiece. b) User wearing OEI

However, self-report survey tools suffer from biases and
are dependent on one’s ability to recollect events and activi-
ties [8},]9},|10]. This problem has motivated research towards
systems that can automatically and objectively track eating
both in laboratory and real-world settings |1} |12} [13].

One option is to capture images or video of the user’s day
continuously and then search for episodes of eating. How-
ever, the review of the data would be onerous. A wear-
able system that could detect eating could help health re-
searchers (or the wearer) find the appropriate episodes in
video quickly. Other journaling options include triggering
capture only during suspected eating events or querying the
user as to what they are eating. Beyond dietary monitor-
ing, an eating detection system might also prompt the user
to take medication or perform a necessary procedure (e.g.,
insulin injection) at appropriate times.

We explore the use of the Outer Ear Interface (OEI) to
detect mastication automatically, distinguishing eating ac-
tivities from non-eating ones. OEI is packaged in an off-the-
shelf consumer earbud that mounts outside the ear canal.
The system monitors jaw movement by using proximity sen-
sors to measure the deformation it causes in the ear canal
and uses a gyro to prevent errors due to body motion.

Contributions of this paper include

e The design of a system that distinguishes eating activ-
ities from non-eating activities.

e An evaluation of the system in a laboratory setting
where activity sessions were divided into 5-minute seg-
ments and labelled as eating or not-eating.

e An evaluation in real-world settings encompassing six
one-hour long sessions with six participants.
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Figure 2: Annotating video using ChronoViz.

2. RELATED WORK

Over the last 20 years, wearable and ubiquitous comput-
ing researchers have proposed a variety of methods for au-
tomating food tracking and recognition. Acoustic and iner-
tial sensing have been the most commonly used modalities.

Several food intake monitoring systems have been designed
for neck placement, such as Bodyscope and Bodybeat
. Kalantarian et al. demonstrated distinguishing solids
and liquids with an F-measure of 85% and 86% with a sen-
sor located in the neck region. Fontana et al. detected food
intake with 89.8% precision, 89.9% recall, and 89.8% accu-
racy @ fusing data from a jaw motion sensor, a hand gesture
sensor and an accelerometer.

Laboratory studies by Amft et al. with four partici-
pants suggests that the placement of a microphone inside the
ear canal can distinguish between speech and eating foods
(except for very soft foods like rice) at around 99% accuracy
and can distinguish between four types of foods with 80% to
100% accuracy. However, wearing a microphone in the ear
canal can be obtrusive to the user.

In a previous paper on OEI 7 we report frame level
accuracy for detecting eating, talking, walking and silence in
a lab setting. Here, we expand upon that analysis, focusing
on eating, and move toward real-world practicality of the
method with an in-the-wild experiment.

3. SYSTEM DESCRIPTION

The current version of the OEI system (Figure|l]) contains
three infrared proximity sensors placed in an off-the-shelf
sport earpiece and a 3D gyroscope placed in a hat. The
sport earpiece has an adjustable loop that goes around the
pinna to stabilize the unit, and the three proximity sensors
are placed orthogonally with respect to each other to cover
a wider area of the ear canal. Due to the wide variety of
ear shapes, fitting the sensors properly is difficult; having
the three proximity sensors provides redundancy. When a
user walks, the earpiece may slightly shift in an out along
with the body motion. This movement causes the proximity
sensors to generate signals similar to those obtained during
mastication. The gyroscope data helps combat this problem
(see Section @ The sensors are sampled at 100 Hz, and the
data is logged on an SD card.
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4. DATA COLLECTION AND LABELING

Our first experiment was conducted in a laboratory set-
ting. We invited participants to wear the system for about
half an hour and asked them to perform a fixed set of ac-
tivities, including eating, drinking, walking, reading aloud
and being silent. The second experiment was an in-the-wild
study where we asked participants to wear the system for
six hours and perform their normal daily activities. We had
different participants in both sets of experiments.

4.1 Laboratory Experiment

In the laboratory study, we had a total of 23 participants
with ages varying from 18 to 41, a mean of 24 and a stan-
dard deviation of 4.83. We had to discard data from three
participants due to errors in data collection.

We designed the study to be easily replicated to ensure
uniformity across subjects. Each subject began with 5 min-
utes of reading aloud from a book, followed by 5 minutes
of silently reading or browsing the Internet. Next were 10
to 15 minutes of eating and drinking. Participants were en-
couraged to behave as they would in normal eating environ-
ments. However, the range of food types they could eat was
restricted to M&Ms, apples, and bananas. They could also
drink from a glass of water. Afterwards, an experimenter
walked for five minutes with the participant to a crowded
street and down a flight of stairs to test the system’s ro-
bustness to the user’s movement. On average, about 45%
of the recorded time was spent in eating activities. Sessions
were video recorded for later annotation of ground truth ex-
cept for when the user left the lab for walking.

We used ChronoViz for annotating the video footage
obtained in the laboratory study (Figure. The annotation
was done by two authors and then verified by a third. Only
a few boundary errors were found in the verification step.
To synchronize the video footage with the data recorded by
OEI on ChronoViz, we used a simple head gesture (move
head sidewise from left to right 4 or 5 times) which was
distinct in the video as well as in the gyroscope data.

4.2 Wild Experiment

We conducted an in-the-wild study to test the system in
more realistic conditions. Participants in this study used the
system for six hours each during their daily activities. They
were asked to keep a record of any activities that exceeded
15 minutes and to indicate whether they were eating-related
activities. This duration can be sufficient for real time ap-
plications in the health field, such as reminding a patient to
take medication with food. For food intake activities, par-
ticipants had to specify when start and end to within one
minute. We used these labels as ground truth. We obtained
data from a total of 6 participants (4 females). One of the
authors visually checked regions marked by the participants
as eating activity to verify that the gyro and proximity data
looked appropriate. Another author reviewed these anno-
tations. A few boundary errors were found and corrected.
Of the total time recorded by the participants, 11.2% of the
time was spent in eating activities.

S. FEATURE SELECTION

We selected five features to use from the sensor data. The
first feature is obtained by dimensionality reduction using
Principal Component Analysis (PCA). We performed PCA



on the three proximity sensors and selected the first com-
ponent. Proximity data were smoothed (with an averaging
window size of 5 samples), and we took the first derivative of
the values to remove signal offset before the dimensionality
reduction step. PCA helps recover the jaw movement from
the OEI without being affected by the heterogeneity of the
user’s ear shape.

The second feature reflects the energy in the jaw move-
ment signal, which can be a major difference between speech
and mastication gestures. FEnergy is computed using the
RMS value of a sliding window of 50 samples across the
values of the first feature. The last three features are the
raw gyroscope data from axis X, Y and Z. These features
can help detect body motion like walking, which may result
in shaking or shifting the OEI sensor causing it to produce
signals similar to the ones caused by jaw movement.

In a previous work |4 we used an energy feature computed
by averaging the energy in the band between 1.2 Hz to 4.6
Hz. Generating this feature requires short time FFT calcu-
lation, which is computationally expensive when compared
with RMS. To assess the validity of using the RMS feature
we ran a frame level evaluation (frame size 5 seconds) using
user independent HMM models built from the same data
set [4] and obtained a slightly higher accuracy (83.7 % using
FFT feature to 84.3 % with RMS feature).

6. EATING EVENT RECOGNITION

Our goal is to evaluate OEI’s capability to recognize eating
events when they happen. In food logging, users or health
researchers split the time period they are monitoring into
smaller time segments, and report in which segments food
intake occurs. We follow a similar approach here.

6.1 Training and Testing

Hidden Markov models (HMMs) were trained of eating
and null classes using frames of 5 seconds with 50% over-
lap, extracted from labeled intervals. To recognize eating
segments in the recorded data, we performed a sequence of
steps. First, we extracted 5 second frames from the entire
recorded period using a sliding window that advanced by
one second. After computing the features on each frame we
test their accuracy against the trained models and classify
results as an Fating or Non_eating frame. A binary vector
is then generated from recognition results to be compared
with ground truth labels.

Before the final comparison the binary recognition vector
is filtered using two stages. Using a predefined window size
of 15 seconds, the first stage looks for periods where contin-
uous eating is recognized. Unless a period is larger or equal
to the window size it will be considered as Non_eating. The
second stage smooths the results of the first stage using an
averaging window of 150 seconds.

Comparison between ground truth and predicted results
are made by segmenting the recorded period into same size
non-overlapping intervals. Intervals are marked as eating if
any eating activity was labeled or predicted in that interval.
We use Precision = TP/(TP + FP), Recall = TP/(TP +
FN) and Accuracy (percentage of correctly labelled seg-
ments) = (TP + TN)/(Number_of_segments) as metrics.

7. LABORATORY EXPERIMENT RESULTS

Using the data collected from 20 participants for a period
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Table 1: User independent laboratory results

Window Size | Precision % Recall % Correct %
T minute | 83.2( 12.1) | 86.1 (£ 20.7) | 88.5(% 10.4)
3 minutes | 89.6(L 15.2) | 90.2 (£ 16.2) | 87.8 (£ 12.9)
5 minutes | 92.6(E 13.5) | 93.3 (£ 14.5) | 90.4 (£ 12.9)

Table 2: User dependent in-the-wild results

ID | False+/hour | Precision % | Recall % | Correct %
S1 0.7 58.3 100 93.1
S2 0.4 57.1 80 94.6
S3 0.4 66.7 100 95.9
S4 0.4 76.9 100 96.1
S5 1.6 52.2 92.2 83.6
S6 0.6 70 100 93.8
Avr | 0.68(£0.5) | 63.5(£9.2) | 95.4 (£8) | 92.9 (£4.7)

of half an hour in the lab environment, we trained HMM
models for eating as the main class and talking, walking
and silence as three null classes. Although drinking events
were annotated, they were not used in training steps due
to insufficient data. We empirically selected a 10-state, left-
right topology for talking and silence classes, and an eight-
state left-right topology with additional transitions between
(4 — 1) and (7 — 5) for eating and walking classes.

Table [l shows the mean and the standard deviation of the
precision, recall and accuracy percentages by evaluating the
system in intervals of 1 minute, 3 minutes and 5 minutes,
tested on leave-one-user-out, user independent models.

As expected, the gyro was important in distinguishing eat-
ing and other classes. Evaluating the eating classifier in a
window of 15 seconds without the incorporating inertia fea-
tures resulted in a significant drop in accuracy ( 86.7% —
70.5%), precision ( 86.3% — 63.2%)and recall (76.5% —
50.4%). 67% of false positives and 80.1% of false negatives
were due to walking activities.

8.

IN-THE-WILD RESULTS

We trained two HMM models, one each for Eating and
Non_eating. A left-right topology of eight states with no
skip states was used for both models. We used leave-one-
user-out cross validation training for user independent test-
ing. For user dependent testing, we randomly reserved 33%
of each user’s session as an independent test set and used
the rest for training.

In Tables [2] and [3] we list user dependent and user inde-
pendent test results. We provide the average false positive
per hour rate as an additional metric for evaluation. The

Table 3: User independent in-the-wild results

ID | False+/hr | Precision % | Recall % | Correct %
S1 1.1 42.9 85.7 87.5
S2 3 16 80 70.3
S3 2.7 24 100 75.3
S4 1.4 47.4 90 85.7
S5 0.6 73.3 84.6 91.8
S6 1.6 46.7 100 83.3
Ave | 1.7 (£0.9) | 41.7(£20.2) | 90.1(£8.3) | 82.3 (£8)




time interval window for both tables is five minutes (72 to-
tal segments per participant).

9. DISCUSSION

In order to discover food allergies and understand eat-
ing behaviors and disorders, health researchers and clini-
cians conduct laboratory experiments and diary studies. To
help encourage patient compliance with reminders based on
eating detection, the OEI project strives to create a semi-
automatic food journaling device that is unobtrusive and
appears similar to current consumer electronics devices on
the market. Given the current OEI hardware, one can imag-
ine the proximity sensors and gyro integrated into a popular
Bluetooth headset, like the LG Tone Pro or Jawbone. In
this sense, OFEI is less obtrusive than the devices described
by Fontana et al.[6], Rahman et al. |11 |15], and Yatani and
Truong|l5]. When a potential eating session is detected,
a connected smartphone app might ask the user to con-
firm that they are eating and prompt the wearer to journal
the food either by speaking it or typing it on their phone.
For such applications, precision and recall for eating detec-
tion can significantly improve by adapting the classifier to a
specific patient. This goal can be achieved by customizing
preexisting user-independent models with correctly classi-
fied samples from the current user. For in-lab studies, one
could imagine integrating the OEI with a camera pendant,
like the Narrative Clip or Looxcie, that constantly images
the user’s hands and automatically marks segments with a
high probability of being an eating event.

In both proposed uses, the recognition system must have
a high recall rate and not have so many false positives to an-
noy the wearer or overwhelm the health researcher. In that
regard, the results here are encouraging. The user indepen-
dent, leave-one-out laboratory study shows recall, precision,
and accuracy rates above 90% (a baseline system that would
mark everything as Non_eating would be 55% accurate).

The in-the-wild results are also encouraging, with a re-
call rate of over 90%. While the accuracy was poorer than
baseline (82% versus 89% for a system that always returns
Non_eating), the result is understandable given the bias
towards the null classes. Assuming the current precision
results, a health researcher using a camera pendant would
only need to review 1/4 of the continuously captured im-
agery, and the wearer of an eating journal reminder sys-
tem would be interrupted falsely 1.7 times per hour. These
numbers are higher than desired but may reflect a lack of
training data. To investigate, we created a user dependent
(and session dependent) model by using two thirds of the
data frames extracted from each in-the-wild session to train
models for each user and tested the model on the remain-
der of the 6 hours of data obtained from the same user in
the same session. False positives per hour were reduced to
0.68, and the precision improved to 63.5%, suggesting that
more data would indeed help improve rates. Looking at the
false positives, we noticed a considerable amount of talking
(e.g. having a phone call, on a meeting and cooking with a
friend), which suggests that creating a null class for talking
and adding a microphone might further improve the results.

10. CONCLUSION AND FUTURE WORK

We evaluated the OEI system for detecting eating events
both in-the-wild and in the laboratory. We focused develop-
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ment towards making a non-intrusive, everyday-wear system
which could help patients remember to take medicine with
food or help clinicians sift through “lifelogs” to find eating
events. The results are promising and suggest that larger
amounts of in-the-wild training and additional sensors may
help improve system performance. Going further, perhaps
combining OEI’s proximity sensors with Amft’s microphone-
based type-of-food detector [2] might overcome previous lim-
itations with soft foods and lead to a system that identifies
more food types.
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